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Abstract: Micro- and nano-sized cerium oxide particles can be prepared through pyrolyzing cerium
chloride solution directly in the venturi jet pyrolysis reactor. Micro- and nano-sized cerium oxide
particles have better performance and higher application value. To increase the production of
micro- and nano-sized cerium oxide, it is necessary to scale up the venturi jet pyrolysis reactor.
According to the geometric similarity principle, the scale-up of the venturi jet pyrolysis reactors
utilize dimensional analysis methods, with FLUENT13.0 and user-defined functions, following the
mathematical simulation of the resulting enlarged reactors. After the dimensional analysis, the
empirical formula obtained between the reactants and all the parameters is Q = 2.240727× 10−4P0.004568

ρ0.26223d−0.24801V1.25714n0.076479µ−0.26628, and the geometrical scale-up of the reactors needs to follow
V = 0.0209d0.196. The results in this study can provide data support for the future optimization and
amplification of reactors.
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1. Introduction

Micro- and nano-sized cerium oxides possess novel structural, photoelectric and chemical
properties such as improved stability and photocatalytic activity; these oxides are also widely used in
daily life [1]. Currently, micro/nano technology is a hot topic in industry research. Many researchers
have prepared the cerium oxide particles with various methods [2,3]. Cerium chloride solution obtained
by extraction and separation can be used for direct pyrolysis to produce micro- and nano-meter sized
cerium oxide particles [4,5]; this reduces the pyrolysis process (which includes precipitation, filtration
and high temperatures) used in the traditional methods. In this process, ammonium bicarbonate and
oxalic acid are not required for precipitation, thus reducing water waste and gas pollution [4]. This
process utilizes a venturi jet pyrolysis reactor, which provides several advantages such as rapid reaction
rates, good reaction uniformity and high product quality, as well as complete gas-phase absorption
without gas escape [5]. The process of producing cerium oxides using cerium chloride pyrolysis has
been validated several times with a large amount of experimental data, and it is necessary to scale up
the reactors for industrial use. The key questions that arise are how to amplify the venturi jet pyrolysis
reactor and what criteria should be followed for reactor amplification?

Reactor amplification refers to the design and manufacture of reactors based on experimental data
obtained from laboratory reaction equipment; the designed reactors are compatible with large-scale
reactions during industrial production [6–11]. The design of reactor amplification needs to follow
certain criteria such as theoretical amplification for the momentum, mass and energy balance equations
of the reaction system [12,13]. Van Geem et al. [14] performed dimensional analysis on the model
equations to design the ideal pilot plant reactor by applying similarity theory to the amplification
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and reduction of steam cracking furnaces. The empirical amplification method mainly depends on
the analysis of the parameters of the reactor through the step-by-step process, which includes a
small-scale trial, intermediate-scale trial and large-scale trial to explore the equalization of various
constants (e.g., Newton, Reynolds and Fred constants). Garcia-Ochoa et al. [15] evaluated dimensional
empirical equations for the design and amplification of bioreactors. Dimensional amplification analysis
is a method to keep the quasi-number (dimensionless) group of each parameter as constants in the
process of reactor amplification, during which building the quasi-number group accurately is the
key step. The Yang group [16] reported a discriminant method by performing dimensional analysis
on backmixing plug-flow reactors. Safoniuk et al. [17] proposed a dynamic amplification method
for a three-phase fluidized bed, which resulted in a series of dimensionless groups that required a
good match to guarantee hydrodynamic similarity. Mathematical simulation amplification [18–20],
which utilizes computer software technology in the process of reactor amplification, is usually used in
combination with other amplification methods. After preliminary determination of the model and
the initial conditions, computer software is used to build models and evaluate the enlarged reactors;
during the process of observing the physical and chemical changes, the design parameters constantly
adjust and correct. Nauha et al. [21] reported a novel modeling method calculation to estimate the
regional conditions in a bioreactor, which can be used for large-scale retention and mass transfer
modeling. Liu et al. [22] applied the Weilerma/Dushman method and CFD (Computational Fluid
Dynamics) simulation to conduct a comparison study of various micro-hybrid properties in symmetric
T-type micromixers with alternative channels and discussed the amplification strategy.

Currently, reactor amplification primarily uses theoretical amplification, empirical amplification,
dimensional analysis amplification and numerical simulation amplification. In this paper, related
parameters such as boundary parameters and initial conditions were first established by dimensional
analysis of enlarged reactors; the feasibility was then further validated by numerical simulation
amplification. The numerical simulation includes the coupling calculation of combustion, phase
transformation and pyrolysis in the chemical reaction.

2. Modeling

2.1. Venturi Jet Pyrolysis Reactor Model

As shown in Figure 1, the size of the developed venturi jet reactor is as follows. the total length of
the jet reactor was 850 mm.
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Figure 1. Dimension of jet-flow pyrolysis reactor (unit: mm). The total length of the jet reactor was 
850 mm; the left gas-phase inlet has a fuel inlet (inlet 1) and an oxygen inlet (inlet 2) [4]. A chemical 
inlet (inlet 3) had a cross-section diameter of d = 10 mm, straight pipe cross-section diameters of d1 = 
d2 = 50 mm, the front throat straight pipe length was L3 = 150 mm, a rear throat straight pipe length of 
L4 = 300 mm, a throat diameter de = 25 mm and length Le = 100 mm, and the variable diameter pipe 
lengths were L1 = L2 = 140 mm, L5 = 20 mm. The outlet (outlet) section diameter was 50 mm. 

2.2. Model Selection 

In terms of numerical simulation, the geometric model is established with GAMBIT2.4.6; the 
grid is divided with ICEMCFD (The Integrated Computer Engineering and Manufacturing code for 

Figure 1. Dimension of jet-flow pyrolysis reactor (unit: mm). The total length of the jet reactor was
850 mm; the left gas-phase inlet has a fuel inlet (inlet 1) and an oxygen inlet (inlet 2) [4]. A chemical
inlet (inlet 3) had a cross-section diameter of d = 10 mm, straight pipe cross-section diameters of d1 = d2

= 50 mm, the front throat straight pipe length was L3 = 150 mm, a rear throat straight pipe length of
L4 = 300 mm, a throat diameter de = 25 mm and length Le = 100 mm, and the variable diameter pipe
lengths were L1 = L2 = 140 mm, L5 = 20 mm. The outlet (outlet) section diameter was 50 mm.

2.2. Model Selection

In terms of numerical simulation, the geometric model is established with GAMBIT2.4.6; the
grid is divided with ICEMCFD (The Integrated Computer Engineering and Manufacturing code for
Computational Fluid Dynamics); simulation calculations are conducted with FLUENT13.0; and data
post-processing is performed with CFD-POST13.0. The numerical simulation utilizes a three-dimensional
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un-stationary algorithm with a Euler multiphase flow model and uses discrete differential equations
with finite volume. For the turbulent flow in the jet reactor, a standard k-ε double equation model
was selected; the SIMPLE (semi-implicit method for pressure-linked equations) algorithm based on
pressure-velocity coupling was applied. The control equations were differentiated with second-order
upwind and the wall surface was set to adiabatic conditions; all items converged to 1× 10−4 except energy
(1 × 10−6). In this paper, the investigation of cerium chloride pyrosis in the reactor mainly included:

CH4(g) + 2O2(g)→ CO2(g) + 2H2O(g) (1)

2CeCl3(s) + 3H2O(g) + 1/2O2(g)→ 2CeO2(s) + 6HCl(g) (2)

According to the data of pre-exponential factor and apparent activation energy determined from
the kinetic equations of CeCl3 reaction from experiments, we used UDFs (User Defined functions) to
simulate CeCl3 pyrolysis reactions. The boundary conditions were set as shown in Table 1. The materials
are CH4, O2, CO2, H2O, CeCl3, and CeO2. The physical properties of all materials were obtained from
the manual of inorganic thermodynamics, and the particle size of CeO was set to 1 µm.

Table 1. Boundary conditions.

Types CH4 Inlet O2 Inlet CeCl3 Inlet Outlet

Boundary conditions Velocity-inlet Velocity-inlet Velocity-inlet Outflow
Value (m/s) 1.44–14.4 10.575–105.75 0.03

2.3. Validation and Optimization

As shown in Figure 2, the error between the simulation data of HCl and CeO2 obtained at the
exit and the experimental results is less than 10%; the model selection and the setting of the boundary
conditions were correct in the simulation [5].
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3. Results and Discussion

3.1. Dimension Analysis

Dimensional analysis includes the entire process, such as laboratory equipment, pilot equipment
and the industrial scale-up operation as well as the entire system consisting of the experimental
data analysis, mathematical model and theoretical system. According to various operating and
structural parameters, the concentration of the CeO2 product was mainly affected by the amount of
CeCl3 in the reaction material. By applying the existing simulation results to dimensional analysis,
the relationship between the material input quantity Q of inlet 2 and its related parameters can be
determined. Throughout the simulation process, three parameters—operating parameters, structural
parameters and physical parameters—largely affected the material carrying capacity. These parameters
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include the gas phase flow velocity of inlet 1 (V), the additional pressure of inlet 2 (P), the ratio of the
straight pipe diameter to the throat pipe diameter (n), the drainage pipe diameter (d), the material
density (ρ) and the material viscosity (µ).

Using dimensional analysis, the general function is:

Q = f (V, P, n, d, µ, ρ) or f (Q, V, P, n, d, µ, ρ) = 0. (3)

Based on the π theorem, the number of variables was seven, the number of independent variables
was three; ρ, V, and d have independent dimensions, and groups without dimensions can be established.
For n, because it has no dimension, it can be directly expressed when constructing dimensionless π.

As analyzed in Table 2, each π is represented as:
π0 = Q/

(
ρa0Vb0dc0

)
π1 = P/

(
ρa1Vb1 dc1

)
π2 = µ/

(
ρa2Vb2dc2

)
π3 = n

(4)

Table 2. Chart of dimension variables.

Variables P (kg/m3) Q (m3/s) D (m) V (m3/s) P (Pa) µ (Pa·s)

M (kg) 1 0 0 0 1 1
L (m) −3 3 1 3 −1 −1
T (s) 0 −1 0 −1 −2 −1

Construct the number:
π0 = Q/V (5)

π1 = P/
(
ρV2d−4

)
(6)

π2 = µ/
(
ρVd−1

)
(7)

Obtain the following expression:

f
(
Q/V, P/

(
ρV2d−4

)
,µ/

(
ρVd−1

)
, n

)
= 0 (8)

Form of explicit function:

Q/V = f
(

Pd4

ρV2 ,
µd
ρV

, n
)

(9)

Within a certain range of the independent variable, the criterion relation of various phenomena
can often be expressed in the form of a power function. From the above analysis, the empirical criterion
formula can be fitted as:

Q/V = A
(

Pd4

ρV2

)x(
µd
ρV

)y

(n)z (10)

where x, y, and z are fitting coefficients, among which the speed unit is m3/s, the density unit is kg/m3,
the pressure unit is Pa, the unit of d is m, and the viscosity unit is Pa·s.

ln(Q/V) = ln(A) + x ln
(

Pd4

ρV2

)
+ y ln

(
µd
ρV

)
+ z ln(n) (11)

According to the above linear relationships, Q was calculated after processing the simulation
results. A linear Equation (11) was obtained with the given fitting coefficients: ln(A) = −8.40354, A =

2.240727 × 10−4, x = 0.004568, y = −0.26628, z = 0.076479.
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Then, the empirical formula becomes:

Q
V

= 2.240727× 10−4
(

Pd4

ρV2

)0.004568(
µd
ρV

)−0.26628

(n)0.076479 (12)

And:
Q = 2.240727× 10−4P0.004568ρ0.26223d−0.24801V1.25714n0.076479µ−0.26628 (13)

This is the result of numerical simulation data fitting considering the influencing factors on the
liquid phase incorporation such as fuel combustion, evaporation phase transition and gas-solidification;
these results are relatively accurate. In practical production, the production of CeO2 can be estimated
by the empirical formula to calculate the amount of liquid material in the pyrolysis reaction process
under different experimental conditions.

Figure 3 shows the comparison of liquid phase material entrainment calculated by the numerical
simulation and empirical formula under different drainage tube diameters. According to the figure,
the relative error between the results obtained respectively by the numerical simulation and the
empirical formula is less than 15%, indicating the empirical formula obtained by dimensional analysis
is more accurate.
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3.2. Reactor Ampification

This paper focuses on the effects of various related factors on the amount of material entering in
the reactor. In order to find a suitable design method to amplify the reactor, the same materials (fixed
physical property parameter (p)) were selected according to above-mentioned Equation (13); the jet
pyrolysis reactor was amplified with the same geometrical ratio with a fixed n = 10/5, µ = 0.0000172 Pa·s,
and the following can be obtained:

Q = 0.027107 P0.004568d−0.24801V1.25714 (14)

According to the relationship between the amount of replenished material and the additional
pressure and gas phase inlet flow, P = 1.62V2

− 1.55V − 0.97, the P and V factors should be combined [23].
In order to increase the reactor input by a factor of 1000, the required amount of CeCl3 was 42.96 kg/h,
and the material intake was 826.1538 kg/h. To calculate the corresponding values of different gas phase
inlet velocities V and reactor draft pipe diameters d:

V = 0.0209 d0.196 (15)

Three schemes of the reactor amplification selection correspond to the three groups of models for
the simulation study; the diameter of the drainage tube was expanded by factors of 8, 10 and 12 to
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0.08 m, 0.1 m and 0.12 m, respectively. According to the relationship detailed in Equation (15) and
P = 1.62υ2

− 1.55υ − 0.97, the parameters of V and P were selected from Table 3; the added chemical
density was kept at 1038.449 kg/m3 and the ratio of the straight tube diameter to the throat of the jet
reactor was 10/5.

Table 3. Determination of the parameters of the enlarged model of a cerium chloride pyrolysis reactor.

Types P (Pa) ρ (kg/m3) d (m) V (m3/s) n

Model 1 42,413.25
1038.449

0.08 0.0127
10/5Model 2 46,302.17 0.1 0.0133

Model 3 49,742.49 0.12 0.0138

As shown in Figure 4, the error between the theoretical and simulated values of material in the
amplified reactor was less than 10%, and the error between the theoretical and the numerical simulation
value of cerium oxide production was less than 10%. Therefore, it is feasible to select geometrical
similarity amplification and set the initial and boundary conditions according to the parameters
obtained by the dimensional analysis.
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the enlarged cerium chloride reactor.

As shown in Figure 5, the temperature distribution trend in the cerium chloride reactor after
amplification can be seen; the maximum temperature in the reactor remains unchanged when the ratio
of methane to oxygen is fixed, as combustion of CH4 provides the heat for the reaction. When the
reactor was magnified by 12 times, the ratio of the high temperature region in the reactor was smaller
than the other two situations and was attributed to the affected process of the space volume increase
and the heat energy transfer in the amplified reactor. One reasonable solution is to increase the amount
of fuel to provide sufficient heat generated via combustion. The low temperature zone was caused by
the action of phase-to-phase heat transfer, evaporation phase change and endothermicity of pyrolysis
after cerium chloride solution loading into the reactor. From the temperature change trend, the larger
reactor amplification ratios led to a smaller proportion of the space that the fluid can reach in the
reactor, a smaller proportion of the reaction zone in the reactor and a smaller low temperature region.
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Figure 5. The comparison of temperature distribution in the reactor after amplification: (a) magnified
by 8 times (b) magnified by 10 times (c) magnified by 12 times.

As shown in Figure 6, the larger the reactor magnification, the smaller the ratio of CeCl3 in the high
concentration region of the reactor (the concentration of the yellow region in the figure is 0.03 to 0.05)
and the narrower the distribution of CeCl3 at the throat. However, the larger the reactor magnification,
the larger the volume inside the reactor, and the worse the heat transfer effect between the phases;
therefore, the proportion of unreacted CeCl3 (the concentration in the figure was between 0.0005 and
0.001) was larger.
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As shown in Figure 7, a larger reactor amplification causes a smaller proportion of CeO2 in the
high concentration region of the reactor; this is because as the reactor magnification increases, the
volume inside the reactor increases which worsens the heat transfer between the phases. Therefore, the
larger the area where CeCl3 is not completely reacted decreases the high concentration region of CeO2.
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4. Conclusions

(1) The empirical formula obtained from dimensional analysis based on numerical simulation
data is Q = 2.240727 × 10−4P0.004568ρ0.26223d−0.24801V1.25714n0.076479µ−0.26628. The reactor can be
geometrically scaled up. The relationship between the gas-phase inlet velocity V and the reactor
pipe diameter d in the pyrolysis of cerium chloride follows the formula: V = 0.0209d0.196.

(2) The temperature distribution trend in the reactor and the maximum temperature in the reactor
remains unchanged after amplification. With an increase in the amplification magnitude, CeCl3
has a smaller ratio in the high concentration region of the reactor, a narrower distribution at the
throat region and a smaller proportion of CeO2 in the high concentration region.

(3) The reactor amplification experiment will be carried out next to verify the accuracy of the
amplification conditions obtained by the simulation, and to summarize the rules to be followed
in the reactor amplification process.
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