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Abstract: Decision-making in design is a cognitive process wherein alternatives are generated and
evaluated, potentially enabling a more creative design process. In recent years parametric design’s
heightened capacity for automatically generating and evaluating options has been celebrated by
researchers and designers, but it has also placed an increased emphasis on decision-making activities
which have not previously been studied in this context. This paper conducts the first in-depth protocol
analysis of the decision-making process (DMP) in parametric design. Using empirical data, it identifies
three parametric DMPs at the conceptual design stage: (i) “conclusive” DMP, (ii) “confirmative” DMP,
and (iii) “simulative” DMP. The results of this research indicate that while conclusive DMP generates
and evaluates design alternatives, its “forward incrementation” approach has only limited potential
for creativity. The confirmative DMP develops three creative operation loops in parametric design,
suggesting it may be an important creative process. The simulative DMP simultaneously addresses
divergent and convergent thinking, also indicating potential creative operations and outcomes.
The identification and analysis of these DMPs contributes to developing new knowledge about the
processes used in parametric design and their capacity to support creative results.

Keywords: decision-making process (DMP); parametric design; creative operations; protocol analysis;
conceptual design

1. Introduction

The design process involves a continuous series of decision-making activities that collectively
shape a final outcome. Decision-making in design entails the processes of generating, evaluating,
and determining a solution that satisfies given requirements or criteria. Decision-making is also
influenced by a designer’s experience, preferences, and attitudes along with the specific design
environment in which the work is undertaken. As such, decision-making in design is a cognitive process
with both distinct “operations” and “contexts”. For example, in terms of operations, Jones [1] suggests an
ASE (analysis–synthesis–evaluation) framework, while Stempfle and Badke-Schaub [2] identify four
cognitive operations (generation, exploration, comparison, and selection) for the analysis of design
team processes. Oxman [3], proposes a variation of these, presenting four classes of design operations
(representation, generation, evaluation, and performance) for representing the basic cognitive
components of both traditional (pen-and-paper) and digital design processes. Each of these models
provide useful conceptual descriptions of micro-level decision-making process (DMP) in design. Thus,
the DMPs which are the focus of this paper address individual cognitive processes (micro-cognition)
wherein a design solution is determined from possible alternatives, potentially supporting creativity.
Nonetheless, past research in this field has largely considered intelligent decision support tools [4–6],
not the role of the DMP in design, or its connection to creativity. This last point, the connection to
creativity, has, in recent years, been more closely associated with the context or environment in which
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design occurs, than to specific operations. This is especially the case with parametric design, a digital
design environment which has been both linked to creativity and to more intensive DMPs.

While there are several definitions of parametric design, in this paper it is taken to describe a
formative and generative design process using advanced algorithmic scripting of parameters and
rules (e.g., Grasshopper™, CATIA™, and Generative Components™) for form-finding [7]. Its capacity
to automatically generate multiple compliant solutions to a problem has been linked to creativity,
both by way of cognitive patterns and the innovative or novel solutions it produces [8,9]. However,
the number of alternatives generated by parametric software, coupled with a dual exploratory interface
(geometrical and scripting) that drives constant evaluation, would logically be responsible for increasing
the volume of DMPs needed. In other words, parametric design’s automated ideation, visualisation,
and testing functions [10], require more frequent and complex DMPs for designers. The cognitive
impacts of this are not only of interest in a practical sense, for improving our understanding of this
specific design environment, but they have potential implications for creativity. Despite this situation,
past cognitive research has not considered decision-making in parametric design. In addition, we do
not know how parametric design processes might relate to creativity. Thus, the research question
which this paper addresses is, “what kind of DMPs in parametric design can support creativity?”
This paper responds to this question by conducting an in-depth analysis of cognitive activities in
parametric design and of DMPs involved in solution generation and which have consequences for
creative processes. Specifically, this paper reports the results of a protocol study of cognitive processes
in parametric design.

This paper commences by reviewing literature on parametric design and decision-making processes
and then describes the approach and results of a protocol study of cognitive activities in parametric
design. Through a consideration of recursive cognitive patterns before/after a generative activity,
this paper identifies three creative DMPs in parametric design: (i) conclusive DMP, (ii) confirmative DMP,
and (iii) simulative DMP.

2. Parametric Design Processes

Parametric tools have been widely employed in the design domain over the past two decades,
becoming well known for delivering creative or novel works [11–13]. From a practical perspective,
the most original feature of parametric design is its algorithmic scripting process. While not every
parametric operation could be regarded as “design”, the controlled application of parametric scripting
(or algorithmic) tools to the generation of solutions to defined problems, has been accepted in recent
years as constituting a type of design process: “parametric design”. Each algorithm in this process
has two components, “parameter” and “rule”, which can be conceptualised, respectively, as either
Roberto’s “variable” and “fixed” attributes [14] or Jones’ [15] “intuitive” and “rational”. From a cognitive
perspective, however, they can be understood as serving “divergent” and “convergent” purposes.

In mathematics a parameter describes a range of variation [16], whereas in design, it defines the
scope of design possibilities. Since the parameter is pivotal to the generation of design variations, it is
often viewed as supporting divergent thinking, which is also closely associated with creativity [12,17].
Certainly, a design may already be heavily predetermined by controlling factors, and some parameters
are sufficiently linear and reductive that they do not comply with the type discussed in this paper.
Nevertheless, because the parameter defines a range of numeric values, it can produce a range of
design alternatives. However, the properties or benefits of generated variations are sometimes too
abstract or diffuse and the DMP for selecting a final solution from many hundreds of viable alternatives
is a substantial problem for designers [18]. In contrast, a “rule” describes the resultant algorithmic
functions as well as the relationships between components when generating variations [19,20]. Thus,
rules might be understood as serving a convergent purpose in parametric design. Despite their
apparent alignment to divergent and convergent purposes, which are typically mapped to creativity in
design thinking, relatively little is known about the actual impacts of parameters and rules on creativity.
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It may well be that the scripting process is more akin to sketching in traditional design, which can be
both an explorative (divergent) and a defining (convergent) process [21,22].

A small number of past studies have examined micro-cognitive processes in parametric design.
Yu et al. [8], for example, capture “unexpected discoveries” in parametric design using Gero’s
Function-Behaviour-Structure (FBS) coding scheme [23,24], which promotes continuous exploration
in the design “solution space”. They also observe that designers often switch between the scripting
interface and the geometry modelling interface to examine a model after changing parameters or
rules (see Figure 1). The scripting interface enables the composition of visual (e.g., Grasshopper)
or textual scripts (e.g., Python and Maya script editor) consisting of algorithmic components that
define external geometries. The geometry modelling interface then represents the resultant forms or
shapes, usually in the “3D modelling view” mode. These characteristics are also identified in a series of
Lee et al.’s protocol studies [7,25–27]. The most recent, combining consensual assessment techniques
(CAT) with protocol analysis, identifies four parametric design activities (changing parameters,
perceiving geometries, introducing algorithmic ideas, and evaluating geometries) that can support
creative problem-solving [27]. Results further suggest that “making generation” is critical for
creative outcomes, because it reflects two well-known creative design strategies in parametric design,
“problem-forwarding generative strategy” and “solution-reflecting generative strategy” [27].

Figure 1. Two working modes (interfaces) in parametric design.
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Lee et al.’s [27] results provide two important directions for the present study. First, they identify
solution-generating as an essential activity for characterising the generative aspects of parametric
design. The present paper also treats generative activity as a core indicator of a DMP in parametric
design, because it acts as a connection between divergent and convergent thinking. Second,
Lee et al. [27] identify two micro-processes as supporting creativity in parametric design. One is a
cyclic design process pattern of “evaluating geometries–introducing algorithmic ideas–changing
parameters–evaluating geometries”, which is reminiscent to Jones’ ASE framework. The other
is an “evaluating geometries–changing parameters–evaluating geometries” cycle that serves as a
“solution-reflecting” activity. In these results, the dual micro-processes are treated as having the
capacity to support creativity, because the coding coverages of the identified design activities are
consistent with the results of the product-based evaluation of creativity (CAT). Furthermore, these two
creative micro-processes highlight the intersection of algorithmic and geometric activities and the
co-evolution of modifying parameters and rules. The present paper extends these two ideas through
an in-depth protocol study to examine creative DMPs in parametric design.

3. Decision-Making and Creativity

Decision-making is the process of selecting, “a preferred option or a course of actions from
among a set of alternatives on the basis of given criteria or strategies” [28] (p.73). Since early research
on decision-making was published in game theory and economics [29], hundreds of studies have
investigated decision-making across fields as diverse as cognitive science [30–32], computer science [33],
psychology [34–36], business [37–39], decision science [40], management science [41], and artificial
intelligence [42,43]. In the field of design, decision-making is also a critical topic, although only
a few studies have considered it in detail. Vliegen and Mal [44], for example, use rational
decision-making to structure a design meeting. They identify three stages in the decision-making cycle,
(i) strategy (recognition and diagnosis), (ii) tactics (search, design, judgment, analysis, and review),
and (iii) execution (authorisation), for an industrial automation project. They argue that tactics
is useful for describing decision-making as part of the process of researching alternatives to
select an optimal solution. Nikander and Liikkanen [45] investigate preference in design
concept evaluation, advocating for a normative model comprising concept generation, evaluation,
and selection. The concept generation process is divergent in nature, while the others are convergent.
Ullman [46] also lists six decision-making steps for engineering design—brief decision-makers,
delineate issues, identify criteria, generate options, evaluate options, and determine outcome. However,
there is little empirical evidence about decision-making processes in design in this past research.

In contrast to the relative paucity of design research about decision making, there are multiple models
of, and extensive past research about, the creative process. Wallas [47], for instance, proposes a four-stage
creative process model (preparation, incubation, illumination, and verification), while Guilford’s [48]
Structure of Intellect (SI) theory identifies five categories of mental operations (cognition, memory,
convergent and divergent thinking, and evaluation) from cognitive experiments. Hayes [49] also categorises
five cognitive processes in creativity (preparation, goal determination, representation, solution-finding,
and revision). In terms of problem and solution spaces, Stempfle and Badke-Schaub [2] present four basic
cognitive operations: “generation” and “exploration” for divergence; “comparison” and “selection”
for convergence. Significantly, Sternberg [50] considers the development of creativity as a type of
decision-making process. His “propulsion model” [50,51] suggests there are eight types of creative
contributions: “replication, redefinition, forward incrementation, advance forward incrementation,
redirection, reconstruction/redirection, reinitiating, and integration”. These contributions are used
to explain the ways creative individuals make creative decisions. Although the propulsion model
deals with creative movements of a field from one to another, the eight types of contributions can
be employed to capture both micro and macro levels of cognition. That is, compared to the other
models, Sternberg’s model not only clearly suggests creative operations, but it is also useful for
investigating micro-cognitive DMPs. However, replication and integration only rarely occur in
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individual micro-cognition. “Advance forward incrementation” and “reinitiating” are also hard to
distinguish from “forward incrementation” and “redirection”, respectively, in the laboratory setting.
Thus, the present paper adopts four types of creative operations from Sternberg [50] for interpreting
results (Table 1).

Table 1. Four creative operations adapted from [50].

Creative Operation Description

Redefinition A change in perception as to where the situation is currently located.

Forward incrementation Moving the situation forward, from a point in the space of contributions and
in the direction the work is already going.

Redirection Taking the situation from where it is at a given time, and then moving it in a
new direction

Reconstruction Returning the situation to a point where it previously was, and then shifting it
in a new direction.

In summary, past research treats decision-making as a core creative process because it involves
generation or modification of alternatives [52]. Furthermore, generating a set of viable solutions
or options is itself, potentially a creative act [53]. Importantly, decision-making frequently requires
combinations of divergent and convergent thinking and creativity is thought to emerge through the
correspondence between the two [54]. Divergent thinking widens the scope of consideration of an
issue, adding additional elements, options, and reactions. In contrast, convergent thinking reduces
the breadth of possibilities, emphasising potential solutions [27]. The latter involves decision-making
strategies for evaluating design alternatives to find the best solution. In this context, the making of a
decision (or DMP) is regarded as a creative problem-solving activity. In parametric design, the scripted
parameter defines the level of divergence, while the rule defines the required convergence. That is,
through the use of algorithms (parameters and rules), which allow for rapid exploration of design
alternatives, parametric design supports creativity [7,11,26,55,56].

4. Protocol Study

Protocol analysis is the most widely accepted research method for analysing design processes
in detail [57,58]. It develops rigorous and rich results from small numbers of participants in design
experiments, typically under laboratory conditions. Although there may be a gap between the results
of micro-cognitive (laboratory) and macro-cognitive (naturalistic or real-world) approaches [59–61],
the micro-cognitive ones provide the most controlled, repeatable, and consistent basis for studying
and understanding designers’ DMPs. Furthermore, starting with a micro level pilot study of cognitive
mechanisms underlying the creative process [62] provides a foundation for developing complementary
results from macro-scale settings [63]. Thus, for this first study of this topic, a controlled laboratory
setting is preferable [64].

4.1. Research Procedure

Postgraduate architectural students, each with experience in parametric design, were recruited
for the experiment. In order to explore DMPs in parametric design, six architectural designers—two
with over five years’ parametric design experience (A, C) and the others with one year of experience
(B, D, E, F)—participated in a design experiment. The designers were asked to work for approximately
one hour to complete a concept design task for a high-rise building. However, taking into account the
need for trouble-shooting scripts, and processing and rendering delays, the actual time taken varied.
Participants were asked to accommodate five requirements in their concept designs: (a) two main
functional types, office, and hotel; (b) a maximum floor area of 2500 square metres per floor; (c) the height
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is over 40 stories; (d) visually reflect structural forces using external data, and (e) intended to form a
regional landmark.

The designers were given a free choice of parametric modelling tools. Four (A, B, E, F)
selected graphical algorithm editors (Grasshopper) and two (C, D) selected text-based editors
(Python and Maya script editor, respectively). All six used Rhinoceros 3D for visualising the geometric
outputs of their algorithms. While their experiments were being videorecorded, designers were asked
to “think aloud” and these thoughts were recorded and transcribed as a concurrent protocol. Before the
experiments commenced, the participants practiced thinking aloud, and upon completion of the
experiment, they took part in an interview (retrospective protocol) wherein they had an opportunity to
elucidate any activities or thought processes that occurred during the experiments.

Design sessions were transcribed using NVivo software and then segmented into episodes.
Each segment comprises something that changes a design (a step, an act, or an operation) [27,65]
and which is encoded using a pre-defined scheme (Table 2). From the creative process models discussed
in the third section, five categories (goal setting, representation, generation, evaluation, and revision)
are suggested. Hayes’ five creative acts [49] are mainly used for the categorisation because they were
developed to explore cognitive processes in creativity. However, there is no Hayes’ “preparation” act,
but “generation” and “evaluation” categories are closely related to Hayes’ “searching for solution”
act. Two subcategories (geometry and algorithm) are used to identify geometric and algorithmic
modes in parametric designing. Lee et al.’s [27] coding scheme considers both geometric and
algorithmic modes and three categories of conceptual activities (problem-finding, solution-generating,
and solution-evaluating). Their categorisation and subclasses are selectively adopted in the present
paper to develop the coding scheme for exploring creative DMPs (Table 2). Geometric modes represent
the direct modelling processes for generating digital form and shape on the 3D modelling interface,
while algorithmic modes encapsulate the generative processes that define the parameters and rules
on the scripting interface. The generation category has no subcategory and only one code “G” that
combines both geometric and algorithmic behaviours to generate one or more alternative(s).

Table 2. Coding scheme used for investigating creative DMPs in parametric design.

Category Subcategory Code Description

Goal Setting Geometry GSG introduce new geometric goals or ideas

Algorithm GSA introduce new algorithmic goals or ideas

Representation Geometry RG create geometries without an algorithm

Algorithm RA create initial parameters and/or rules

Generation - G make generation or alternatives (e.g., executing or
running scripts to create alternatives)

Evaluation
Geometry EG evaluate primitives or existing geometries

Algorithm EA evaluate existing parameters and/or rules

Revision
Geometry RVG revise existing geometries

Algorithm RVA revise existing algorithms (parameters and/or rules)

To ensure consistency and validity of the results, the final protocol data was confirmed using an
arbitration process. There were two rounds of encoding processes. In the first round two researchers who
had professional experience in both cognitive research and protocol analysis transcribed, segmented,
and encoded the data. In the second, and after a three-month interval, a post-doc fellow in design
computing and cognition, conducted the encoding process. Table 3 presents the results of time duration,
segmentation, and intercoder reliability of each protocol. Designers were given a notional one-hour
timeframe to complete the design task, but they could continue beyond this if required. As a result,
the average time duration of the design protocol was 76 min 20.8 s. The average number of segments
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was 309.0 (A: 220, B: 319, C: 364, D: 287, E: 360, F: 303) and the average time per segment was 14.8 s.
With one exception (B), over 90% of each protocol was encoded using the coding scheme, regardless of
the two types of applications, graphical algorithm editor (A, B, E, F) or text-based algorithm editor (C, D).
On average, 92.2% of segments were encoded in the coding scheme, which confirms that it effectively
captures the set of parametric design activities. Furthermore, the average percent agreement satisfies
the target of 80%. Specifically, Krippendorff’s α values, which are used for measuring intercoder
reliability seek results were α ≥ 0.800 [66,67]. Thus, these measures indicate the reliability of the
coding results.

Table 3. Results of time duration, segmentation, and intercoder reliability of each protocol.

Protocol
Code

Time
Duration

Num. of
Segments

Average Time
of Segments

Coded
Segments

Intercoder Reliability

Percent
Agreement

Krippendorff’s
Alpha

A 47 min 54.7 s 220 13.1 s 208 (94.5%) 92.0% 0.904

B 87 min 8 s 319 16.4 s 277 (86.8%) 84.7% 0.825

C 102 min 2 s 364 16.8 s 334 (91.8%) 97.3% 0.969

D 93 min 26 s 287 19.5 s 265 (92.0%) 97.0% 0.964

E 64 min 22 s 360 10.7 s 347 (96.4%) 87.7% 0.857

F 63 min 12 s 303 12.5 s 278 (91.7%) 81.9% 0.800

Mean 76 min 20.8 s 308.8 14.8 s 284.8 (92.2%) 90.1% 0.887

SD 20 min 56.6 s 53.2 3.3 s 50.4 (3.2%) 6.4% 0.071

Three designers (A, E, F) completed the experiment in the recommended time. For the other three,
additional time was taken up by troubleshooting or waiting for generative or visualisation processes
to be completed. Although the participants had experience in parametric design, scripting is still a
challenge for designers. Furthermore, visual scripting is typically much easier than textual scripting,
and thus B had the smallest percentage of encoded segments (86.8%), spending non-encoded time
for trouble-shooting software, or searching for and arranging rules. However, since this research
undertakes an in-depth analysis of micro-cognitive activities and the sequential transitions of encoded
segments, the different lengths of protocols and/or non-encoded segments have little impact on the
results. Figure 2 illustrates of the high-rise building concept designs generated by the participants.

Figure 2. Conceptual models generated by six designers (A–F) in the experiment

4.2. Coding Results

Because the length of each design protocol varies, to construct a comparison the results
presented here refer to the percentage of the frequency, weighted by time duration of each code
(Figure 3). This normalisation provides the capacity to compare the time devoted to each design
process, category for each designer. On average, evaluation behaviours dominate the parametric
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design process, accounting for 39.0% (geometry: 17.4%, algorithm: 21.6%). Since parametric
design develops geometric forms and shapes using algorithms, their visual outcomes may be
unpredictable and designers regularly evaluate this in both the 3D modelling view and the scripting
view [7,27]. This switching between views pattern is closely related to “creative micro-processes” [27]
and “co-evolutionary processes” between design spaces and modes [27,68]. The next most frequent
category is representation, which accounts for 26.7% (geometry: 2.4%, algorithm: 24.3%) and revision
is the third. Algorithmic representations and revisions could be an ideal mode for undertaking
parametric design, producing parameters and/or rules and then varying them, which might be akin to
the traditional design process in a pen-and-paper environment.

Figure 3. The distributions of the coding results of six designers’ protocols (A–F) (percentage of
time duration).

These results illuminate several differences between the designers, including the fact that five
tended to create new algorithms (RA) rather than revising existing ones (RVA), while designer D spent
more time on algorithmic revision (27.9%). The average time of coded segments of D’s protocol was the
highest, although D’s “goal setting” activities were of a lower magnitude. These results are consistent
with a “trial-and-error design procedure” or a “novice problem-solver” profile, suggesting a person
who lacks advanced analytical strategies or skills. C, who was more experienced, also employed
both trial-and-error and “backward reasoning”, but his generative synthesis (G) was higher than
the others. In contrast, designers who used the graphical editors (A, B, E, F) were more likely to
record geometric modes in the goal setting and representation categories, than those using text-based
scripting (C, D). Acknowledging the very small sample size, the graphical editor is likely to lead to
more geometry-based modes.

Designer A, who was also one of the more experienced, applied well-organized, step-by-step rules
from the initial problem space (goal setting), producing the second highest values of both GSG as
well as G among the six designers. This design strategy is an example of a “problem-forwarding
generative strategy”, which divides the “initial goals (ideas) into both geometric and algorithmic goals
and then synthesising them with step-by-step generations to reach an overarching solution” [27] (p. 64).
In contrast, the other experienced designer C, demonstrated increased proportions of generative and
evaluation activities (at the algorithm level). C’s strategy, using the highest frequency coverage of
G, may have provided an advantage in generating creative design variations, which is followed by
co-evolutionary revision activities. Importantly, a generation-oriented strategy like this has been linked
to creative outcomes [7,69].
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4.3. Decision-Making Patterns

Divergent thinking in parametric design is closely related to the generation of design alternatives,
i.e., G with decision-making activities arising from this activity. Previous decision-making research in design
identifies “generation” as a functional precursor to evaluation or selection [45,46]. In this context, the results
of this paper highlight the use of design activities around G to identify creative DMPs in parametric design.
Theoretically, a sequential pattern, Goal Setting–Representation–Generation–Evaluation–Revision
(e.g., GSG–RA–G–EG–RVA), might be expected, although an in-depth protocol study of the type
undertaken in this paper, can capture additional significant DMP patterns. To analyse the patterns of
sequences of cognitive activities around decision-making, a pair of segments preceding and following
each segment encoded as G in a protocol were analysed to identify patterns in sequential relationships.
If two segments are encoded by the same code, one more segment is investigated. There are 111
decision-making activities including G across the six protocols (A: 4, B: 4, C: 55, D: 20, E: 19, F: 9).
Interestingly, these decision-making activities in the parametric design can be categorised into three
significant decision-making patterns, (i) conclusive, (ii) confirmative and (ii) simulative activities.
Table 4 describes the sequential patterns of the decision-making activities. Major patterns are originally
developed from patterns having greater than or equal to three occurrences, while the simulative
considers patterns which occurred twice, due to its limited recurrence.

Table 4. Sequential patterns of the decision-making activities including G in the design experiments
(f : frequency).

Decision–Making
Type

Total f
of Occurrences Major Pattern (f ) On/Before ‘G’ (f ) On/After ‘G’ (f )

Conclusive 20 EA–RVA–G–EG–GSG (4)
G–EG–G–EG–GSG (3)

EA–RVA–G (7)
EG–RVA–G (4)
EG–EA–G (3)
G–EG–G (3)

G–EG–GSG (8)

Confirmative 74 EA–RVA–G–EG–EA (9)
EG–EA–G–EG–EA (4)
EA–RVA–G–G–EG (3)

EA–RVA–G (19)
EG–EA–G (6)

RVA–EA–G (6)
G–EG–G (5)

RVA–EA–G (5)
EA–RA–G (3)
G–EA–G (3)

GSA–RVA–G (3)
RVA–G–G (3)

RVA–EG–G (3)

G–EG–EA (33)
G–EG–RVA (23)

G–EG–G (8)
G–EG–GSA (3)
G–EG–RA (3)
G–G–EG (3)

Simulative 17 - RVA–EG–G (3)
EG–EA–G (2)

GSG–EG–G (2)

G–RVA–EG (3)
G–GSA–RA (2)
G–RVA–EA (2)
G–RVA–G (2)

The first type of DMP pattern, conclusive, looks like the traditional decision-making process that
selects an optimal solution among alternatives, but this process, interestingly, tends to conclude
by introducing geometric ideas (GSG). In addition to this pattern, four designers concluded
their sessions with conclusive decision-making patterns. In this case, G is followed only by
EG and/or EA. Twenty conclusive patterns were observed in the design experiments and there
were two recursive patterns, EA–RVA–G–EG–GSG (f = 4) and G–EG–G–EG–GSG (f = 3) in Table 4.
EG–RVA–G–EG–GSG (starting with “evaluating geometries”) which follows a similar pattern to the first,
also occurred twice. Thus, EA or EG–RVA–G–EG–GSG would be the major conclusive decision-making
pattern, which is partly supported by a cyclic pattern, G–EG–G.

The confirmative pattern of decision making involves revisiting an idea (or algorithm) to validate
that it fulfils the chosen criteria. In parametric design it is the dominant DMP, closely related to EG,
wherein the designer visually evaluates the outcome of algorithms (Figure 3). EA also frequently
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follows EG in the protocol data for the validation of design algorithms in the confirmative DMP (Table 4).
In total, 74 instances of the confirmative pattern occurred in the protocols, with the two designers (C, D)
producing more confirmative patterns, 49 and 15, respectively, because of a cognitive gap between the
development of algorithms and their capacity to visualise the results. That is, these designers had
to more frequently produce EG and EA after G, to confirm their algorithms (or scripts). This pattern
may also be related to their trouble-shooting processes because another designer, who also had
difficulty with his algorithms, produced three confirmative instances out of the four decision-making
patterns in his design session. As a result, designers have developed three decision-making patterns,
EA–RVA–G–EG–EA (f = 9), EG–EA–G–EG–EA (f = 4), and EA–RVA–G–G–EG (f = 3).

The simulative DMP, which involves both generation and selection during G, was frequently
adopted by the designers using graphical algorithm editors. In their design sessions, design alternatives
were simultaneously generated using a number slider system with a range of values. In this way,
parameters support activities that enable divergence in design and generation of variations. Unlike the
other patterns, the simulative DMP is not followed by EG, because designers had already examined
their algorithms during G. Thus, it is frequently followed by algorithmic revision. Despite this,
no strong patterns were observed. Nonetheless, the simulative process potentially supports creative
design processes because its generative behaviour clearly develops both divergent and convergent
thinking at the same time. The next section illustrates the three decision-making patterns in creative
DMPs in parametric design

5. Creative DMPs in Parametric Design

Decision-making in design is typically defined as the process of generating alternatives and
selecting one as the final outcome. Thus, with some variations, most DMP models in design involve a
simple pair of generation and evaluation activities [1,3]. The present paper extends this way of looking
at DMPs to a micro level, where specific sequences of activities which make up a DMP are identified.
Following past research [27] into creative micro-processes in design, this paper identifies three creative
DMPs in parametric design, (i) conclusive, (ii) confirmative, and (ii) simulative.

5.1. Conclusive DMP

In the conclusive DMP, designers confirm that generated alternatives meet the given design
criteria or requirements. This DMP enables finalising the current design task and progressing to
the next design goal or step. The primary version of this pattern, EA–RVA–G–EG–GSG (Table 4;
Figure 4), starts by “evaluating geometries” or “evaluating algorithms” before “revising algorithms”
triggers the generative activity. Sequentially, designers evaluate the visualised alternatives in the
3D view mode, deciding if the solutions meet the intended design goals. The iterative sequences of
activities echo Stempfle’s and Badke-Schaub’s “process 1”, which entails a series of solution ideas
leading to evaluation [2]. If the conditions are satisfied, the designer continues by “working forward”,
frequently introducing new geometric goals or ideas, i.e., G–EG–GSG. In addition, the conclusive DMP
tends to occur at the completion of the design session, with selecting an overarching solution.
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Figure 4. The conclusive DMP to support creativity.

The conclusive DMP may be a core part of the classic working forward problem-solving techniques,
“hill climbing” and “divide-and-conquer”, setting up detailed and directed goals before developing
solutions. It typically includes the setting of sub-goals and segmentation or decomposition of problems,
and then solves sub-goals through a staged, iterative “step-by-step” process, before initiating a solution.
In this context, the conclusive DMP is clearly part of the problem-forwarding generative strategy that
supports creativity in parametric design [27]. Moreover, it also leads to “forward incrementation”,
which is a creative DMP operation (Table 1) in parametric design. If the solution is not satisfied,
the conclusive DMP may be able to undertake a cyclic redefinition process, G–EG–G, but this additional
process is more closely related to the other two creative DMPs.

5.2. Confirmative DMP

The confirmative DMP is associated with staged decision making and is strongly related to
algorithmic revision (RVA) and generative activities (Table 4). While the conclusive DMP can also
be associated with revision activities, this happened only as a precursor to making generation
(see Figure 4). In contrast, the confirmative DMP continues to examine geometries or algorithms, or
more revision or generation activities, before or after decision-making. Based on the micro-pattern,
EA–RVA–G–EG–EA (Table 4), the DMP process in Figure 5 starts by evaluating algorithms and then
revising algorithms triggers the generative activity. Sequentially, designers evaluate the outcome of the
revised algorithms in the 3D view mode, deciding if they are properly developed to represent intended
geometries. Although the outcome may be satisfied, the designers then introduce new algorithmic
goals (GSA) or algorithms (RA), redirecting the search for decisions to the solution space. This differs



Buildings 2020, 10, 242 12 of 19

from the conclusive DMP which moves forwards to introducing new geometric goals GSG. However,
this creative operation (“redirection”) is not one of the most common patterns. Table 4 indicates that
the major confirmative DMP pattern is related to working backward problem-solving techniques,
including “trial and error”, “solution-reflecting”, or “backward reasoning” [7,27,70]. There are three
major processes, G–EG–EA (f = 33), G–EG–RVA (f = 23) and G–EG–G (f = 8), after the confirmative
decision-making in Table 4.

Figure 5. The confirmative DMP to support creativity.

The micro-pattern G–EG–EA is also frequently followed by EA–RVA–G, which is also the most
common before the confirmative. That is a cyclic pattern (e.g., EA–RVA–G–EG–EA) of evaluating
algorithms, revising algorithms, making generation, evaluating geometries, and then again evaluating
algorithms. This process is akin to the reconstruction operation, returning the “field” to its original
position, and then moving it in a new direction. In contrast, G–EG–RVA and G–EG–G develop the
short cyclic patterns in Figure 5, suggesting a rapid change or redefinition. These creative operations
might be related to Nikander and Liikkanen’s argument that concept rejection can lead to revision or
new generation phases [52]. Collectively, the confirmative DMP involves three creative operations,
redirection, reconstruction, and redefinition, based on solution-reflecting activities.

5.3. Simulative DMP

The simulative DMP is a variation of the confirmative DMP wherein the integrated activity
of generation, evaluation and selection is followed by a revising activity (RVA). The protocol data
pertaining to this trend is not, however, as strong as the other DMPs and there is no dominant
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micro-pattern. Nonetheless, unlike the other DMPs, the simulative DMP has a unique decision-making
process that involves both divergent and convergent thinking concurrently. Once again, in contrast
to Nikander’s and Liikkanen’s sequential generation, evaluation, and selection [45] process, in the
simulative DMP they happen at the same time. Indeed, the generative activity is the decision-making
activity in this type. Based on the data in Table 4, the simulative DMP can be illustrated with
only one cyclic pattern (Figure 6), combining RVA–EG–G and G–RVA–EG. Thus, the simulative
DMP has one creative operation (reconstruction), which is identically observed in the confirmative
DMP. Although the cyclic pattern may be the only major pattern, Figure 6 suggests two more minor
patterns that can contribute to the development of creative operations in this specific DMP—see the
possible flows in Figure 6. After the decision-making, designers can move into an alternative revision
process (revising algorithm 2 in Figure 6), which promotes redefinition—see also G–RVA–G in Table 4.
If designers think they have found appropriate solutions, then the process may follow a G–GSA pattern,
relating to redirection. Thus, the simulative DMP potentially suggests two more creative operations.

Figure 6. The simulative DMP to support creativity.

6. Discussion

6.1. Creative DMPs in Sketching, Computer-Aided Design, and Parametric Design

Traditionally, sketching has been linked to creativity, because it often supports the restructuring
of a problem, through its flexible and intuitive application [71,72]. There is an assumption that in a
co-evolutionary sketching processes there will more implicit/explicit decisions that facilitate most of
subprocesses seen in creative process models [73]. In contrast, conventional computer-aided design
(CAD) is regarded as an inhibitor to creativity because it has limited innate potential to support
problem-solving [74]. Haapasalo [75], for example, states CAD interfaces are inflexible in sketching
and there is a weak connection between the hand and the drawings on the screen. Whilst many
researchers have tried to address this user interface barrier to intuitive designing [76], CAD has become
largely accepted as a documentation tool, enabling routine tasks and recording final decisions. As such,
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investment in cognitive effort in CAD could hinder creativity in the design process. Interestingly,
parametric design, although it requires an additional scripting interface, appears to involve creative
problem-solving activities [7]. This perception might be caused by the fact that parametric design is
not only enabling the generative capacity, but also supporting the restructuring of components [72]
and regulating elements into an overall solution [77]. In addition, non-routine patterns of decisions,
(e.g., leap, loop, and cycle) described in Badke-Schaub and Gehrlicher’s work [78] are often found in
parametric design.

Decision-making in design used to be regarded as a conclusive activity, separate from
problem-solving [78,79], where the final solution is selected from generated alternatives. In contrast,
the three creative DMPs uncovered in the protocol data in this paper highlight the significance
of step-by-step problem-forwarding, as well as revisiting generative components in parametric
design. That is, decision-making is not one step in problem-solving, but a process. In particular,
solution-reflecting activities result in three cyclic operations, redirection, reconstruction, and redefinition,
which support creativity in the DMPs. This finding offers an unexpected new understanding of creative
DMPs in parametric design.

The conclusive and simulative DMPs identified in this paper can also be used to conceptualise
decision-making patterns that involve additional analytic tools or plug-ins. However, parametric design
processes are frequently combined with various design analysis and simulation stages that support
decision-making in practice [4–6]. Moreover, designers in parametric environments sometimes,
use traditional design tools like pen-and-pencil, to explore visual representations at the conceptual
design stage. These switching behaviours could lead to important creative DMPs, which the present
paper will not capture, because the experiment required designers to work with an algorithm editor
and 3D modelling tool. Nonetheless, the coding scheme exploring creative DMPs in this study is useful
for capturing both algorithmic and geometric modes and their repetitive processes in parametric design
environments. Chusllp and Jin’s three iterations (problem redefinition, idea stimulation, and concept
reuse loops) in the traditional design environment [80] also help to conceptualise these DMPs in
mixed design environments. In particular, the “problem redefinition loop” enables us to research
decision-making activities in the problem space as well as “co-evolution” (e.g., “problem leads to
solution” and “solution refocusses the problem” [68]).

Despite these new findings, there are several limitations to the approach taken in this paper.
For example, this study considers only four creative operations from the eight creative contributions
identified in Sternberg’s propulsion model [50]. That is, the other creative operations, such as replication
and integration may be able to develop additional creative DMPs. Computational models of creative
design processes (combination, transformation, analogy, emergence, and first principles) [81,82],
can also be regarded as creative operations. Furthermore, parametric design involves different mental
imagery and external representation from the other design processes (sketching and CAD). Thus,
the 5R’s Model of sensational thinking (readiness, reception, reflection, revelation, and recreation) [83]
can be applied to identify particular decision-making patterns in parametric design. However,
these creative processes cannot be captured in the coding scheme in this paper. To explore these
additional creative DMPs in parametric design requires additional coding schemes as well as different
experimental settings. Collectively, the creative DMPs presented in this paper are limited to exploring
individual conceptual parametric design processes.

6.2. Creative DMPs in Teamwork and Macro-Cognitive Approaches

While this paper only deals with individual DMPs in conceptual parametric design, they are
reminiscent of DMPs in design collaboration. For example, Stempfle’s and Badke-Schaub’s “process
1” not only involves a conclusive DMP, but also supports both confirmative and simulative DMPs
in terms of their redefinition operation. However, the combination of analysis and evaluation
ideas, process 2, proposed by their study is not captured in the present research in any detail.
This may be because the experiments in this paper have a well-defined design problem space and
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the project complexity was also limited. That is, the three DMPs in parametric design would be
better applied to simple, well-defined problems at the conceptual design stage. Wong and Siu [84]
also highlight the non-liner and the loop-back processes in the creative design process model of
analysis-generation-evaluation. They identify three variations of the model, considering divergent and
convergent thinking processes at the analysis (information) and/or evaluation (decision) state. There
are also two looping-back routes that foster creativity at synthesis and evaluation. These features are
similar to redefinition and redirection operations in our confirmative and simulative DMPs. In this way,
the convergent and circular processes of Wong’ and Siu’s model can be applied to understand creative
decision-making in individual design processes. As another interesting application of Jones’ ASE
framework, Martinec [85] presents a cycle of synthesis and evaluation for innovative design that can lead
to new problem entities. Martinec also highlights implicit decomposition (problem) strategies emerging
through the innovative conceptual design processes, but the analysis state appears only in the adaptive
design. Ensici et al. [86] further investigate the decision-making components in design teamwork,
identifying used and rejected decisions as well as iterations between the components. Considering
problem-solving phases, they present seven decision-making components (goal, knowledge, alternative,
criterion, idea development, solution, and decision) and then explore decision topics during three
design phases (conceptual, preliminary, and detail). Furthermore, rejected decisions in their study
not only narrow the solution space, but also decrease the complexity of the problem space. Thus,
their model could be used for a follow-up study, building on the work in the present paper, on DMPs
in problem space. The analysis activities are rarely captured in individual laboratory experiments with
simple design problems, while decision-making as a creative thinking process at the analysis stage
should be considered in the context of design education and practice. Consequently, although the
present research does not cover all the components and design phases of Ensici et al.’s model, individual
DMPs in this paper can be useful for understanding many of micro-decisions that occur in design
collaboration involving various types of designers as well as their innate psychological creativities
(see Boden’s “P-creativity” [87]).

A final limitation with the present research is that a micro-cognition approach was chosen [2],
and a macro-cognition approach could identify different patterns, and perhaps with a higher level
of confidence, but also at the expense of adding substantial confounding factors. For example,
Jensen and Ahmed-Kristensen [88] found that iterative and jumping processes are micro level patterns
of the decision meeting, while they view a macro level pattern as a complex process in three
problem-solving phases: criteria phase, conceptualisation phase, and selection phase. Klein et al. [40]
argue that naturalistic decision-making has four features: the conditions are (i) dynamic and evolving,
(ii) occurring in real-time, (iii) the goals are ill-defined, and the tasks are ill-structured, and (iv) expert users
are involved. Thus, decision-making needs to consider complex sociotechnical contexts as well as
cognitive operations [60]. In contrast, a micro-cognitive approach treats, “decision-making as an
ingredient of control processes, either manual or supervisory, in man-machine systems” [59] (p. 331).
Importantly, micro-cognition and macro-cognition are complementary, although the latter is closer to
naturalistic decision-making [64]. Obviously, micro-cognitive decision-making can also be scaled-up
to macro-cognition [89]. Taking an information-processing approach, for example, Cacciabue and
Hollnagel [90] indicate that micro-cognition is useful for investigating how cognition takes place in the
human mind. In this way, the present study has extended the tradition of experimental decision-making
research into the field of design, where designers always deal with ill-defined goals and ill-structured
tasks even in the artificial settings. As such, this research fundamentally addresses micro-cognitive
deign processes which can be scaled to consider aspects of macro-cognitive design processes.

7. Conclusions

This paper has presented a detailed investigation of parametric design activities and illustrated
three distinct creative DMPs, (i) conclusive, (ii) confirmative, and (iii) simulative DMPs, in the concept
stage of a design. Through a rigorous protocol study, this paper has not only correlated creative DMP
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flowcharts with empirical evidence, but also conducted the first study into the development of creative
DMPs using recursive decision-making patterns in design. Whilst the sample size of this study might
be limited, the in-depth protocol analysis has enabled the identification of creative DMPs as well as
four creative operations among a hundred of sequential processes, including solution generation in
the study. The findings may be expanded to illuminate other parametric design processes supporting
creativity. Moreover, the cyclic patterns of operations involving geometric and algorithmic modes
have the potential to support “unexpected discoveries” and also mixed design representations at
decision-making moments, and through these, support heightened creativity

As discussed, the results of any study under laboratory conditions cannot perfectly model all
designers’ macro-cognitive activities or individual idiosyncrasies. The findings are also unintentionally
inclined towards solution-oriented activities because the study addresses DMPs which generate
solution. For this reason, a study of decision-making patterns in the problem space would be valuable
follow-up study. In addition, a few computational models could also be used for further identification
of creative DMPs in parametric design. Nevertheless, this paper contributes to new knowledge about
the ways designers make decisions in parametric environments, and how such DMPs contribute to
creative operations in design
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