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Abstract: The completion of a bridge construction project within budget is one of the project’s key
factors of success. This prerequisite is more likely to be achieved if the cost estimates, especially those
provided in the early stage of a project, are realistic and close to the actual costs. The paper presents
the research results on the development of a cost prediction model based on machine learning,
namely the support vector machines (SVM) method, for which the input represents basic information
and parameters of bridges, available in the early stage of projects. Several SVM-based regression
models were investigated with the use of data collected for a number of bridge construction projects
completed in Poland. Having finished the machine learning and testing processes, five of the models,
of satisfying knowledge generalization ability and comparable performance, were preselected. The
final selection of the best model was based on the comparison and analysis ability to predict bridge
construction costs with accuracy appropriate for the early stage of projects. The general testing
metrics of the finally selected model, named BCCPMSVR2, were as follows: root mean square error:
1.111; correlation coefficient of real-life bridge construction costs and costs predicted by the model:
0.980; and mean absolute percentage error: 10.94%. The research resulted in the development and
introduction of an original model capable of providing early estimates of bridge construction costs
with satisfactory accuracy.

Keywords: cost estimates; construction costs; bridge construction projects; machine learning; support
vector machines; regression

1. Introduction

Bridges, which are without a doubt of high significance for transportation networks, can be also
seen as results or products of construction projects. The completion of a project within budget is one of
the project’s success key factors. It is more likely to achieve success if the cost estimates are realistic and
close to the actual costs. Therefore, there is a need for cost estimates provided at the successive stages
of a construction project. Early cost estimates rely on basic information and parameters of a project.
Although their expected accuracy is relatively low (they can be considered as qualitative predictions
rather than precise cost estimates), they are delivered when the crucial decisions are made and thus the
impact on the final cost is great.

Along with the intensive development and modernization of transport infrastructure in Poland,
bridge construction has also increased over the past few years. On the one hand, it is important to
start the process of cost estimation for a bridge project as early as possible. On the other hand, some
artificial intelligence and machine learning tools offer capabilities, such as learning from experience
and knowledge generalization, which make them applicable for the early cost estimation models.
Especially for bridge projects, the development of such models is supposed to provide early estimates
or forecasts of the final cost.
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The aim of this paper is to introduce a cost estimation model for bridge construction projects based
on machine learning, namely the support vector machine (SVM) method. The goal of the research was
to develop a model supporting fast cost estimates of total construction costs of bridges in the early
stages of construction projects.

1.1. Literature Review

The problem of cost modeling for bridge projects is present in scientific publications. One can
distinguish various approaches to this issue.

Part of the research is focused on the development of models for estimating the costs of either
selected cost components or elements of bridge structures. In [1], the costs of doing preliminary
engineering as cost components of the total costs of newly built bridges are addressed. The authors
introduced statistical models that link variation in preliminary engineering costs with specific
parameters. A conceptual model aiding cost estimates of bridge foundations is presented in [2]. A
three-stage decision process including the foundation system selection, materials’ quantities estimation,
and foundation cost estimation is supported by the proposed model. In this study, stepwise regression
analysis was applied. Another work [3] reports analysis which aimed to develop material quantity
models of the abutment and caisson as components of a whole bridge structure, with prestressed
concrete I-girder superstructure. The research and application of multiple regression analysis resulted
in a number of equations proposed for estimates of concrete volume and reinforcing steel weight of
abutment and caisson as components of a whole bridge structure. Another study [4] presents the
problem of bridge superstructures cost estimates. The proposed method, based on linear regression
and a bootstrap resampling, provides estimates in the early stages of road projects.

Another part of the research presents efforts on development models for estimating construction
costs of specific kinds of bridges. The authors of [5] proposed a model for the cost estimation of timber
bridges based on artificial neural networks. The performance of the proposed neural network-based
model is reported to be better than the model based on linear regression. Another work [6] introduces a
model for approximate cost estimation for prestressed concrete beam bridges based on the quantity of
standard work. The proposed method supports cost estimates for a typical beam bridge structure using
three parameters: length of span, total length of bridge, and width. Another paper [7] presents the
methodology for estimates of railroad bridges. The proposed model combines case-based reasoning,
genetic algorithms, and multiple regression as tools. Another work [8] introduced a computer-aided
system providing cost estimates of prestressed concrete road bridges. The system, built upon the
database including data collected from completed bridge projects, allows estimating the material
quantities and costs of all bridge elements. The estimating models that constitute the core of the
system were developed with the use of statistical analysis. The authors of [9] focus on the use of
Bridge Information Modeling (BrIM) for detailed cost estimates. The authors discussed the issue of
extraction of information from the bridge model and cost estimation process prepared on this basis.
The methodology for generating cash flow and required payments are presented as well.

The problem of risk analysis in bridge construction is addressed in [10]. The research aimed to
identify and analyze risks associated with bridge construction. Impacts of risks on cost and schedule
in bridge projects are discussed.

Some publications refer to the issue of replacement, renovation, repair, and maintenance costs
of bridges. Replacement cost prediction models, developed with the use of regression techniques,
are introduced in [11], in which the authors investigated the applicability of nonlinear and log-linear
models for the task. Another work [12] presents the development of a model for cost estimation of
repair and maintenance of bridges using artificial neural networks. Another paper [13] presents the
development, discussion, and performance assessment of a set of regression models for estimating
the costs of rehabilitating bridges. One of the papers addresses specifically the issue of repair or
replacement costs damaged by hurricane Katrina [14]. The authors analyzed and compared damage
patterns to bridges and examples of repair measures. Relationships between storm surge elevation,
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damage level, and repair costs were developed. The issue of potential design considerations for
bridges in vulnerable coastal regions is discussed. Some studies address the topic of life-cycle costs
of bridges. In another report [15], the life-cycle cost-effectiveness of fiber-reinforced-polymer bridge
decks is investigated and analyzed. The author used life-cycle cost method analysis, tailored for
comparing new materials with conventional ones. Publications on cost optimization of concrete bridge
components and systems are reviewed in [16] along with the presentation of the state-of-the-art in
life-cycle cost analysis and design of concrete bridges.

SVM are machine learning systems with the ability to learn from experience (hidden in the data
presented to the systems) and knowledge generalization. The theory of SVM, developed by Vapnik and
co-workers, is based on the principles of statistical learning [17,18]. The methodology and theory of
SVM are also broadly presented in the literature by other authors, e.g., [19–21]. SVM can be applied for
either classification or regression problems. Some SVM implementations in construction management,
introduced in works published in recent years, are the automated document classification for improving
information flow in construction management systems [22], methodology of legal decision support
aiming at mitigation of negative impacts of conflicts that occur in the course of construction projects [23],
risk hedging prediction for construction material suppliers [24], modeling construction contractors
default prediction [25], prediction of company failure in the construction industry [26], and dynamical
prediction of construction project success [27].

In the field of cost analyses in construction, specifically supported by SVM, one can also find
recent works. SVM-based modeling variations of construction prices with the use of construction
cost index in Taiwan were introduced in [28]. The study established a hybrid intelligence system
based on the fusion of SVM and Differential Evolution for estimation of construction cost index in
construction. The system is reported to perform with a satisfying, high accuracy. In another work [29],
the authors developed models supporting the prediction of construction project cost and schedule
success, as the input early project planning status information was used. The alternative models, based
on either ANN or SVM, were compared—the latter proven to perform better. In one of the works [30],
SVM-based machine learning, along with interval estimation and differential evolution, is implemented
for modeling the cost at completion of construction projects (one of the metrics known from the Earned
Value Management method). The proposed model proved its capability of delivering reliable forecasts.
The authors of [31] focused on conceptual cost estimates of school buildings. Models based on linear
regression, ANN and SVM, were developed and compared. The study on the estimation of costs and
durations of urban road construction supported by alternative artificial intelligence tools, that are
ANN or SVM, is presented in [32]. The SVM-based model is reported to perform with significantly
better accuracy in terms of costs; whereas, for duration prediction, the SVM-based model is just slightly
better than the one based on ANN.

1.2. Research Objectives

The aim of this paper is to present the results of studies on the development of a machine
learning-based regression model, using the support vector machine (SVM) method, to support early
estimates of total construction costs of bridges. The paper content includes an introduction and review
of the literature. The following section presents the synthesis of the SVM-based regression methodology
and assumptions for the prediction of the total construction costs of bridges as a regression problem to
be solved. These are followed by the introduction of the results of the SVM-based regression analysis
and the discussion. The last section includes conclusions and recapitulation.

The main assumption for the model proposed in this paper is the use of the SVM method.
The rationale for this assumption is the method’s capability of dealing with great dimensional data,
applicability to non-linear regression and the fact that the method allows finding a global solution
for a given task. Moreover, SVM works well on small sets of training data. The following remarks
that refer to the mentioned can be made. First: it is possible to take into account many variables that
play the role of cost predictors in the problem of early cost estimation of bridges. Second: nonlinear
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relationships between the cost predictors and the total construction costs of bridges can be modeled
with the use of the SVM machine learning-based regression model. Third: The SVM-based model can
be built upon a moderate amount of training data that characterize bridges and their costs.

The novelty of the introduced model relies on the fact that it offers cost predictions of bridges as
whole objects. Moreover, several types of bridge structures are considered. Earlier works [2–4] focused
mostly on estimates of either the substructure or superstructure. On the other hand, some works are
limited to specific types of bridges [5–8]. The application of the SVM-based regression method for
the development of a cost estimation model allows overcoming some drawbacks of the models built
on the basis of regression analysis [2–4] or ANN [5]. When compared to linear regression, the SVM
method does not require a priori assumptions about the functional relationship for the developed
model. When compared to ANN, SVM is not at risk of the so-called local minima problem.

2. Methodology and Concept of a Model

The development of a model capable of providing early cost estimates of bridges based on the
SVM method is understood here by solving the regression problem with the use of machine learning.
The dependent variable of the sought-for regression model was the total construction cost of a bridge,
later denoted as y. On the other hand, independent variables such as vectors of cost predictors, later
denoted as x, represent information such as the features, characteristics, and specificity of bridges. The
sought-for model was intended to provide multidimensional mapping from the set of cost predictors
to the set of values representing total construction costs. Formally, the implicit regression function f,
which is supposed to provide the mapping x→ y denoted as:

y = f (x), (1)

is supposed to be found with the use of machine learning-based on the SVM method. This method is
based on knowledge generalization and learning from examples (that represent some experiences)
presented to a machine.

2.1. Support Vector Machines Method in Regression Analysis

The following fundamentals of the method were compiled and summarized after [17–21]. The
SVM method allows approximating f as a linear hyperplane. The linear approximation is achieved
specifically for nonlinear problems due to a transformation of independent variable space to a higher
dimensional, linear feature space. If the set of training examples is given as χ such that: { χ = [x, y] ∈
Rm
× R } and Φ is a nonlinear transformation used to determine a new feature space H for the inputs:

Φ: Rm
→ H, Φ(x) ∈ H, y ∈ R, then the function f can be given as follows:

f (x) = wTΦ(x) + w0 (2)

The transformation Φ(x) is supposed to increase the expressive power of the representation, and
the approximation function is computed in the higher dimensional, linear feature space H. Support
vectors (sv) are the training data points that lie closest to the hyperplane and thus they affect its
optimal location.

To measure the errors of the training process, Vapnik’s ε-insensitive loss function is assumed:

l(f (x),y) = |y − f (x)|ε, (3)

where:
|y − f (x)|ε = 0 for |y − f (x)| ≤ ε and |y − f (x)|ε = |y − f (x) | − ε for |y − f (x)| > ε, (4)

Here, ε defines a tube of insensitiveness used to fit the training examples around the true values y.
In other words, the value of ε affects the number of support vectors.
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Following this the, problem comes down to optimization by machine learning:

1
2

||w||2 + CΣ(ξ − ξ*)→min, (5)

subject to the constraints for the both sides of ε-tube:

wTΦ(x) + w0 − y ≤ ε + ξ and y − (wTΦ(x) + w0) ≤ ε + ξ* and ξ, ξ* ≥ 0 (6)

The use of loss function (3) results in toleration of deviations smaller than ε. The C represents
the regularization parameter in the SVM method, and determines a compromise between decision
function’s margin against training accuracy. It determines the compromise between the complexity of
a model and ξ, and ξ* in (5) and (6) are slack variables that penalize predictions out of the ε-tube. The
optimization of (5) is solved with the use of Lagrange multipliers:

f (x) = Σnsv(α − α*)Φ(x)TΦ(x′) + w0, (7)

where nsv stands for the number of support vectors and α, α* are the multipliers for the optimal
solution such as:

0 ≤ α ≤ C and 0 ≤ α ≤ C (8)

The choice of appropriate transformation Φ and explicit calculation of Φ(x)TΦ(x′) is difficult and
computationally complex. To simplify the computations, the kernel functions K(x, x′) are introduced
instead:

K(x, x′) = Φ(x)TΦ(x′), (9)

The kernel functions which are mostly mentioned for the use in the SVM method are: polynomial
(10), radial basis (11), and sigmoidal (12):

K(x, x′) = tanh(γx·x′ + c), (10)

K(x, x′) = exp(− γ||x − x′||2), (11)

K(x, x′) = (γx·x′ + c)d, (12)

Taking into account the above, the approximation function can be given finally as:

f (x) = Σsv(α − α*)K(x, x′) + w0, (13)

2.2. Variables of the Model and the Concept of Model Development

Before the start of actual regression analysis, data that reflected the values of model variables
were collected and analyzed. The collected data included information about road bridges, rail bridges,
and animal bridges (as wildlife crossings) built in Poland between 2005 and 2018. In terms of total
construction costs, the real-life values were updated to be comparable—regardless of the date of project
completion—with the use of price indices of construction assembly production published by the
General Statistical Office in Poland. Later in the paper, the updated costs of bridges given in millions
of PLN (e.g., PLN 10.53 m) are referred to as y. For better recognition, the costs are given in millions of
EUR as well (e.g., EUR 2.45 m). The conversion was made on the basis of the Polish National Bank
official exchange rate for the PLN/EUR pair of currencies published for 31.12.2018. The values of y
varied between PLN 2.46 m (EUR 0.57 m) and PLN 23.48 m (EUR 5.46 m).

The cost predictors, as the independent variables, brought to the model information about the type
of bridge, type of project, structural and material solutions, types of supports and their foundations,
and load class. All the mentioned information was initially recorded as nominal data. Moreover, basic
size measures, in terms of the decks’ total length and width, as well as the number of spans, were taken
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into account. The independent variables of a model are presented in Table 1. In this table, one can
see that finally the characteristics of bridges recorded initially as nominal data were coded as binary
values (0 or 1). Information recorded as numerical data was scaled to the range <0; 1>. In the case of
structural solution, type of intermediate supports and load class, the values for x14, x22, and x27 were
introduced to represent more than one nominal value that were ARCHED/BOX, COLUMNS/PILES,
and k/C/D/E, respectively (see also the footnotes under Table 1). This was done due to the fact that
some nominal values were not numerous enough in the dataset to be represented alone by one binary
variable. It is important to note that for each of the characteristics listed in Table 1, only one nominal
value was allowed, so only one of the binary variables belonging to this characteristic could take value
1. For example, for the type of a structure of which the nominal value was VIADUCT, the values
x1 − x3 equaled x1 = 0, x2 = 1, x3 = 0.

Table 1. Input data for regression model—independent variables.

Characteristic Nominal Values Coding Symbol

Type of a structure
BRIDGE binary x1

VIADUCT binary x2
WHARF binary x3

Type of a bridge
ROAD BRIDGE binary x4
RAIL BRIDGE binary x5

ANIMAL BRIDGE binary x6

Type of a project BUILD binary x7
DESIGN&BUILD binary x8

Total length LENGTH [m] numerical x9
Width of a structure WIDTH [m] numerical x10

Number of spans SPANS numerical x11

Structural solution
BEAM binary x12

FRAME binary x13
ARCHED/BOX binary x14

Material solution
REINFORCED CONCRETE binary x15
PRESTRESSED CONCRETE binary x16

STEEL binary x17

Bridgehead supports SOLID-WALLED binary x18
COLUMNS binary x19

Intermediate supports
NONE binary x20

SOLID-WALLED binary x21
COLUMNS/PILES binary x22

Supports’ foundations SHALLOW binary x23
DEEP binary x24

Load class *
A binary x25
B binary x26

k/C/D/E 1 binary x27
1 k for rail bridges or C, D, E for other bridges; * according to standards applied in Poland.

Table 2 presents a random sample of the coded variables x and y as used for model development,
and p stands for pattern number.

The selection of the cost predictors was based on the availability of information in the early stages of
the bridge construction projects. The characteristics and their values that became independent variables
of the model (as presented in Table 1) can be easily identified in at beginning of the design process.

Overall, the number of patterns to be used for the process of machine learning and testing models
equaled 167. The data was collected from the public clients responsible for bridge construction projects
in Poland. The data was divided into two subsets—the first subset (later denoted as L) was used for
the machine learning purposes, the second subset (later denoted as T) was used for the models’ testing
purposes. Both subsets were selected so as to be equivalent and to ensure their representativeness
in terms of the features of the investigated bridges and the range of construction costs as well. The
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cardinality of subset L equaled 131, whereas the cardinality of subset T equaled 36. One can easily note
that the number of patterns belonging to subset T accounted for more than 20% of the overall number
of collected data patterns.

Table 2. Random sample of the model’s variable values.

p 10 77 83 104 109 111 119 150 166

x1 1 0 0 0 1 0 1 0 0
x2 0 1 1 0 0 1 0 1 0
x3 0 0 0 1 0 0 0 0 1
x4 0 0 0 0 0 1 1 0 0
x5 0 1 1 1 0 0 0 0 1
x6 1 0 0 0 1 0 0 1 0
x7 1 1 1 1 1 0 0 1 0
x8 0 0 0 0 0 1 1 0 1
x9 0.069 0.151 0.150 0.219 0.197 0.180 0.456 0.095 0.715
x10 0.114 0.057 0.027 0.114 0.114 0.092 0.097 0.426 0.049
x11 0.000 0.000 0.143 0.143 0.143 0.000 0.286 0.071 0.500
x12 1 1 0 1 1 0 0 0 1
x13 0 0 1 0 0 0 0 1 0
x14 0 0 0 0 0 1 1 0 0
x15 0 0 1 0 0 0 1 0 0
x16 1 1 0 1 0 0 0 1 1
x17 0 0 0 0 1 1 0 0 0
x18 1 0 1 1 1 1 1 1 1
x19 0 1 0 0 0 0 0 0 0
x20 0 0 1 0 1 0 0 0 0
x21 0 0 0 1 0 0 1 1 1
x22 1 1 0 0 0 1 0 0 0
x23 0 1 0 1 0 1 0 1 0
x24 1 0 1 0 1 0 1 0 1
x25 1 0 0 1 1 0 0 0 0
x26 0 1 1 0 0 0 0 0 1
x27 0 0 0 0 0 1 1 1 0

y [PLN] 3.02 5.49 6.11 9.84 10.82 12.54 14.15 6.83 19.85
y [EUR] 1 0.70 1.28 1.42 2.29 2.52 2.92 3.29 1.59 4.62

1 training and testing of the model was done with the use of costs given in millions of PLN.

The research included an investigation of the number of SVM-based regression models. A
schematic diagram of the investigated models is presented in Figure 1.
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The SVM-based models’ performance rely on the assumed kernel function and its parameters as
well as C and ε meta-parameters.

For the purposes of transformation Φ, the use of the three aforementioned kernel functions
(10)–(12) were investigated, however the best results were obtained for radial basis function (11). Thus,
in the two following sections, the author focused on a presentation and discussion of the models in
which this particular type of function was applied.

The selected methods of the parameters C and ε can be summarized after [17,18,33–35] as follows:

• The choice is made on the basis of the a priori knowledge of the problem and/or users’ expertise;
• Values are selected on the basis of the grid search;
• Determination of the parameters directly from the data;
• Assuming C equal to the range of output values;
• Tuning ε parameter to the training data noise density.

The choice of the two parameters for the models proposed herein compromised the
above-mentioned approaches, namely determination of the parameters on the basis of the training
data and grid search.

Each of the models was analyzed and its predictive performance was assessed in terms of
correlation between the real-life values of the bridges’ total construction costs y and the predicted
values ŷ, the predictions’ errors, and the residuals analysis. The following equations were used for
computations of Pearson’s correlation coefficient (R), root mean squared error (RMSE), mean absolute
percentage error (MAPE), and absolute percentage error for p-th case (APEp):

R = cov(y;ŷ)/(σyσŷ), (14)

RMSE = (1/n·Σ(y − ŷ)2)0.5, (15)

MAPE = 1/100%·Σ[(|y − ŷ|)/y], (16)

APEp = 100%· (|yp
− ŷp|)/yp, (17)

where cov(y;ŷ)—covariance of real values of the bridges’ total construction costs and values predicted by
a model, σy and σŷ standard deviations of real values of the bridges total construction costs and values
predicted by a model, respectively; n—cardinality of either L or T subset, y − ŷ—prediction errors,
computed after completion of the machine learning process for either L or T subset; and p—pattern
index. The SVM machine learning process was made with the use of STATISTICATM software suite.

According to the literature [36–38] and remarks about the expected accuracy of cost estimates
provided at the early stages of construction projects (also called conceptual estimates), the error of
estimates should fall into the ranges <−30%/−25% and +25%/+30%> when compared to the actual,
final construction costs. If the proposed models’ predictions and APEp are considered, the above rule
can be reformulated into the expectation about the desired range of APEp between 0% and +25%/+30%.
What is obvious is that the predictions of the bridges’ total construction costs are still required to
be provided by the models with errors as small as possible. However, the rule can be used for the
purposes of the models’ performance comparison and assessment.

3. Results

For the investigated SVM-based regression models, the parameter γ (for radial basis kernel
function) was assumed as the inverse of the number of inputs, thus γ = 1/27 = 0.037. The γ value can
be explained as the inverse of the radius of influence of samples selected in the course of machine
learning to be support vectors.

Regularization meta-parameter C was initially assessed following the rule [35]:

C = max{|E(y) + 3σy|; |E(y) − 3σy|}, (18)
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where E(y) = 6.61 and σy = 4.22 computed for yp belonging to subset L resulted in C = 19.27. After this,
it was assumed that 20 will constitute the upper boundary of C. Values of C were sought for with the
use of grid search; the values of ε (threshold of the loss function) were also sought for with the use of
grid search. The considered ranges of C and ε, as well as the grid search details, are given in Table 3.

Table 3. Considered ranges of length axis (C) and depth axes (ε) parameters.

Parameter Lower Boundary Step Upper Boundary

C 5 1 20
ε 0.05 0.05 0.20

The machine learning process for each of the models was carried out with the use of 10-fold
cross-validation. Having finished the process, the performances of the models were compared. RMSE
values were computed for both L and T subsets for all of the obtained models. The RMSE values
obtained for the subset that was used in the course of machine learning (subset L) are presented in
Figure 2. Figure 3 depicts RMSE values computed for testing subset T. The values of errors (height axes
in Figures 2 and 3) are presented as 3D surfaces with regard to C (length axes) and ε (depth axes). One
can see that in the case of RMSE, the values computed for subset L are decreasing with the increase of
C and decrease of ε. On the other hand, the tendency for errors computed for subset T is similar with
regards to ε, however the opposite with regard to C.
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Figure 3. RMSE errors computed for subset T.

When considering the values of RMSE for both subsets L and T together, one can find the points
in the grid representing errors of learning and testing computed for certain models, where the values
of RMSE for testing reach minimums; moreover, the values of RMSE for machine learning are close.

The analysis of RMSE values allowed for the selection of five models that were further investigated.
The five bridges’ construction cost prediction models based on support vector regression (later
referred to as BCCPMSVR) are introduced in Table 4. Characteristics of the models include values of
meta-parameters C and ε, number of support vectors (sv), and number of bounded support vectors
and values of the constants w0. The support vectors are the data patterns belonging to subset L that
determine the position of the regression hyperplane for a certain model. Furthermore, errors of 10-fold
cross-validation are also presented. General error and performance measures RMSE, R, and MAPE for
the five BCCPMSVR models, computed for L and T subsets, are set together in Table 5.

Table 4. Five selected models and their characteristics.

Model C ε sv Bounded
sv w0

Cross-Validation
Error

BCCPMSVR1 7 0.050 91 50 −0.108761 0.038
BCCPMSVR2 8 0.050 85 47 −0.118497 0.037
BCCPMSVR3 8 0.100 59 24 −0.132814 0.037
BCCPMSVR4 9 0.100 58 23 −0.137849 0.036
BCCPMSVR5 10 0.100 56 22 −0.130312 0.035

The values of RMSE and R (in Table 5), when comparing the five selected models, are relatively
close. Thus, in light of the RMSE and R values analysis, the performance of the models can be assessed
as comparable. In terms of MAPE values, the differences are slightly more evident. The final choice
of the model, however, was based on the comparison of the distribution of APEp errors and the rule,
(presented in Section 2.2) that refers to the desired range of APEp values for bridge construction early
cost estimates.
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Table 5. Measures of errors and performance obtained for the five selected models.

Model RMSEL RMSET RL RT MAPEL MAPET

BCCPMSVR1 1.115 1.112 0.971 0.979 14.64% 11.33%
BCCPMSVR2 1.058 1.111 0.974 0.980 13.85% 10.94%
BCCPMSVR3 1.175 1.141 0.968 0.978 17.03% 11.44%
BCCPMSVR4 1.139 1.152 0.970 0.978 16.69% 11.28%
BCCPMSVR5 1.115 1.161 0.971 0.978 16.56% 11.30%

Table 6 presents the distributions of APEp errors of predictions of total bridge construction costs
both for L and T subsets under the conditions that APEp

≤ 25% or APEp
≤ 30%. In light of the analysis

of the values in Table 6, model BCCPMSVR 2 was proven to perform better than the others—the model
reached the highest shares of APEp

≤ 25% for L and T subsets and the same shares of APEp
≤ 30% for L

and T subsets as BCCPMSVR1.

Table 6. Comparison of absolute percentage error for p-th case (APEp) errors for the five selected models.

Subset L Subset T

Model APEp
≤ 25% APEp

≤ 30% APEp
≤ 25% APEp

≤ 30%

BCCPMSVR1 85.38% 92.31% 81.08% 91.89%
BCCPMSVR2 86.92% 92.31% 83.78% 91.89%
BCCPMSVR3 72.31% 80.00% 81.08% 89.19%
BCCPMSVR4 73.08% 80.77% 81.08% 89.19%
BCCPMSVR5 73.85% 82.31% 83.78% 89.19%

For the finally selected model of BCCPMSVR2, the scatter plots of values of y (actual bridge
construction costs, presented on the horizontal axes) and ŷ (bridge construction cost predictions by
model BCCPMSVR 2, presented on the vertical axes) are depicted in Figures 4 and 5. The former shows
the scatter plot of y and ŷ values for subset L, the latter for subset T. The charts include also the cones
of errors ±25% and ±30%.
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Table 7 presents the percentage shares of APEp errors of bridge construction cost predictions
provided by the model BCCPMSVR2 (both for L and T subsets) divided into intervals of a range equal
to 5%. Additionally, distributions (cumulated shares) of APEp errors are given in the Table.

Table 7. Shares and distribution of APEp values for BCCPMSVR2.

Subset Subset

Share L T Distribution L T

APEp
≤ 5% 20.77% 27.03% APEp

≤ 5% 20.77% 27.03%
5% < APEp

≤ 10% 20.77% 37.84% APEp
≤ 10% 41.54% 64.86%

10% < APEp
≤ 15% 24.62% 10.81% APEp

≤ 15% 66.15% 75.68%
15% < APEp

≤ 20% 10.77% 5.41% APEp
≤ 20% 76.92% 81.08%

20% < APEp
≤ 25% 10.00% 2.70% APEp

≤ 25% 86.92% 83.78%
25% < APEp

≤ 30% 5.38% 8.11% APEp
≤ 30% 92.31% 91.89%

APEp > 30% 7.69% 8.11% APEp > 30% 100.00% 100.00%

The distribution of points (yp; ŷp) in the scatter plots (in Figures 4 and 5) is even along the line of
a perfect fit. Moreover, for both of the subsets L and T, the vast majority of bridge construction cost
predictions are located within the ±25% cone of errors; almost all of the predictions are located within
the ±30% cone of errors.

The values of the APEp, (in Table 6), as complementary information, confirm that most of the
bridge construction cost predictions made by BCCPMSVR2 meet the condition of early cost estimates.

The general conclusion on the results presented above is that the proposed model provides
the predictions of costs for bridge construction projects with satisfactory accuracy regarding the
expectations for estimates at the early stages of projects.

4. Discussion

When compared to the models proposed by other authors, some significant differences of the
model introduced herein can be indicated. The previous works that aimed at modeling costs of bridges
in the early stages of projects were focused on cost estimates of either parts of bridge structures [2–4]
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or specific types of bridges [5–8]. The model introduced herein offers cost predictions of bridges as a
whole object (the substructure and superstructure together). Moreover, the predictions are made for
different types of bridges with regard to their structure, purpose, and structural and material solutions.

On the other hand, most of the previously proposed models are based either on regression
analysis [2–4] or ANN [5]. The former requires a priori assumptions about the functional relationship
binding bridge construction cost as a dependent variable with cost predictors as independent variables.
The latter are at risk of the so-called local minima problem. Both of these drawbacks are overcome by
the use of the SVM-based regression method for the development of the model for prediction costs
of bridges.

The results of the research confirmed the assumptions made for the application of the SVM method
for bridge construction cost prediction. Several SVM-based regression models were investigated
with the use of data collected for a number of bridge construction projects completed in Poland.
Having finished machine learning and testing processes, five of the models, of satisfactory knowledge
generalization ability and comparable performance, were preselected. An important fact to be
mentioned here is that in the case of repetitions of machine learning processes with given constraints,
the results obtained for each of the investigated models were exactly the same every time. Application
of the SVM method for early estimates of bridge construction costs eliminates the risks of local
minima problem.

The final selection of the best model was based on the comparison and analysis ability to predict
the bridge construction costs with accuracy appropriate for the early stage of the projects.

The general performance of the selected model, namely BCCPMSVR2, and its measures are
presented in Section 3. The predictions of the bridge construction costs provided by the model can
also be analyzed in a way that focuses on selected characteristics and features of bridges as the
model’s input.

Tables 8–11 present relative percentage shares of APEp, computed for the machine learning subset,
belonging to certain intervals (compare Table 7) with regard to variables of a nominal type (coded as
binary values for machine learning). The relative percentage shares of APEp for variables of nominal
type were computed as follows:

• For each of the variables xj for j = 1 − 8 or j = 12 − 27, the number of predictions that fulfilled
the condition of having corresponding APEp that fell into the certain interval were counted and
divided by the number of occurrences of xj = 1.

Table 8. APEp predictions’ errors for machine learning with regard to the type of bridge its structure
and type of a project.

Relative Percentage Share of APEp

0–5% 5–10% 10–15% 15–20% 20–25% 25–30% >30%

BRIDGE (x1) 35.71% 14.29% 14.29% 7.14% 7.14% 14.29% 7.14%
VIADUCT (x2) 15.31% 21.43% 28.57% 12.24% 11.22% 3.06% 8.16%
WHARF (x3) 60.00% 40.00% 0.00% 0.00% 0.00% 0.00% 0.00%

ROAD BRIDGE (x4) 17.65% 11.76% 26.47% 8.82% 14.71% 5.88% 14.71%
RAIL BRIDGE (x5) 18.39% 25.29% 25.29% 10.34% 9.20% 5.75% 5.75%

ANIMAL BRIDGE (x6) 60.00% 10.00% 10.00% 20.00% 0.00% 0.00% 0.00%
BUILD (x7) 15.65% 22.61% 26.96% 11.30% 10.43% 6.09% 6.96%

DESIGN&BUILD (x8) 62.50% 6.25% 6.25% 6.25% 6.25% 0.00% 12.50%
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Table 9. APEp predictions’ errors for machine learning with regard to the structural and
material solutions.

Relative Percentage Share of APEp

0–5% 5–10% 10–15% 15–20% 20–25% 25–30% >30%

BEAM (x12) 19.64% 20.54% 26.79% 9.82% 8.93% 5.36% 8.93%
FRAME (x13) 15.31% 21.43% 28.57% 12.24% 11.22% 3.06% 8.16%

ARCHED/BOX (x14) 54.55% 9.09% 9.09% 9.09% 9.09% 9.09% 0.00%
REINFORCED CONCRETE (x15) 18.33% 15.00% 26.67% 8.33% 15.00% 5.00% 11.67%
PRESTRESSED CONCRETE (x16) 20.83% 29.17% 25.00% 8.33% 6.25% 6.25% 4.17%

STEEL (x17) 30.43% 17.39% 17.39% 21.74% 4.35% 4.35% 4.35%

Table 10. APEp predictions’ errors for machine learning with regard to the types of bridgehead and
intermediate supports and supports’ foundations.

Relative Percentage Share of APEp

0–5% 5–10% 10–15% 15–20% 20–25% 25–30% >30%

SOLLID-WALLED (x18) 21.77% 20.16% 23.39% 10.48% 10.48% 5.65% 8.06%
COLUMNS (x19) 14.29% 28.57% 42.86% 14.29% 0.00% 0.00% 0.00%

NONE (x20) 11.11% 14.29% 34.92% 12.70% 11.11% 6.35% 9.52%
SOLLID-WALLED (x21) 36.36% 18.18% 22.73% 9.09% 9.09% 0.00% 4.55%
COLUMNS/PILES (x22) 28.26% 30.43% 10.87% 8.70% 8.70% 6.52% 6.52%

SHALLOW (x23) 12.68% 22.54% 30.99% 7.04% 14.08% 5.63% 7.04%
DEEP (x24) 31.67% 18.33% 16.67% 15.00% 5.00% 5.00% 8.33%

Table 11. APEp predictions’ errors for machine learning with regard to the load class.

Relative Percentage Share of APEp

0–5% 5–10% 10–15% 15–20% 20–25% 25–30% >30%

A (x25) 24.71% 22.35% 21.18% 11.76% 8.24% 5.88% 5.88%
B (x26) 0.00% 36.36% 45.45% 9.09% 9.09% 0.00% 0.00%

k/C/D/E 1 (x27) 20.00% 11.43% 25.71% 8.57% 14.29% 5.71% 14.29%
1 (compare with Table 1).

Analyzing the Tables 8–11, one can see how the predictions accuracy depends relatively on the
certain, chosen characteristics of the bridges described by the nominal values.

Tables 12–14 present the relative percentage shares of APEp, computed for the machine learning
subset, belonging to certain intervals (compare Table 6) with regard to variables of a numerical type.

The relative percentage shares of APEp for these variables were computed as follows: for each of
the variables xj for j = 9 − 11:

• The values were divided regarding the ranges given in the Tables 12–14;
• Predictions for variables values that fulfilled the conditions of falling into certain range of values

and having corresponding APEp from a certain error’s interval were counted and divided by the
number of occurrences.

Analyzing the Tables 12–14 one can see how the predictions accuracy depends relatively on the
certain, chosen characteristics of the bridges described by the structure’s length, width or number
of spans.

A limitation of the model that should be mentioned here is that the real-life bridge construction
costs were updated for a certain moment in time for the data that was used both in the machine
learning and in the testing processes. Thus, for now, dynamical predictions are not provided by the
developed model. The reason for this limitation is the number of collected data patterns which does
not currently allow for dynamical predictions that comply to the changes of costs in time.
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Future research plans cover the issue of database expansion and further collection of training
data, and development of models capable of dynamical predictions. One of the possible future
research directions, which also rely on the database expansion, is the decomposition of the problem,
development of separate models for certain types of bridges and combining the models in a so-called
committee machine.

Table 12. APEp predictions’ errors for machine learning with regard to the total length of bridge (x9).

LENGTH (x9) Relative Percentage Share of APEp

0–5% 5–10% 10–15% 15–20% 20–25% 25–30% >30%

up to 25 m 0.00% 16.67% 36.67% 6.67% 16.67% 6.67% 16.67%
25–50 m 14.63% 19.51% 26.83% 21.95% 9.76% 2.44% 4.88%
50–75 m 18.18% 22.73% 31.82% 4.55% 13.64% 9.09% 0.00%
75–100 m 36.36% 31.82% 13.64% 4.55% 4.55% 0.00% 9.09%

more than 100 m 45.45% 9.09% 0.00% 4.55% 0.00% 9.09% 4.55%

Table 13. APEp predictions’ errors for machine learning with regard to the width of bridge (x10).

WIDTH (x10) Relative Percentage Share of APEp

0–5% 5–10% 10–15% 15–20% 20–25% 25–30% >30%

up to 11 m 11.76% 29.41% 35.29% 5.88% 11.76% 0.00% 5.88%
11–14 m 15.87% 12.70% 26.98% 9.52% 11.11% 9.52% 14.29%
14–17 m 29.73% 29.73% 21.62% 13.51% 5.41% 0.00% 0.00%
17–20 m 5.41% 5.41% 2.70% 5.41% 2.70% 2.70% 0.00%

more than 20 m 8.11% 2.70% 0.00% 0.00% 2.70% 0.00% 0.00%

Table 14. APEp predictions’ errors for machine learning with regard to the of number of spans (x11).

NUMBER
OF SPANS (x11)

Relative Percentage Share of APEp

0–5% 5–10% 10–15% 15–20% 20–25% 25–30% >30%

1 9.09% 13.64% 33.33% 15.15% 13.64% 6.06% 9.09%
2 15.00% 40.00% 10.00% 10.00% 15.00% 5.00% 5.00%
3 34.48% 31.03% 20.69% 3.45% 3.45% 0.00% 6.90%
4 3.45% 0.00% 6.90% 3.45% 0.00% 6.90% 0.00%

5 and more 27.59% 3.45% 0.00% 0.00% 0.00% 0.00% 3.45%

5. Conclusions

As a result of the research, an original model capable of supporting early estimates of bridge
construction costs, based on machine learning and SVM method, was developed and introduced. The
input variables bring to the model information, available in the early stage of a bridge construction
project, that represent the features of bridges.

According to the presented results and discussion, as well as the accuracy expectations applicable
for conceptual estimates, the model offers good performance. Applied kernel functions are of the
radial basis type, and the meta-parameters of the model are C = 8 and ε = 0.050. The values of the
general measures of the model’s performance, respectively for machine learning and testing, are:

• RMSE: 1.058 and 1.111;
• Pearson’s correlation coefficient R of real-life bridge construction costs and costs predicted by the

model: 0.974 and 0.980;
• MAPE: 13.85% and 10.94%.

The model provides cost predictions with satisfactory accuracy, within the range of errors
appropriate for early estimates (conceptual estimates) that is ±25%/30%.
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The proposed approach is prospective for early cost estimates (conceptual cost estimates) in bridge
construction projects. The study contributes to the body of knowledge by the application of machine
learning methods for cost analyses in construction.
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Durations of Construction of Urban Roads Using ANN and SVM. Complexity 2017, 2017, 2450370. [CrossRef]

33. Scholkopf, B.; Burges, J.; Smola, A. Advances in Kernel Methods: Support Vector Learning; MIT Press: Cambridge,
MA, USA, 1998.

34. Cherkassky, V.; Mulier, F. Learning from Data. Concepts, Theory, and Methods: Second Edition; John Wiley &
Sons: Hoboken, NJ, USA, 2006. [CrossRef]

35. Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural
Netw. 2004, 17, 113–126. [CrossRef]

36. Brook, M. Estimating and Tendering for Construction Work; Routledge: Abingdon, UK, 2016. [CrossRef]
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