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Abstract: Magnesium has a good strength-to-weight ratio. As a result, magnesium alloys are gradually
becoming an integral part of lightweight designs that are especially important to the automotive and
aerospace industries. The magnesium alloy AZ31 is particularly suitable for forming. Furthermore,
as its cyclic response is asymmetric, the accumulated energy during loading is a convenient basis for
durability predictions of a product that is made of the AZ31 alloy. In this article, we show how the
inverse-power law model can be combined with a Weibull’s probability density function to describe
the shape of the fatigue-life curves and their scatter. Various load histories were chosen to characterize
the response of the AZ31 alloy under different cyclic loadings. Both the plastic and the total strain
energy densities were calculated for all the load histories, and then, a suitable dependence in terms
of energy fatigue-life curves was determined. The proposed model is appropriate for modeling the
low-cycle fatigue life of the AZ31 alloy. With the application of a linear damage-accumulation rule, it
is also possible to predict the fatigue life for the non-constant amplitude loading within one decade
of accuracy.

Keywords: magnesium alloy AZ31; fatigue life; strain-energy density; Weibull’s probability
density function

1. Introduction

Nowadays, most of the load-carrying structures and structural components are subjected to
dynamic loads. A typical mode of failure for repetitive (dynamic) loading is the fatigue of a material,
which eventually leads to the rupture of structural components. Basically, there are two kinds of
fatigue phenomena. If the stresses due to the dynamic loading are less than the material’s yield stress,
no plastic phenomena occur during the loading. In this case, the structure fails due to a large number
of repetitive loading cycles and the phenomenon is called high-cycle fatigue. On the other hand, if the
stresses due to the dynamic loading of the structure surpass the material’s yield stress, the structure
fails after a relatively small number of loading cycles and the failure is called low-cycle fatigue. In the
low-cycle-fatigue regime, the cyclic elastic-plastic response of the applied material governs the fatigue
process. In order to effectively design reliable structures for a target fatigue life, the engineering
fatigue-life properties of the applied material must be known.

One of the solutions to reduce the carbon footprint during road transport is to make the means
of transport lighter in weight. Various types of magnesium alloys represent good alternatives for
producing lightweight structures. However, due to the crystallographic characteristics of magnesium
and its alloys, the elastic-plastic stress-strain responses in tension and compression are not equal.
In our research, the focus was on the AZ31 magnesium alloy, because it is one of the most promising
magnesium alloys for serial production [1]. To make the industrial application of such an alloy
possible, its fatigue behavior must be known. A structural material is usually supplied in the form
of half-products, i.e., sheet plates, rods, extruded profiles, etc., of different sizes. In the case of the
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AZ31 magnesium alloy the half products are often produced by hot forming procedures that may
be followed by heat treatment, since a ductility of this alloy at the room temperature is rather poor.
With the additional processing technologies (e.g., equal channel angular pressing [2,3]) the mechanical
characteristics of the half-products can be significantly improved. Nevertheless, it was decided to use
the sheet-plate half products as supplied without additional processing in our case. This is because
such material is widely commercially available, which is important for engineering applications.

In practice, many different approaches to calculating a structure’s fatigue life exist. Due to
the asymmetric AZ31 hysteresis loops, we chose to follow the energy approach for estimating the
low-cycle fatigue life of this alloy. One of the simplest and first-introduced energy-based criteria for
the fatigue-life prediction in the low-cycle and high-cycle fatigue domains is the Smith-Watson-Topper
approach [4]. Although this approach works well for metals with symmetric elastic-plastic hysteresis
loops, its use for materials with asymmetric hysteresis loops is questionable. That is why we decided
to follow a methodology that considers the true dissipated energy during the cyclic loading when
predicting the fatigue life of the magnesium alloy AZ31.

In the low-cycle-fatigue regime the fatigue life is influenced by both the dissipated (plastic)
strain-energy density ∆Wp and the elastic strain-energy density ∆We of the loading cycle [5]. Different
energy approaches vary mainly according to the methodology of calculating the elastic strain-energy
density ∆We in order to consider the mean-stress effect in the appropriate way [6–17]. A special loading
case is a fatigue loading with tensile pulsating loading cycles. When the AZ31 alloy is exposed to such
loading history a significant damage contribution results from a large plastic deformation in the first
loading cycle. For this reason, Park et al. [18] added an additional term to the cyclic strain energy
density to account for this effect.

After the strain-energy density of the closed loading cycle ∆W is calculated, the corresponding
fatigue-life dependency ∆W–Nf needs to be determined. The simplest approach to estimating the
∆W–N dependency is based on the idea that the same amount of strain-energy density is needed
for the fatigue-life rupture as for the static tensile rupture. This means that the predicted number of
loading cycles to failure Nf is equal to the quotient of the strain-energy density calculated from the
tensile test and the strain-energy density of the loading cycle ∆W [19,20]. Oftentimes, this approach is
too general, and its fatigue-life predictions are poor. For this reason, the inverse-power-law equation
that links the strain-energy density ∆W to the number of loading cycles to failure Nf is normally
applied [15,21,22]. We decided to follow the approach of Park and Nelson [15], since this approach or
its variations were already successfully applied in the past for calculating the fatigue lives of different
magnesium alloys [10,11,22–24].

In our research, a series of constant-strain amplitude fatigue tests were performed to establish a
dependency between the strain-energy density of the cyclic loading and the corresponding fatigue life.
Due to the significant scatter of the fatigue-life data the ∆W–Nf fatigue-life curve was modeled with a
conditional Weibull’s probability density function in the same manner as in the case of the S-N and E-N
fatigue-life curves [25–27]. After the ∆W–Nf fatigue-life curve and its scatter were estimated for the
constant strain-amplitude data, the applicability of a linear-damage-accumulation rule in combination
with the energy approach was then assessed for a series of strain-controlled step-strain fatigue tests
and random-amplitude fatigue tests.

The article is structured as follows. In the second section the material data and the theoretical
background of the applied energy method for calculating the fatigue life are explained together with
the model of the energy durability curve and its scatter. The experimental and modeled results are
presented in the third section, which is followed by a discussion in the fourth section. The article is
concluded with a brief summary, acknowledgments and a list of references.
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2. Materials and Methods

2.1. The Magnesium Alloy AZ31 and the Low-Cycle Fatigue Experiments

The material under investigation was the magnesium alloy AZ31. The bulk chemical composition
of the alloy is 96% Mg, 3% Al and 1% Zn. The specimens for the low-cycle fatigue-life experiments were
cut from the hot rolled 2-mm-thick sheet plates of the AZ31 alloy with dimensions of 200 mm × 200
mm. The sheet plates from two different production series, which were supplied by Goodfellow
Cambridge Ltd. (Huntingdon, UK), were not additionally mechanically or heat treated to improve
their properties. As reported by the supplier, the elastic modulus of the AZ31 alloy is E = 45 GPa, the
ultimate tensile strength Rm = 290 MPa, the elongation at break is 15%, the density ρ = 1800 kg/m3 and
melting temperature is 605–630 ◦C [28]. To check the basic material properties, four tensile tests with
the specimens from the first production series were performed on a Zwick/Roell Z50 testing machine
(ZwickRoell, Ulm, Germany) using the dog-bone specimens illustrated in Figure 1. For the tensile
tests the specimens were fine cut with a water-jet machine in the direction of rolling (longitudinal
direction) as well as perpendicular to the rolling direction (transversal direction). The average elastic
modulus from the tensile tests was E = 44.1 GPa, with a standard deviation of 0.8 GPa. The average
measured ultimate tensile strength was Rm = 253.4 MPa with a standard deviation of 2.6 MPa, and an
average elongation at break equal to 18.7%, with a standard deviation of 3.5%. When compared with
the reported data, the supplied sheet plates of the AZ31 alloy are more ductile with a lower strength.
In Figure 2a, a microstructure after a tensile load is presented. In Figure 2b, a microstructure structure
after few completed loading cycles of constant strain amplitude is presented. The picture orientations
were parallel to the mid-plane of the specimen. Microstructure observations were carried out on a light
microscope Olympus BX61 (Olympus, Tokyo, Japan). It can be seen from Figure 2 that the average
grain size is approximately between 20 and 30 µm and the grains are not elongated in either of the two
specimen directions, i.e., longitudinal or transversal.
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For the low-cycle fatigue experiments the specimens as presented in Figure 1 were fine cut with a
water-jet machine in the longitudinal and transversal directions. These specimens originated from
two different supplied series. The low-cycle fatigue-life experiments were carried out on a 100-kN
MTS hydraulic machine (MTS, Eden Prairie, MN, USA) and were strain-controlled. The strains
were measured with an MTS 834.11F-24 extensometer (MTS, Eden Prairie, MN, USA) and the force
was measured with a 100-kN tensile-compressive load cell (MTS, Eden Prairie, MN, USA). Our
own-developed anti-buckling device was used to solve the stability issues during the experiments.
The low-cycle fatigue experimental arrangement is presented in Figure 3. The anti-buckling device
prevents buckling along the weak axis of the specimen, but not along the strong axis. It is attached to the
lower grip of the testing machine using two springs that ensure a continuous contact between the device
and the sensor, which measures the friction between the specimen and the guiding surface of the device.
Between the specimen and the guiding surface there is a thin teflon foil of 0.1 mm thickness. The contact
pressure between the specimen and the guidance is negligible until the instability of the specimen
occurs. The details of measuring the friction between the specimen and the anti-buckling device,
together with some experimental results for different materials, can be found in the literature [29,30].
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Figure 3. Experimental arrangement for the low-cycle fatigue experiments: (a) schematic representation
of the anti-buckling device; (b) real experiment.

The low-cycle fatigue experiments were all strain controlled. The constant-amplitude experiments
and the step-strain low-cycle fatigue experiments were fully reversal according to the strains ε.
The constant-amplitude experiments were performed for the following strain-amplitude levels εa:
0.25%, 0.4%, 0.5%, 0.6%, 0.75%, 0.9%, 1.0% and 1.25%. For each strain-amplitude level at least one
experiment was conducted. The testing frequency depended on the strain amplitudes and was in the
range between 0.1 and 1.0 Hz. Altogether, 16 constant-amplitude experiments were carried out in
order to obtain the strain-energy density fatigue-life curves.

The step-strain low-cycle fatigue experiments were different according to the starting strain level,
the strain increment between the consecutive steps and the number of loading cycles within a single
block. Each step-test was finished after the rupture of the specimen. The testing frequency range was
the same as for the constant-amplitude experiments. Altogether, eight step-tests were carried out.
The details of the step-strain experiments are listed in Table 1.
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Table 1. Step-strain low-cycle fatigue experiments.

Test No. Specimen
Orientation

Strain Levels - εa
(Number Of Loading Cycles in Blocks - N)

1 longitudinal εa,1 = 0.1%
(N1 = 20)

εa,2 = 0.25%
(N2 = 20)

εa,3 = 0.5%
(N3 = 70)

εa,4 = 0.75%
(N4 = 110)

εa,5 = 1.0%
(N5 = rest)

2 longitudinal εa,1 = 0.1%
(N1 = 3)

εa,2 = 0.25%
(N2 = 3)

εa,i = εa,i−1 + 0.25% ; i = 3, 4, . . .
(Ni = 3 ; i = 3, 4, . . .)1

3
4
5
6

longitudinal
longitudinal
transversal
transversal

εa,1 = 0.05%
(N1 = 20)

εa,2 = 0.1%
(N2 = 20)

εa,3 = 0.25%
(N3 = 20)

εa,i = εa,i−1 + 0.25% ; i = 4, 5, . . .
(Ni = 20 ; i = 4, 5, . . .)1

7 longitudinal εa,1 = 0.25%
(N1 = 40)

εa,2 = 0.75%
(N2 = 40)

εa,3 = 1.25%
(N3 = rest)

8 longitudinal εa,1 = 0.3%
(N1 = 30)

εa,2 = 0.6%
(N2 = 30)

εa,3 = 0.9%
(N3 = 30)

εa,4 = 1.2%
(N4 = rest)

1 Loading levels were incremented up to failure.

Two random-loading fatigue tests were also carried out to check the applicability of the energy
approach in practice. The blocks of the random strain time series, which are presented in Figures 4
and 5, were repeated until the rupture of the specimen. As can be seen in the two figures, the transition
between the consecutive reversal points was linear with a constant strain rate of 0.2%/s. The outcomes
of all the presented low-cycle fatigue experiments are available as a supplement Excel workbook in the
Supplementary Materials.
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2.2. Calculating the Fatigue Damage on the Basis of the Strain-Energy Density

When following the most simple Smith-Watson-Topper approach [4], the strain-energy density of
a closed loading cycle ∆W is defined as a rectangle in the σ-ε space, i.e., ∆W = σmax · εa. σmax is the
maximum stress of the loading cycle and εa is its strain amplitude. The fatigue life is predicted on
the basis of the strain-energy density ∆W–Nf durability curve that is derived from the Coffin-Manson
equation. Nf represents the number of repeated loading cycles to failure at the corresponding ∆W level.
In this case the strain energy density of the loading cycle ∆W is not divided to the contributions of
plastic (∆Wp) and elastic (∆We) strain energy densities.

By following the true strain-energy density concepts, the plastic strain-energy density ∆Wp is
always calculated in the same way. However, there are many different approaches to calculating
the elastic strain-energy density ∆We in order to weight the mean-stress effect in the appropriate
way. Usually, the elastic strain-energy density ∆We is only defined for positive strain values. If the
stress-related dynamic loading factor Rσ is negative the elastic strain energy is the surface of the
triangle in the σ-ε space below the compressive loading path for positive stresses—see Figure 6. If the
minimum stress σmin is positive (Rσ > 0), different formulations of the elastic strain-energy density
∆We were defined in the past [6–13]. Sometimes, the elastic energy density is calculated for both the
compressive and tensile loading paths [14,15], and sometimes, it is calculated in a similar manner to
the Smith-Watson-Topper approach [16,17].
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When dealing with the total strain-energy density as a criterion for predicting the fatigue life, we
decided to follow the approach of Golos [6,7] and Koh [8], because it is relatively simple and yields
reasonable results [9]. When combining these approaches the total strain-energy density ∆Wt is the
sum of the plastic strain-energy density and the tensile elastic strain energy, as presented in Figure 6:

∆Wt = ∆Wp + ∆We+ (1)

In our research the additional term of Park et al. [18] that considers the influence of the large
plastic deformation in the first loading cycle to the accumulated damage was not considered. This is
because our loading was fully reversal according to strain – Rε = −1 (this also holds for the stress-strain
envelope of the random loading), thus, this term would have no effect to the calculated fatigue damage.

The plastic strain-energy density ∆Wp of a closed hysteresis loop is calculated as:

∆Wp =

∫
σ(ε) · dε (2)
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The elastic strain-energy density ∆We+ of a tensile elastic part that corresponds to the closed
hysteresis loop of a loading cycle is calculated as:

∆We+ =

 σ2
max
2·E ; σmin ≤ 0
(σmax−σmin)

2

2·E ; σmin > 0
(3)

E is the elastic modulus of the material, and σmax and σmin are the maximum and minimum
stresses of the loading cycle—see Figure 5.

The energy fatigue-life curve is then modeled with an inverse power-law equation. If the dynamic
ratio Rε is approximately equal for all the loading cycles and the plastic strain-energy density ∆Wp

prevails over the elastic strain-energy density ∆We+, the fatigue-life curve can be modeled solely as a
function of the plastic strain-energy density ∆Wp:

∆Wp ·N
mp

f = Cp (4)

where Nf is the number of loading cycles to failure, and mp and Cp are the material constants. If the
mean-stress effect needs to be considered and/or if the influence of the elastic strain-energy density
∆We+ is significant for the fatigue life of a structure, the total strain-energy density ∆Wt is considered
for estimating the strain-energy fatigue-life curve:

∆Wt ·Nmt
f = Ct (5)

As in Equation (4), mt and Ct are material constants and are generally not equal to the parameters
mp and Cp. Details of modeling the energy fatigue-life curve and its scatter on the basis of the
experimental data will follow in Section 2.3. In Equations (4) and (5), the fatigue limit coefficient
of Park et al. [18] was omitted from the model, because it was usually not applied by the other
researchers [19–24].

To compare the results of the constant-amplitude experiments with the results of the
variable-amplitude experiments, the equivalent fatigue life Nf,eq for the selected equivalent
strain-energy-density level ∆Weq is calculated on the basis of the step-strain time series or the
random strain time series. The loading cycles, which are represented by the closed hysteresis loops,
are first extracted from the time series with a rainflow counting method, according to the ASTM
E1049 standard. Then, the equivalent number of loading cycles Nf,eq is calculated with a linear
damage-accumulation rule as follows:

Nf,eq =
k∑

i=1

Nf,i ·

(
∆Wi

∆Weq

)1/m

(6)

where k is the number of different strain-energy densities ∆Wi in the time series, Nf,i are the number
of loading cycles that correspond to a particular strain-energy density ∆Wi; I = 1, . . . ,k. Equation
(6) is a variation of the linear damage-accumulation rule, with the exponent m from either Equation
(4) or (5), whichever is applied for modeling the ∆W–Nf dependency. The exponent m governs the
transformation of the variable-amplitude strain time series to the target equivalent strain-energy
density level ∆Weq.

2.3. Modeling the Strain-Energy-Density Fatigue-Life Curve and Its Scatter

Oftentimes, the researchers perform only constant-amplitude fatigue-life experiments with the
specimens from a single production series. To avoid buckling of the specimens the rod-shaped
specimens are preferred against the thin flat specimens. Such experimental runs usually result in a
good agreement between the proposed fatigue-life models and the experimental data. As opposed to
that, our specimens were cut from the 2 mm thick sheet plates from two different production series.
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Moreover, the specimens were oriented in the longitudinal and transversal directions. Consequently, a
higher scatter of experimental results was obtained if compared to, e.g., Park et al. [18]. To model the
fatigue life appropriately and to estimate the corresponding confidence intervals the energy fatigue-life
curve with its scatter should be determined.

Equations (4) and (5) are another form of the Basquin equation of the S-N curve. In the past
we developed a method for modeling the S-N curve and its scatter with a two-parametric Weibull’s
probability density function (PDF). The Weibull’s PDF had a constant shape parameter β and the
variable scale parameter ηwith the functional form of the Basquin equation [25,26]. The same approach
can be followed to model the energy fatigue-life curves from Equations (4) and (5), together with their
scatter. The idea is to model the scatter of the number of loading cycles to failure Nf at an arbitrary
strain-energy density level ∆W using the two-parametric Weibull’s PDF:

f (Nf|∆W) =
β

η(∆W)
·

(
Nf

η(∆W)

)β−1

· exp

−( Nf

η(∆W)

)β; Nf, β, η > 0 (7)

β = const. (8)

η(∆W) = 10a0+a1·log(∆W) (9)

The scale parameter η(∆W) represents the number of loading cycles to failure Nf for a 63.2%
probability of rupture at the strain-energy level ∆W. Since Equations (4) and (5) can be transformed
into the following form:

∆W ·Nm
f = C → log(Nf) =

log(C)
m

−
1
m
· log(∆W) (10)

The two parameters a0 and a1 from Equation (9) are equal to:

a0 =
log(C)

m
; a1 = −

1
m

(11)

The three parameters a0, a1 and β of the above-described model can be determined on the basis of
the n constant-amplitude fatigue-life experiments that result in the data set

{
(∆Wi, Nf,i) ; i = 1, . . . , n

}
.

This is achieved by minimizing the logarithmic maximum-likelihood cost function (abbreviation MLE)
with the following form [26,27]:

MLE[a0, a1, β] =
n∑

i=1

(δi · ln[ f (Nf,i|∆Wi)] + (1− δi) · ln[1− F(Nf,i|∆Wi)]) (12)

The MLE function is a compound of the Weibull’s PDF from Equation (7) and its corresponding
cumulative distribution function F(Nf,i|∆Wi):

F(Nf,i|∆Wi) =

Nf,i∫
0

f (Nf|∆Wi) · dNf =1− exp

−( Nf,i

η(∆Wi)

)β (13)

The mixing weight in Equation (12) is a δi parameter, which is an indicator of the fatigue failure (δi

= 1). If the fatigue-life experiment was terminated before the fatigue failure occurred, the δi parameter
is equal to 0.

The MLE function from Equation (12) cannot be minimized analytically. In order to minimize it a
numerical minimization procedure should be applied. We used a real-valued genetic algorithm for this
purpose and checked the estimated parameters with another minimization algorithm, i.e., a differential
ant-stigmergy algorithm. Both algorithms were successfully used before for similar purposes [25–27].
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The primary choice is the real-valued genetic algorithm, since it is faster (but occasionally less efficient)
than the alternative algorithm. In order to obtain reliable estimates of the three parameters a0, a1 and
β the optimization algorithms should be repeated with various initial conditions. Details of the two
algorithms can be found in the literature [25,26].

After the three parameters a0, a1 and β are estimated, the number of loading cycles to failure Nf,p

can be estimated for the arbitrary strain-energy-density level ∆W and the probability of rupture p as
follows:

p = F(Nf,p|∆W) = 1− exp

−( Nf,p

η(∆W)

)β → Nf,p = η(∆W) · [− ln(1− p)]1/β (14)

In this manner, the fatigue-life curves for an arbitrary probability of rupture p can be constructed.
Due to the relatively small number of constant-amplitude fatigue life tests (n = 16, see Section 2.1)

the confidence limits for the modeled fatigue-life curves need to be estimated. Two confidence limits
were estimated in our case: i.) a lower α= 5% confidence limit for the fatigue-life curve that corresponds
to the p = 5% probability of rupture and ii.) an upper α = 5% confidence limit for the fatigue-life curve
that corresponds to the p = 95% probability of rupture. The two confidence limits were estimated
using the Monte Carlo method. Following this approach, a thousand simulated fatigue-life data sets
of size n = 16 were artificially generated for each of the two fatigue-life curves. The data sets were
generated with a random-number generator according to the Weibull’s PDF from Equation (7), with
the parameters a0, a1 and β that were estimated from the experimentally determined data set. For each
artificial data set the three parameters and the corresponding p-probability fatigue-life curve were
estimated. From the family of these fatigue-life curves the lower or upper confidence limit was finally
calculated for the various strain-energy-density levels ∆W.

3. Results

The results of the constant strain-amplitude experiments are presented in Figure 7 for the
dependency between the plastic strain-energy density ∆Wp and the number of loading cycles to failure
Nf, and in Figure 8 for the dependency between the total strain-energy density ∆Wt and the number
of loading cycles to failure Nf. In both figures there are fatigue-life curves for 5%, 50% and 95%
probabilities of survival, together with the 5% confidence lower limit of the 5% fatigue-life curve and
the 5% confidence upper limit of the 95% fatigue-life curve. The corresponding parameters Cp/t, mp/t

and βp/t are presented in Table 2. The parameters a0, a1 and β from Equations (9–13) were estimated
using a real-valued genetic algorithm. It took 10,000 iterations and 10 repetitions of the algorithm for
both fatigue-life models (∆Wp-Nf and ∆Wt-Nf). There were no differences between the parameters that
were estimated with the real-valued genetic algorithm and the differential ant-stigmergy algorithms,
despite the genetic algorithm being approximately 20% faster for the 10,000 iterations. The governing
parameters of the two optimization algorithms were the same as before [26]. The Monte Carlo
simulations for estimating the confidence limits were run with the same set-up.

Table 2. Estimated parameters of the strain-energy fatigue-life durability curves.

Parameter Plastic Strain-Energy
Density Model f (Nf |∆Wp)

Total Strain-Energy
Density Model f (Nf |∆Wt)

Parameter C for 50%
probability of rupture 625.41 176.45

Parameter C for η 679.26 183.83
Parameter m 1.089 0.781
Parameter β 4.833 6.986
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Figure 9a shows the scatter of the stabilized hysteresis for the strain amplitude εa = 1.0% from
different constant-amplitude and step-strain low-cycle fatigue experiments. Figure 9b shows the
evolution of the stabilized hysteresis loops for the step-strain test no. 8. The closed hysteresis loops
resulting from one block of the random fatigue-life tests are presented in Figure 10a,b for the two
random-load time series. They are shown at half of the fatigue life. The blocks of the random loading
in Figure 4 were repeated 29 times, until the failure of the specimen. The blocks of the random loading
in Figure 5 were repeated 13 times, until the failure of the specimen.
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In Figure 11, the results of the step-strain and the random fatigue-life experiments are compared
with the plastic strain-energy-density fatigue-life curve. The design of the step-strain experiments
is shown with different lines. After the specimen ruptured the results of the step-strain and random
experiments were recalculated for the target equivalent strain-energy-density level ∆Weq of 1 mJ/mm3

for both studied cases. The equivalent numbers of loading cycles to failure Nf,eq, which were calculated
using Equation (6), are marked with diamond marks for the step-strain experiment. The Nf,eq values
from the random experiments are marked with circles. In Figure 12, the same results are presented in
the same manner for the total strain-energy density fatigue-life curve. In both figures only the results
for seven step-strain tests are shown. This is because step-strain test no. 2 did not result in low-cycle
fatigue failure, but failed due to buckling along the stronger axis at a strain-amplitude level of 1.75%.
This is because only the weaker axis of the specimen is supported with the applied anti-buckling device
during the low-cycle fatigue experiments. For this reason, the results of the step-strain test no. 2 were
not considered for further data processing.
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4. Discussion

It can be concluded from Table 2 that the number of loading cycles to failure is almost directly
proportional to the accumulated plastic strain-energy density, because the exponent mp for the ∆Wp–Nf

curve is approximately equal to 1.0. This implies that the predicted number of loading cycles to failure
Nf could also be simply calculated on the basis of the accumulated strain-energy density of the tensile
test [19,20]. However, this is not so for the case of the total strain-energy density ∆Wt, where the
exponent mt is significantly different from the value of 1.0. On the other hand, the scatter of the results
is much smaller for the ∆Wt–Nf fatigue-life curve than for the ∆Wp–Nf fatigue-lie curve—see Figures 7
and 8. The ratio between the fatigue-life curves for the 95% and 5% probability of survival along the Nf

axis is only 1.79 for the ∆Wt–Nf fatigue-life curve, whereas it is 2.32 for the ∆Wp–Nf fatigue-life curve.
Moreover, the results of the constant strain-amplitude experiments lie on a straight line for the ∆Wt–Nf

fatigue-life curve (Figure 8), whereas a slight banana-like cloud of points can be observed in the case
of the ∆Wt–Nf fatigue-life curve in Figure 7. From these results, it can be concluded that the total
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strain-energy fatigue-life curve better represents the constant-amplitude experimental data and that
the inverse power law from Equation (4) might not be the correct model for estimating the relationship
between the cyclic plastic strain-energy density ∆Wp and the corresponding number of loading cycles
to failure Nf. Therefore, in the future, additional constant-amplitude fatigue experiments should be
carried out to determine the true shape of the ∆Wp–Nf fatigue-life curve.

Since the scatter of the ∆Wt–Nf fatigue-life curve is significantly smaller than the scatter of the
∆Wp–Nf fatigue-life curve, the corresponding confidence interval is narrower for the Wt–Nf fatigue-life
curve. This fact again implies that the ∆Wt–Nf relationship should be used for performing the
fatigue-life predictions in practice. Nevertheless, we have calculated the equivalent number of loading
cycles to failure Nf,eq at the equivalent strain-energy density level ∆Weq of 1 mJ/mm3 for both cases of
the modeled fatigue-life curves.

From Figures 7 and 8 we can see that the low-cycle fatigue lives for the three transversely oriented
specimens lie mostly between the fatigue-life curves for a 5% and 50% probability of survival, which is
not the case for the longitudinally oriented specimens. However, this difference between the fatigue
lives of the longitudinally and transversely oriented specimens is not statistically significant, because of
the small total number of specimens. We can also conclude from Figure 9a that the stabilized hysteresis
loop for the transversely oriented specimen lies in the middle of the scattered, stabilized hysteresis
loops for the longitudinally oriented specimens. This means that there were no significant differences
between the cyclic plastic and elastic strain-energy densities among the differently oriented specimens.
From Figure 10 it can be seen that the stabilized envelopes of the loading cycles are very similar for
the two random strain histories, despite significantly different random loadings. Such a result was
expected with regards to the relatively low scatter of the stabilized, closed hysteresis loops at strain
amplitudes higher than 1.0%—see also Figure 9a.

From Figure 9b, it can be concluded that the stabilized hysteresis loops in the step-strain test no. 8
are fully evolved and no peculiarities can be seen. The same effect was also observed for the other
step-strain tests, with the exception of step-strain test no. 2, where the failure occurred due to buckling
along the stronger axis of the specimen. Stress-hardening effects occurred above strain amplitudes
of 0.4%. The maximum stress hardening was around 20% for the strain amplitudes larger than 1.0%.
The most significant stress hardening occurred up to 20 loading cycles, thus, this was considered as the
minimum number of loading cycles within one block of the step-strain tests, with the exception of the
step-strain test no. 2.

In an ideal case, all the calculated equivalent number of loading cycles to failure Nf,eq at the selected
equivalent strain-energy density ∆Weq would be uniformly scattered around the fatigue-life curves for
a 50% probability of rupture. It can be seen from Figures 11 and 12 that in both cases at the selected
∆Weq level four out of nine variable strain-amplitude experiments lie within the 90% scatter band of the
fatigue-life curves, which were estimated from the constant strain-amplitude experiments. However,
eight out of nine variable strain-amplitude experimental results differed from the average fatigue-life
curves at the selected ∆Weq level by less than a decade. This result is relatively good, because the
specimens were prepared from two different production series and the linear damage-accumulation
theory was applied to calculate the equivalent number of loading cycles to failure Nf,eq. Besides, the
loading-cycle sequence was not considered when calculating the equivalent number of loading cycles
to failure Nf,eq for random loads. The only issue related to the presented results is that most of the
calculated equivalent fatigue lives (Nf,eq) are not conservative. Most of them lie to the left of the 50%
fatigue-life curve, which might lead to a conclusion that the applied damage accumulation method has
a limited prediction ability in this case. To prove this, additional step-tests and random tests should be
carried out in the future. Furthermore, it can be concluded from Figures 11 and 12 that the random
fatigue-life data better suit the fatigue-life energy curves than the step-strain data. The specimen
orientation is not a cause for such a discrepancy, because there is one longitudinal and one transversal
specimen among the worst two performers. Since all the specimens had approximately the same
roughness due to the cutting process and the worst two specimens were cut from the same sheet plate,
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the cause for such a discrepancy should be related to the material microstructure. Unfortunately, it
was not analyzed for these two specimens. From the variable-amplitude experimental results, no
significant differences in the fatigue life could be observed between the longitudinal and transversely
oriented specimens. There were also no significant differences in the fatigue-life predictions between
the plastic- and total strain-energy-density approaches. The final conclusion of the article is that
the linear damage-accumulation rule combined with the cyclic strain-energy-density approach is a
good starting point for engineering predictions of the fatigue life of the AZ31 magnesium alloy if the
fatigue-life curve and its scatter are known.

5. Conclusions

In this article, an approach to predicting the low-cycle fatigue life of the AZ31 magnesium
alloy is presented. It is based on modeling the strain-energy fatigue-life curves and their scatter
from the results of constant strain-amplitude fatigue experiments. The flat AZ31 specimens were
made of sheet metal plates and were tested on a hydraulic test rig. Various load histories were
chosen to characterize the behavior of the AZ31 under tensile-compressive, constant-amplitude and
variable-amplitude loadings. Fatigue-life curves were modeled for both the cyclic plastic- and total
strain-energy densities. The fatigue-life curves that are based on the total cyclic strain-energy density
suit the fatigue-life data much better than the curves that were obtained from the cyclic plastic
strain-energy densities. The results from the variable-amplitude loading were compared with the
modeled fatigue-life curves using the equivalent strain-energy-density approach. From the presented
results it can be concluded that the accumulated strain-energy density during cyclic loading can be
applied as a relevant engineering durability criterion for estimating fatigue-life of structures from the
AZ31 magnesium alloy. However, the well-known drawbacks of the linear damage accumulation
rule combined with the uncertainty related to the local microstructure of the half-products should be
considered when assessing the accuracy of the predicted fatigue life.
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