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Abstract: Construction materials and systems for the thermal building envelope have played a key
role in the improvement of energy efficiency in buildings. Urban heat islands together with the
upcoming rising global temperature demand construction solutions that are adapted to the specific
microclimate conditions. These circumstances are even more dramatic in the case of healthcare
buildings where the need to preserve constant indoor temperatures is a priority for the proper recovery
of patients. A new neonatal hospital, located in Madrid (Spain), has been monitored, and building
energy simulations were performed to evaluate the effect of the building envelope on the energy
demand. Based on the simulation results, the design of the building envelope was found to be
insufficiently optimised to properly protect the building from the external heat flow. This is supported
by the monitored results of the indoor temperatures, which went over the standard limit for about
50% of the hours, achieving up to 27 ◦C in June and July, and 28 ◦C in August. The results showed,
on one hand, that solar radiation gains transmitted through the façade have an important impact on
the indoor temperature in the analysed rooms. Heat gains through the opaque envelope showed
an average of 8.37 kWh/day, followed by heat gains through the glazing with an average value of
5.29 kWh/day; while heat gains from lighting and occupancy were 5.21 kWh/day and 4.47 kWh/day,
respectively. Moreover, it was shown that a design of the envelope characterised by large glass
surfaces and without solar protection systems, resulted in excessive internal thermal loads that the
conditioning system was not able to overcome.
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1. Introduction

Climate change has become a key priority worldwide [1–4]. An increase in temperatures together
with global heatwaves [4,5] and temperature anomalies [6] are some of the visible effects of climate
change. The effect of the increase in temperature is even more dramatic in urban areas due to the urban
heat island (UHI) effect [7–9]. The main consequence of this is the increase in temperature compared
to the surrounding non-urbanised areas due to different sources of emission (domestic heating,
industrialised establishments, road traffic, etc.). Additionally, there are other heat effects produced
by the built space (asphalt, building materials, the layout of the road network, natural vegetation
removal, etc.) that increase the effect of UHI due to heat accumulation. These are factors that modify
the radiation balance between the ground and the air, reduce evaporation, increase surface water runoff

and decrease wind speed [10,11]. These effects are of great importance in the urban exchange of energy
in addition to the energy efficiency of buildings that has been widely researched [12,13].

Madrid has been one of the areas of analysis and different research has been performed to analyse
the frequency and intensity of thermal effects according to atmospheric conditions [11,14]. Despite the
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extended effects of climate, the highest incidences were observed during the summer due to difficulties
in releasing heat accumulated in building [15]. The cooling demand was therefore too high for the
conditioning system which was designed for lower capacities and consequently, it resulted in an
increase in indoor air temperatures compromising comfortable conditions. Additionally, different
research has shown the influence of high indoor temperatures on health [16,17], especially in those
that are the most vulnerable to temperatures such as elderly people and the very young [18,19].
An increase in the number of deaths has been recorded [20,21] which has become particularly dramatic
in the case of hot and warm climates [22,23]. These circumstances have been commonly analysed in
dwellings [24,25], however, there is little research on the consequences of inadequate thermal comfort
for public buildings such as healthcare buildings.

Among different types of buildings, public buildings have an energy consumption of, on average,
40% higher than residential buildings [26]. Similarly, hospital buildings have a higher energy
consumption in comparison with other public buildings [27] due to their facilities, medical equipment
and ventilation supply requirements. Verheyen, Pourshaghaghy, Sattayakorn and Alotaibi evaluated
the thermal condition standards for hospitals taking reference patients [28–31] and staff and concluded
a lack of suitability of current standards in health-related spaces (UNE-100713) [32]. Other studies refer
to different temperature ranges to maintain the thermal comfort of patients, which vary between 20 and
24 ◦C [33] or between 25 and 27.7 ◦C [34]. There are standard regulated temperature values for different
uses such as hospitalisation, operating rooms, common areas, and special care rooms. However,
there is no specific range of temperatures for maternity areas for which the vulnerability of newborns
is taken into consideration. This sector of the population is especially susceptible to temperature
changes and must be kept in a neutral thermal environment, avoiding thermal stress caused by cold
or heat [35]. Additionally, different research has shown that any changes in temperatures constitute
a risk to the newborn’s health [36,37] and could affect the increase in the neonatal mortality rate in
non-climate-controlled settings, especially in periods where the outdoor temperatures reach extreme
values [38]. The World Health Organisation (WHO) recommended to maintain the temperature
in the delivery rooms between 25 and 28 ◦C and also determined that the maximum tolerable air
temperature for an unclothed baby is about 35 ◦C and slightly less for a dressed baby [39]. Another
study recommended a different temperature range in delivery rooms, between 24 and 26 ◦C [40].
According to the ASHRAE Handbook for HVAC applications in healthcare facilities, temperature and
humidity can inhibit or promote the growth of bacteria and activate or deactivate viruses [41].

In Spain, there has been the development of large real estate parks for the new construction of
hospital buildings, so much so that, from 2000 to 2017, 344 public hospitals were built [42]. The majority
of these hospitals were built according to the energy efficiency regulations established since 2008,
and therefore the energy efficiency measurements were adopted and included a commitment to reduce
energy demand. However, most of the healthcare buildings did not take into consideration of the
microclimate conditions and the same construction type could be found independently of geographical
latitude or specific location. As, construction materials and the envelope systems have a key role in
the improvement of the thermal performance and reducing energy demand [43,44] by the mitigation
of heatwaves, this research presents, an evaluation of a hospital built during this period in terms of
indoor setpoint temperature and energy efficiency.

The research aims to evaluate the influence of the envelope system on the preservation of the
indoor set temperatures. To address this, a preliminary selection of the typology of buildings has
been developed. A neonatal hospital in the city centre of Madrid has been chosen for the study.
Indoor conditions in selected rooms, as well as the external conditions, were monitored in the summer
of 2018. Additionally, an energy simulation of the fifth floor of the hospital has been performed to
quantify the effect of different parameters on the building energy demand.
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2. Materials and Methods

2.1. Selection of a Representative Case of Study and Building Description

Following the aim of the research, a preliminary analysis of the common architectural typology
and construction systems used in the last decade in hospitals has been carried out. The first phase
has been to select the representative typology and construction systems used. In a second phase,
a healthcare building was selected and a deep analysis of the indoor conditions was performed.

Additionally, a dynamic energy simulation was carried out to evaluate quantitatively how the
building envelope affects the rooms’ set temperatures and energy demand. The simulation was
performed on the 5th floor of the hospital building and the results of the rooms selected for the study
were analysed.

The building for this study was selected based on preliminary research regarding the typology
of hospital buildings constructed in the last decade in Europe. All of them were located in an urban
area in different cities between 38◦ to 52◦ N latitude. One of the key parameters in the design of these
types of buildings is the layout. Most cases showed courtyards shaped like a “cross-comb” with an
east/west orientation. Furthermore, buildings commonly showed 3 to 7 floors and 2 underground levels.
However, it is noteworthy that independently of the latitude, the most common construction system
was a lightweight construction type. Additionally, sun control and shading devices were not frequently
used, although windows/wall ratios achieved an average of approximately 70% coverage. The façade
construction systems were curtain walls or ventilated panel systems. Opaque and transparent glass in
addition to aluminium boards were the most popular materials implemented in the hospital building
facades. Usually, these opaque and transparent glass panels have a multi-layer film to regulate sun
radiation and provide an aesthetic appearance. It must be highlighted that the analysed cases showed
high similarities of the construction design independently of the latitude.

A building of this construction period, situated in Madrid, with a latitude of 40 ◦N and longitude
of 3◦ W (Spain) had been selected as a case study. The hospital was built between the years 1996–2003.
It has an area of 42,000 m2 and comprises of six floors with a rectangular layout and eight interior
courtyards (enclosed poly-block). Patient rooms are oriented towards interior courtyards with large
windows reaching down to floor level. The fifth floor (the last one) comprised newborn hospitalisation
with rooms and offices. The non-transparent glass façades characterise the architecture of the building.
One of the main key points of the building is that it is located in the central area of the city which
is directly affected by heatwaves [45], this is a phenomenon that occurs mainly at night, being more
frequent and more intense during warm periods [11]. According to the Köppen classification,
the Madrid climate is between CSA (temperate with a dry and hot summer) and BSK (cold steppe).
The average temperature in the coldest months is between 0 ◦ and 18 ◦C and in the hottest month,
the average temperature is above 22 ◦C.

2.2. Methods—Monitoring Process

As mentioned above in the previous section, the floor in which newborns were placed, was selected
for analysis Figure 1a presents the layout of the fifth floor. As newborn children represent one of the most
sensitive groups of the population, the thermal environment in those rooms must be controlled, and it
should be guaranteed to have a neutral temperature with minimum fluctuations [35]. Location of those
room on the last floor has however a drawback. The internal conditions are more influenced by thermal
transfer through the roof with a large surface area exposed to solar radiation. Three post-delivery rooms
(A-B-C), shown in Figure 1a, were selected for analysis. Their selection was based on a search for similar
conditions with the same orientation (east) and their placement alongside a corridor. In addition, all of
them showed the same ventilation and air-conditioning systems, so variations in terms of temperature
impacted by the equipment were decreased. The occupancy profile was similar in all of the rooms,
which were occupied 80% of the time during the measurement period. The temperature set-point was
26 ◦C for cooling and 24 ◦C for heating in all of the rooms. The only difference between those spaces
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was the location in the building. Room A is located in the north side of the building, Room B in the
central side and Room C in the south side Figure 1a. The hospital building and the typology of rooms
selected for the study are shown in Figure 2.
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Figure 2. Interior and exterior photos for the case study. (a) Typology of patient rooms; (b) hospital
building for the study.

Real-time values of outdoor and indoor temperature were monitored and recorded. An outside
sensor model Siemens T1-PTC (Positive temperature coefficient) (MR − 50 + 70 ◦C) was used.
It was located on the south-facing façade on the last floor of the building and attached to a wall.
Complementary to the previous sensor, indoor air temperature sensors, PB-T1 (Pronto bus) (MR 0 + 50
◦C) were used. Interior sensors were installed in the same place in the rooms selected and located
on the wall as showed in Figure 1b. Sensors were mounted at a height of 1.5 m and were installed in
accordance with the instructions from the manufacturer.

Global solar radiation data was collected from the closest meteorological station placed in the
Ciudad Universitaria of Madrid and data was provided by the Meteorological Agency of Spain
(AEMET). Summertime was the selected period to evaluate the performance of the building [46,47]
as the most unfavourable conditions in hospitals require demand for cooling [46,48], due impart to
the internal loads together with the forecasted increase in temperature and the heat island effect.
The hospital was monitored from June 2018 to August 2018. Data were collected every 15 min by the
DESIGO-INSIGHT [49] management system program. A daily data file was generated by the software.
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Calibration procedures were applied in accordance with the parameters included in the UNE-EN
62974-1 regulation [50]. During the summertime, the most critical hottest week of each month was
selected for the study.

2.3. Simulation

The building was modelled by the software Design-Builder V 6.1 while EnergyPlus V 8.9 software
was used for determining building’s internal heat balance. The heat balance is generally modelled with
four, coupled heat-transfer components: (1) conduction through the building element, (2) convection
to the air, (3) short wave radiation absorption and reflectance and (4) longwave radiant interchange.
The incident short wave radiation is from the solar radiation entering the zone through windows
and emittance from internal sources such as lights. The longwave radiation interchange includes
the absorption and emittance of low-temperature radiation sources, such as all other zone surfaces,
equipment, and people [51].

The model of the hospital building was simulated with the weather conditions of Madrid climate
zone D3, created according to the official regulations for energy simulations in Spain ([52]). The selected
rooms had similar conditions with the same orientation (east), and 26 m2 of area. A validation process
for the simulation results was carried out by comparing the simulated indoor air temperatures vs. those
measured for several days and the occupancy rates for different building thermal zones. By means of
the comparative analysis, a satisfactory agreement of the results was obtained.

To establish the limits of indoor temperature, 24 and 26 ◦C as minimum and maximum temperature
values respectively were taken for the analysis. This limitation was based on the temperature
requirements for healthcare buildings in the patient rooms (UNE-EN 100713-2005) for environmental
conditioning in hospitals [32]. Moreover, the same temperature limits were established as set point
temperature values for the air conditioning systems in patient rooms of the studied building (26 ◦C for
cooling and 24 ◦C for heating). Besides climatological variables (indoor/outdoor temperature and solar
radiation), other types of variables were also considered for this research (Table 1).

Table 1. List of parameters for the simulation of the building model. * Data provided by the Integrated
Information Department of the hospital.

Inputs Newborn Patient Rooms A, B, C

Setpoint temperature Cooling 26 ◦C/Heating 24 ◦C
RH% Humidification 40%/Dehumidification 60%

ACPH 2.7
Workday profile (h) 0:00–24:00 Mon–Sun

Occupancy density (p/m2) 0.10
Occupancy schedule (h) 9:00–21:00, 80% Occup. Rate

22:00–8:00, 50% Occup. Rate
Occupancy heat gain (W/M2) Sens. 63 Lat. 52

Lighting heat gain (W/m2) 7
Illuminance (lx) 500

Indeed, occupancy rates, set temperatures, types of air conditioning systems and the system
characteristics of the building envelope (Table 2).

Concerning the HVAC (Heating Ventilation and Air conditioning) systems, the cooling, heating and
ventilation systems are controlled by a centralised technical management system [49]. Heating was
supplied by natural gas boilers, in a thermal power station placed on the second floor and a refrigeration
station powering an air-water chiller placed on the roof. For the terminal devices, variable air volume
boxes (VAV) are used to supply patient rooms; while fan coils are used in other spaces. The set
temperature considered for air conditioning systems is 26 ◦C for cooling and 24 ◦C for heating while the
relative humidity is 60% for dehumidification and 40% for humidification, according to the Regulation
of Thermal Installations in Buildings in Spain [53].
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Table 2. Construction solution of the opaque envelope.

Element Construction System U Factor W/(m2)K

E1.
Façade wall
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All rooms have mechanical ventilation and the systems used air handling units (AHU).
The ventilation requirements for patient rooms were 0.023 m3/s.m2 and 2.7 ACPH (Air changes
per hour) (UNE 1007-13). Natural ventilation is rarely used. In addition, the light system was supplied
by fluorescent luminaires in most of the rooms without a control system, with a power of 7 W/m2

ASHRAE 90.I (American Society of Heating, Refrigerating and Air conditioning Engineers) [54].
Requirements for equipment were not considered for the selected patient room because these types of
rooms do not have fixed equipment inside that can generate internal loads.

The opaque surface of the façades was constructed as a continuous concrete wall with a
non-ventilated air gap. 5 cm thick polyurethane insulation was chosen for thermal wall protection,
followed by an aluminium auxiliary structure which supports opaque glass sheets as well as the fixed
and practicable windows. Table 2 describes the components for the opaque construction systems and
the thermal transmittance. Regarding the translucent envelope, it shows a thermal transmittance of
2.7 W/m2K, with double glazing type Climalit 6 + 12 + 6 and a solar factor (g) of 78%. The frames are
made of metal with thermal breaks and a U factor of 4.5 W/m2K. The frame to glass ratio is 20%.

Additionally, the window-wall ratio (WWR) of the building was evaluated (Table 3).
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Table 3. Bulging window-wall ratio.

Wall/Window Area Total North East South West Rooms (A B C)/East

Wall (m2) 16,446.06 3869.33 44,222.78 3775.4 4378.55 13
Window opening (m2) 4500.17 1266.5 1070.3 1031.96 1131.41 3.25

Window-Wall Ratio (%) 27 33 24 27 26 25

The north and south façades presented the highest WWR, 33 and 27% respectively, while the
east façade showed 24% and the west, 27%. The rooms (A, B, C) selected and placed on the east
side showed 25% of WWR. The WWR of the building is within the allowed values for the thermal
transmittance of windows (2.7 W/m2K) in the climatic zone of Madrid (D3), in accordance with the
energy efficiency regulations in Spain. In the case of the north façade, the WWR exceeds the allowed
limits of the U value of the windows (2.2 W/m2K) because the building project was developed before
these limits were introduced into the regulations.

3. Results and Discussion

3.1. Measurements Results

During the summer of 2018 the indoor air temperature, outdoor air temperature and solar radiation
were monitored to evaluate the influence of the envelope on the internal conditions in selected rooms
in the hospital. Results of this study are shown in Figures 3–8.
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set temperatures in the rooms analysed. This performance is in relation to the maximum values of
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solar radiation on the 15th of June. Figure 3 shows in detail the extreme indoor conditions reaching the
temperature of 27 ◦C with more than 50% of the hours exceeding the upper-temperature limit in all
of the rooms. Additionally, the minimum recorded outdoor temperature was 23 ◦C which was 2 ◦C
higher than in the previous week; at the same time, an increase in the maximum temperatures was
observed ranging from 37 ◦C to 40 ◦C.

In general, temperatures stared to increase around 10.30 a.m. and began to decrease at 3.30 p.m.,
which was directly related to solar incidence. The results of the simulations showing (Figure 9) hourly
ranges of solar gains were found to be very similar to those measured in situ.
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However, small differences can be observed between the rooms, and the first to suffer an increase
in temperatures was Room B which is positioned on the central side. The indoor temperature began to
increase at 9.00 a.m. compared to Room C (south side) (10.00 a.m.) and Room A (north side) (11.00 a.m.).
So, the influence of the surrounding conditions is clear and the effect is higher for the room located in
the middle of the building and followed by the south side location since this is the position in which
the effect of solar radiation begins at 6.00 a.m. In the room placed to the north side, the effect of the
solar radiation starts to be visible from 8.00 a.m. These circumstances together with the 4 ◦C fluctuation
in temperature (with the maximum at 12.00 a.m. and the minimum at 4.00 a.m. is a clear consequence
of the lack of thermal inertia in the building [55] and the lack of passive cooling strategies. In general,
to implement passive cooling systems to adapt the building to the local environmental conditions, it is
necessary to understand the sources of heat gains that are affecting thermal comfort in the building [56].
These circumstances have been reported in the literature as dependent on use and orientation [18,57].

During July, outdoor temperatures remain high (Figure 4). However, its influence on thermal
comfort is mainly noticeable in the last week (25th to 31st) related to the increase in solar radiation
in addition to the low thermal resistance of the building (Figure 5). In contrast to June, indoor
temperatures recorded in July show minor fluctuations. However, the temperature values remain
generally above the limit values due to the continuous overheating of the building [58]. The average
value of the maximum outdoor temperature during the last week was 39 ◦C and the minimum was
22 ◦C (Figure 6).
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The effect of solar radiation is once again clear in the case of the room which is shown to the
time lag for Room A, compared to B and C. In August, the first week was the most unfavourable
one, both values (the maximum and minimum averages) for external temperature increased by 4 ◦C
in comparison with the values recorded in the last week of July. Consequently, the thermal comfort
level in the monitored rooms was lower. The average maximum indoor temperature for this week
reached 43 ◦C and the minimum remained at 26 ◦C (Figure 7). During this month extreme temperatures
had been registered due to a heatwave episode reported by AEMET (Meteorology Statal Agency of
Spain) [59] (Figure 8).

During the day, temperatures began to rise at 9.00 a.m. in Room A, while in Rooms B and C the
level of the temperature start to rise from 10.00 a.m., and the rooms were overheated for the rest of the
day (Figure 8). Once again, solar radiation showed a huge influence on the thermal performance of
rooms [60]. In the contrast to July, indoor temperatures monitored in August show higher fluctuations,
reaching the values of 29.5 ◦C, 28 ◦C and 28.7 ◦C registered in Room A, B and C respectively.

Under these circumstances, it must be highlighted that the air conditioning systems were not
able to supply cooling to counteract the climate conditions. This is due to two reasons: (I) they
were designed to supply energy under common climatic conditions without considering the effect of
heatwaves [61,62]. (II) Overheating of the envelope is due to the lack of thermal mass and low thermal
resistance of its outer opaque glass layer [60].

A low rate of efficiency was achieved in those cases when the temperatures outside were constantly
high. This circumstance is even worst when lightweight construction is considered and the results
of this study rectify previous studies about the potential need for air conditioning in this type of
building [63]. Indeed, this research confirmed the fact that conventional set point temperature is not
suited for hospital environments [31].

3.2. Simulation Results

The dynamic simulations of the rooms were carried out for July 15th, since this day represented
a typical summer day for the Madrid climate. Table 4 show the values of internal heat loads of the
rooms selected for the study.

Table 4. Rooms values of internal heat loads for July 15th.

Heat Source Room A (kWh/Day) Room B (kWh/Day) Room C (kWh/Day)

Walls 5.24 6.12 6.23
Glazing 4.32 5.68 5.88

Solar gains 1.43 2.11 2.19
Roof 2.41 2.52 2.58

Partitions 1.16 1.34 1.35
Floor 1.56 1.90 1.97
Light 5.21 5.21 5.21

Occupancy 4.47 4.47 4.47
Cooling demand 21.11 23.96 24.55

In the case of this study, the occupancy data was collected and compared with the indoor
temperature peaks. In general, the occupancy rate influences HVAC systems and their operation [64,65].
However, a direct correlation has not been found between the occupancy rate and the increase in
indoor temperature in the rooms. Therefore, for this research, we have not considered it as a factor that
directly affects the performance of the building [66].

The impact of the envelope on the thermal performance and cooling energy demand in analysed
rooms are presented in (Figure 9) As can be seen, transmittances through the walls, caused by solar
radiation and heat gains caused by conduction and convection, have a high impact on the thermal
behaviour of the rooms. The values of internal heat gains from lighting and occupancy present the
same values in the three rooms, 5.21 kWh per day from lighting and 4.47 kWh per day from occupancy.
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In the case of Room C, heat gains through the walls showed a higher value reaching 6.23 kWh per day
than from lighting or occupancy. This value represents a 20% higher heat gains through the walls than
the heat gains from lighting, and 39% higher than heat gains from occupancy. In the same manner,
Room B showed a value of internal heat loads of 6.12 kWh per day through the walls. This value
constitutes a 17% higher load through the walls than from the lighting, and 37% higher heat gains than
from occupancy.

In comparison with Rooms B and C, the lower heat gains through the walls are presented by Room
A where walls showed a value of 5.24 kWh per day, this represents only a 1% higher value than the
lighting heat loads and 17% than occupancy. Transmittances through windows and glazing, caused by
direct sun rays also contribute to the indoor environment and energy demand of the rooms. The heat
transfer from glazing in Room C showed a high value of internal heat loads reaching 5.88 kWh per day.
This value represents 13% higher loads than the light and 32% higher than heat loads from occupancy.
In the cases of Room B, glazing showed a value of heat loads of 5.68 kWh per day. These heat gains
represent a 9% higher value than the lighting and 27% higher than from occupancy. However, in Room
A heat gains through the glass presented an internal heat load of 4.32 kWh per day. This value is 17%
lower than the heat gains through light and 3% lower than from occupancy. Additionally, differences
in solar gains in terms of the placement of rooms were found Room C presented 2.19 kWh per day of
solar gains, Room B showed a value of solar gains of 2.11 kWh per day and Room A only showed
1.43 kWh per day of solar gains. The values of Room C represent 54% higher solar gains than Room A,
and 4% higher than Room B. While, Room B showed 48% higher solar incidence than Room A.

Cooling demand values of the rooms analysed has been presented in Table 4. Room A showed a
value of 21.11 kWh per day, that is the lower cooling demand in comparison with Room B, that presented
a cooling demand of 23.96 kWh per day and Room C has shown a cooling demand of 24.55 kWh per
day. In general, the peak load of the heat gains in the rooms are presented between 8.30 a.m. to 10.00
a.m. Room A presented the peak load value from walls and glazing at 9.30 a.m. while Room B and
C showed the peak load through walls and glazing at 9.00 a.m. In the case of solar gains, Room A
showed the peak load at 9.30 a.m. then Room B and C at 8.30 a.m. The cooling demand peak load
has been shown at 10.00 a.m. by the three rooms (Figure 9). These peaks presented on internal loads
correspond to the increase in temperatures measured inside the rooms (from 10.30 a.m. to 3.30 p.m.)
showed in the analysis in Section 3.1. These results have highlighted the lack of thermal inertia of the
buildings especially the envelope system.

Once again, differences in results based on the position of rooms were found also in the simulation
performance (Figure 10).
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Room A positioned on the north side, showed lower solar gains than Room B (central side) and
Room C (south side). While in Rooms B and C solar radiation presented the same percentage of gains.
In the same manner, internal gains by glazing in Room A are 33% lower than for Room B and 38%
lower in comparison with Room C. Similarly, Room A presents 19% lower internal gains through the
walls than Room B and 20% lower than Room C.

These circumstances occurred due to the reduced thermal time constant (TTC) of the thermal mass
of the envelope. As reported, indoor temperatures remained outside the limit values throughout the
whole day, especially in the first week of August. These conditions are a consequence of lack of diurnal
heat capacity (DHC) of the façade materials. In this context, the relative values of TTC are particularly
important when the building is affected by heat flux, while the values of DHC are important when the
solar gain affecting the building is considerable [56]. The influence of the envelope thermal efficiency
in the interior temperature of rooms is evident. However, internal gains presented by lighting and
occupancy in the daytime period have a lower heat incidence in the cases of the post-delivery rooms.
Partitions and floors are the elements of the envelope that have presented insignificant heat losses of
the rooms.

The comparison between internal heat gains of rooms demonstrates that the location of the rooms
is affected by high solar radiation and therefore has a direct impact on the behaviour of the envelope
and the heat transfer inside the rooms. This causes the overheating of the facades during the hours
marked by the high incidence of solar gains, which the small mass of the façade construction system is
not able to retain. As a consequence, the temperature of the rooms is maintained for a large percentage
of the day outside the limits of the set-point temperature according to current regulations.

The thermal performance of buildings could be improved by implementing some passive strategies.
Several studies have confirmed that the application of shading devices [56], higher thermal mass
materials [44,61] incorporation of vegetation [67] and higher insulation value [43], could help to
mitigate the UHI effect and reduce the energy demand of buildings. In the case of this building, we
recommend the implementation of a shading device system that can be operated accordingly during
summer and winter based on the prevailing heat conditions.

4. Conclusions and Future Work

Control of the indoor environmental conditions is critical in healthcare buildings to guarantee the
recovery of patients. These circumstances are even more dramatic in the case of newborn children
when temperatures must be controlled to avoid thermal stresses. This is the reason why the European
standards for healthcare buildings establish that the temperature in patient rooms must be between 24
and 26 ◦C, which is conservative compared to the AHSRAE standard which establishes values between
21 and 24 ◦C.

In spite of the importance of control indoor temperatures and adapt to climate conditions, the new
buildings for healthcare showed similar construction systems and solutions independently of their
geographical latitude and microclimate. Among the new hospitals, a neonatal hospital placed in the
city centre of Madrid (Spain) was selected. It showed a commonly used lightweight construction
system of façade with a non-ventilation system. In addition, its placement in the city centre implied
that it was exposed to the effect of climate change in addition to the effects of the UHI.

The results highlighted the importance of passive strategies in this type of building in which
construction systems of the envelope determined the indoor conditions. Large glazing areas worsen
the thermal performance, mainly due to the increase in solar radiation loads and implied that indoor
conditions were subjected to huge fluctuations in temperature. Indeed, as exposed, temperatures went
over the standard limits on about 50% of the hours in June and July, achieving up to 27 ◦C in the
rooms. These circumstances during heatwave episodes, in which external temperatures raised up to
40 ◦C, causing the HVAC systems to inefficient and, as a result, the indoor temperature exceeded 28
◦C. This implied a considerable CO2 emission due to the huge number of working hours of the air
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conditioning systems. What is even more important, this increase in temperature had repercussions on
patients’ health and recovery, especially when neonates’ care was considered.

These circumstances provoked by heat loads have also been confirmed in the results shown by
the energy simulation of rooms. Transmittances through the walls, caused by solar radiation and heat
gains have a high impact on the thermal behaviour of rooms. Heat gains through the opaque envelope
of the three rooms showed a high average, reaching 8.37 kWh/day, followed from glazing average value
of 5.29 kWh/day, while average heat gains from lighting were 5.21 kWh/day and 4.47 kWh/day from
occupancy. Internal partitions and floors showed a low level of heat loads average of 3.09 kWh/day.
The cooling demand average of rooms showed a value of 23.21 kWh/day. In general, the peak of the
heat gains in rooms occurred between 8.30 a.m. to 10.00 a.m., which corresponds to an increase in
temperatures inside the rooms from 10.30 a.m. to 3.30 p.m. These results have highlighted the lack of
thermal inertia of the buildings especially the envelope system.

Accordingly, a re-thinking must be promoted in the case of this type of building so that the
promotion of zero energy buildings can be guaranteed together with providing desired and required
thermal conditions. This is required to minimise the use of active energy and the adaption of design
and construction systems is needed to meet specific climatic conditions. In addition, the design must
include the reconsideration of air conditioning systems. Finally, this research has confirmed the fact
that conventional methods used to establish the setpoint temperatures for hospital environments are
not suited.

Future work of the authors includes the implementation of strategies that allow for improving the
interior comfort conditions of the building and its behaviour in the face of consequences in climate
changes. For example, a study of different shading system to determine the optimum system that
could be implemented for the building. Given that the construction systems of the last decades are
lightweight, they do not respond to the Mediterranean or continental climate, and much less to a
climate with acute heat islands such as in Madrid.
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