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Abstract: Owing to the continuous deterioration in the quality of iron ore and scrap, there is an
increasing focus on improving the Basic Oxygen Furnace (BOF) process to utilize lower grade
input materials. The present paper discusses dephosphorization in BOF steelmaking from a data
science perspective, which thus enables steelmakers to produce medium and low phosphorus steel
grades. In the present study, data from two steel mills (Plant I and Plant II) were collected and
various statistical methods were employed to analyze the data. While most operators in steel plants
use spreadsheet-based techniques and linear regression to analyze data, this paper discusses on
the suitability of selecting various statistical methods, and benchmarking tests to analyze such
dephosphorization data sets. The data contains a wide range of operating conditions, both low
and high phosphorus input loads, different slag basicity’s, different slag chemistries, and different
end point temperatures, etc. The predicted phosphorus partition from various statistical models is
compared against plant data and verified against previously published research.

Keywords: Basic Oxygen Furnace Steelmaking (BOF); dephosphorization; machine learning; multiple
linear regression; phosphorus partition; K-fold cross validation; multicollinearity; stepwise regression

1. Introduction

Dephosphorization of steel is critical due to the rising prices (100% rise in past five years) of iron
ore, which has resulted in the use of lower grade iron ores [1]. Increased phosphorus (P) content in steel
imparts cold shortness and leads to poor ductility, toughness, formability, and embrittlement [2,3]. It has
been observed that the primary driving factor for dephosphorization in steelmaking is the iron oxide
content of slag, rather than dissolved oxygen in liquid steel for a given slag basicity over different carbon
content of steel. (%P)/[%P] represents the slag/steel phosphorus distribution ratio and it is usually found
to be scattered around the calculated equilibrium values for the metal/slag reactions involving iron
oxide in slag [3,4]. Developing new infrastructure or modifying existing equipment can be financially
demanding in order to effectively decrease P content. Therefore, we must look for cost-effective
or relatively inexpensive ways to achieve phosphorus partitioning in large scale. In this context,
Machine Learning (ML) and Artificial Intelligence (AI) based techniques can be game-changing in the
pursuit of efficient process control [5–7]. Most of the previous works on dephosphorization employed
mathematical modelling and thermodynamics analysis as tools for understanding dephosphorization.
However, the underlying randomness (measurable and non-measurable) in the dephosphorization
process results in unpredictable variation in slag composition from one heat to another and, hence,
provides the motivation for applying stochastic data driven models to predict phosphorus partition.
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In the last few decades, numerous attempts were made to predict phosphorus-partitioning
by combining regression-based models with thermodynamic principles that assume equilibrium
conditions. Here, we summarize the highlights from some of these efforts. During 1940s, Balajiva and
co-workers performed experiments while using a small Electric Arc Furnace (EAF). They presented
a correlation of equilibrium phosphorus partition ratio with a varied range of slag chemistries and
temperatures [8]. In 1953, Turkdogan and Pearson provided an estimate of the equilibrium constant
for the reaction 2[P] + 5(O) = P2O5 while studying phosphorus partition [9,10]. Healy developed a
mathematical relationship based on thermodynamic data that were obtained from phosphorus activity
and phosphate free energy in the CaO-P2O5 binary system [11]. The same model was found to accurately
estimate the phosphorus partition in a CaO-FeO–SiO2 and CaO-Fe–SiO2 systems. Thus, it was inferred
that thermodynamic data of the binary CaO-P2O5 system can be extrapolated to the complex slags in the
CaO-Fe–SiO2 system. The coefficient of P2O5 activity was determined not only from experimental data
of independent studies of slag/metal reactions, but also from the standard free energy of the formation
of hypothetical pure liquid P2O5. Furthermore, Suito and Inoue developed yet another mathematical
model to analyze the phosphorus partition ratio during steelmaking, following the works of Turkdogan,

where the phosphorus partition is defined as log
{

(%P)
[%P](%Fetotal)

2.5

}
[12]. Similarly, in 2000, Turkdogan

published a comprehensive evaluation of γP2O5 or slags with various combinations of CaO, FeO, and
P2O5 concentrations [13]. More recently, in 2017, Drain et al. discussed thoroughly the significance of
removing phosphorus in basic oxygen steelmaking by comparing the results from numerous studies
over years [14]. Their in-depth analysis was based on the coefficient of determination (R2) that was
obtained from many empirical equations to capture phosphorus partition [15]. An emphasis was made
on the structure of these empirical relationships that defined the behavior of phosphorus partition.
It was concluded that slag constituents, such as Al2O3, TiO2, and V2O5, have detrimental effect on
phosphorus partition. In a recent paper, Chattopadhyay and Kumar provided modified phosphorus
partition relationships that are based on multiple linear regression for data on two steel plants—low
slag basicity (low temperature) and high slag basicity (high temperature) [16]. It was inferred that
minimizing phosphorus reversal during blowing and after tapping, and decreasing the tapping
temperature were found to be significant in improving the P distribution during BOF steelmaking.

Thermodynamic models are an excellent tool to start with; however, such models alone may not
accurately predict dephosphorization in BOF shops because of the large variation in iron ore quality,
coke composition, etc. The models employ short range ordering techniques and utilize the concepts
of slag structure and slag chemistry. Additionally, the models are strongly dependent on the range
of experimental data originally used to derive the correlations. In addition, the model development
time is very long and expensive. Furthermore, the accuracy of such models could depend on the
quality of the ore. Recently, researchers have also tried to explain dephosphorization from a kinetics
and transport phenomena-based approach. However, controlled experiments on single droplets and
simulated slag samples have their own limitations. On the other hand, empirical models for predicting
dephosphorization have several limitations as they are usually efficient for a specific compositional
and temperature range. Furthermore, a fundamental weakness of such data-driven empirical models
is that most of such models invoked the tenets regression formalism on an ad-hoc basis, and only a few
implemented least-square based techniques to estimate the parameters. Moreover, the adequacy and
applicability of multiple linear regression model that are critical to the applicability of a linear analysis
were often not examined. For example, error-based assumptions of normality and constant variance
were not verified, correlations among the variables were not examined, and influential observations
were not dealt with. This may potentially lead to inconsistent predictions. Furthermore, adequate
justifications were not provided for taking transformation of variables to fit concerned models to data.

While the authors appreciate all of the previous research on dephosphorization from a physical
sciences point of view, owing to huge computational power and super low computational costs, it is
perhaps timely to also look at dephosphorization from a data science perspective. Interestingly, there
is a notion that the use of linear regression and spreadsheet-based techniques is adequate for analyzing
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BOF process data. However, from a statistical and data science point of view, it is important to look at
the quality and type of data, appropriate ways to sort/cluster data, appropriate techniques to analyze
data, and so on. One of the purposes of this article is to develop a technique to formulate a step-by-step
method for applying regression-based analysis to dephosphorization. Here, we employ different
statistical methods to analyze the process data that were collected from two separate steel plants
and the end-point predictions are compared with measured data from the plants. The utility and
validity of different models are summarized, and the predictions are also vetted and explained from a
metallurgical viewpoint. An elaborate data-driven approach is taken to analyze BOF steel-making
data and predict phosphorus partition in steel. The model under consideration is a well-known
multiple linear regression (MLR) model that assumes that multiple factors, e.g., %CaO, %MgO etc.
affect phosphorus partition in steel in a linear and additive way where the error in prediction is
normally distributed [15]. Assumptions on error play key roles in MLR model fit. The validity of these
assumptions is discussed emphasizing on the applicability of the current model on other data sets as
well. On the other hand, the presence of influential observations and outliers in the data may lead to
biased estimations and erroneous predictions. Techniques to identify and eliminate these influential
observations are also explored. Moreover, corrective measures are suggested when one or more of
these assumptions are invalid.

The paper is arranged in the following order. Theory and methodology are discussed in Section 2,
highlighting the theoretical model structure and available analyses options. Results, including some
exploratory analyses based on Generalized Linear Model (GLM), are discussed in Section 3. Section 4
deals with interpretation and practical implication of our predictive model, as well as comparison of
our model with existing data-driven models. Conclusion and future directions are discussed as part of
Section 5.

2. Materials and Methods

Phosphorus partitioning in slag during BOF steel making is quantified in terms of the parameter
lp. A higher value of lp indicates lower phosphorus-base impurities in steel. Thus, it is important
to develop a robust predictive model to predict lp based on information that is available from the
predictors to account for the underlying randomness in BOF steelmaking. A simple, yet effective
data-driven model in this set-up is a regression-based model. A regression model usually takes various
forms, depending on the flexibility and generalization of the background assumptions. One of the
well-known regression-based models is a multiple linear regression (MLR) model, which assumes the
random error (factor which cannot be explained by the predictors) to be normally distributed [15,17].
In this paper, we investigated various aspects of the MLR model for the data discussed above. For
the purpose of numerical analysis, the statistical software R 3.4.4 (University of Auckland, Auckland,
New Zealand) was used.

2.1. Nature of the Data

The analysis data set contained observations from n = 13,853 heats from plant I and n = 3084 heats

from plant II. lp = log
{
(%P)
[%P]

}
considered as the response variable where (%P) and [%P] are the

percentages of phosphorus in slag and in steel, respectively. Temperature (Temp), % of Calcium
Oxide (CaO), % of Magnesium Oxide (MgO), % of Silicon Dioxide (SiO2), % of Iron oxide (FeO), % of
Manganese Oxide (MnO), % of Aluminium Oxide (Al2O3), % of Titanium Dioxide (TiO2), and % of
Vanadium Pentaoxide (V2O5) are the other predictors (feature set). For details on compositional data,
refer to Table 1.

2.2. Theoretical Model

The primary structure of a regression-based model with one response and p predictors is given by:

Y = f (X1, . . . , Xp; β) + ε (1)
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where Y is the response variable, X1, . . . , Xp are p predictors, f is an approximate mathematical
function that relates Y with X1, . . . , Xp, β is the parameter vector that characterizes the model and ε is
the random error which cannot be modeled while using f . Provided Y is a continuous variable, one of
the most basic and relatable choices of f is additive linear function with linearity assumption being
imposed on β, i.e.,

Y = β0 + β1X1 + . . .+ βpXp + ε (2)

where β = (β0, β1, . . . , βp)′. The model in equation (2) is known as MLR model if the error term ε has
a normal distribution with 0 mean, constant variance (heteroscedasticity), and being stochastically
independently distributed. The unknown regression coefficients are estimated by the least squares
method [15,17].

Although, it is simple to fit MLR model to a data with continuous response variable,
the appropriateness of fitting the model needs to be validated, which otherwise may not provide
accurate predictions. Model fitting in regression assumes an approximate full model (with all available
predictors) and followed by checking for adequacy of the model, e.g., the validity of assumptions
on error structure, correlated covariates, influential observations, outliers and redundant variables,
and correspondingly coming up with corrective measures.

Table 1. Descriptive statistics of all variables taken for analysis from plant I and plant II.

Variable n Mean SD Min Q1 Median Q3 Max

Plant I

lp 13,853 4.31 0.30 2.50 4.12 4.32 4.51 7.06
Temp 13,853 1648.82 19.14 1500.00 1635.00 1647.00 1660.00 1749.00
CaO 13,853 42.43 3.62 20.00 40.00 42.40 44.90 55.90
MgO 13,853 9.23 1.37 3.75 8.29 9.09 10.00 16.46
SiO2 13,853 12.89 1.74 5.40 11.70 12.80 14.00 23.30
FeO 13,853 18.22 3.53 7.70 15.72 18.10 20.50 36.00

MnO 13,853 4.80 0.70 2.28 4.38 4.82 5.23 11.98
Al2O3 13,853 1.80 0.48 0.59 1.49 1.74 2.04 7.79
TiO2 13,853 1.13 0.28 0.17 0.93 1.08 1.30 2.21
V2O5 13,853 2.13 0.49 0.25 1.84 2.19 2.48 3.95

Plant II

lp 3084 4.63 0.34 2.77 4.44 4.68 4.87 5.64
Temp 3084 1679.10 27.11 1579.00 1661.00 1678.00 1698.00 1777.00
CaO 3084 53.45 2.30 42.33 52.00 53.49 55.02 64.06
MgO 3084 0.99 0.34 0.30 0.76 0.93 1.15 3.18
SiO2 3084 13.52 1.44 8.16 12.54 13.54 14.50 18.74
FeO 3084 19.34 2.06 13.71 17.88 19.19 20.56 29.72

MnO 3084 0.62 0.18 0.24 0.50 0.59 0.71 2.50
Al2O3 3084 0.94 0.25 0.46 0.78 0.93 1.08 4.09

Abbreviations: n: sample size, Mean: arithmetic mean, SD: standard deviation, Min: minimum, Q1: 25th percentile,
Median: 50th percentile, Q3: 75th percentile, Max: maximum.

2.3. Model Adequacy

The theory behind the MLR model assumes the following: normality of errors, zero mean of the
errors, constant variance of the errors, and independence of the errors. For an MLR model to work
best on a given data, these assumptions need to be verified. Furthermore, the presence of influential
observations (observations with high impact on prediction) also could make predictions inaccurate
and should therefore be dealt with. Another serious problem that affects the parameter estimates is
multicollinearity, which arises when there is near-linear dependence among the predictors [15,17].
As a result, the standard errors of the model parameter estimates become large, thereby leading to
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imprecision in the predicted response values. Lastly, an optimized set of predictors need to be selected,
which would be sufficient for predicting lp, but would be free from redundant information.

In this work, the normality of errors was verified while using the Normal-Quantile plot (QQ
plot) and Shapiro–Wilk’s test [15,17,18]. The validity of assumptions such as linearity of the
model and heteroscedasticity were carried out using standardized residual plot graphically [15,17].
The independence of the errors was validated while using Index Plot of the standardized
residuals [15,17]. Influential observations, which drastically change the model fit, were detected
by implementing Welsch and Kuh Measure (DFFITS) [17,19]. The predictors responsible for
multicollinearity were identified while using the Variance Inflation Factor (VIF) [15,17]. Redundant
predictors, which did not significantly improve the fit, were eliminated while using the Variable
selection procedure of Stepwise Regression [15,17]. The algorithm stopped when the addition of a
predictor to the model did not result in a significant reduction of the Akaike Information Criterion (AIC)
value [15,17,20]. Finally, corrective measures were undertaken, such as appropriate transformation of
response and predictor variables, use of polynomial regression model if linearity did not hold and
generalized linear model (GLM), if the normality of errors did not hold [21].

2.4. Model Validation

The K-fold cross validation technique was adopted to check how well the model performed, in
general, on test data [22]. The steps used in this work are as follows:

Step 1: The available data set was divided into K-parts with equal or unequal numbers of observations
in each. Let these parts be denoted by P1, P2, . . . , PK and the entire data by D = {P1, P2, . . . , PK}.

Step 2: For any specific j, model M was fitted to the part D\P j (part of D by removing P j) and

E j =
∑

i

(lp, i j − l̂p, i j)
2

(3)

was calculated, where lp, i j is the i-th observed value of lp and l̂p, i j was the i-th fitted or predicted
value of lp for the j-th iteration.

Step 3: Step 2 was repeated for j = 1, 2, . . . , K and the values of E1, E2, . . . , EK were calculated.

Step 4: The quantity E =

√
1
K

K∑
j=1

E j was computed which is the root mean squared error (RMSE)

over K-folds. Small values of E indicate that the model M has performed reasonably well on other data
of similar type.

A flowchart is presented in Figure 1 to summarize steps 1 to 4, as mentioned above.
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3. Results

3.1. Descriptive Statistics

Table 1 presents sample size (n), mean (Mean), standard deviation (SD), minimum (Min), first
quartile (Q1), median (Median), third quartile (Q3), and maximum (Max) for all variables, both
predictors and response. From Table 1, a striking difference in the mean compositions of CaO, MgO
and MnO was observed. lp values were found to have a mean of 4.31 for plant I while for plant II it
was 4.73. This indicates that the phosphorus partitioning was more effective in plant II than plant
I. Histograms of lp values were also plotted and they are presented in Figure 2. It can be seen that
for plant I, the figure approximately follows a bell-shaped symmetric curve, therefore, indicates the
potential normality of errors. However, lp values for plant II are slightly left skewed, suggesting that
there might be an apparent departure from normality. Moreover, the tail probabilities in the histogram
seem large, which also indicate evidence against normality.
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3.2. Individual Predictor Analysis

Simple Linear Regressions (SLRs) were fitted for lp as the response variable and only one predictor
variable at a time. It was found that all predictors except MnO for plant I and Al2O3 for plant II were
significant individually at 5% level (Table 2). This indicates that all the predictors or factors effect
phosphorus partitioning linearly and individually. The 5% level of significance illustrates the fact that
our inference may be wrong 5% of the times on average. A Scatter Plot Matrix is presented in Figure 3
to shed light on the nature and degree of linear relationship between any two variables for plant I.

A similar Scatter Plot Matrix for plant II is not provided in the paper to maintain brevity. Some of
the predictors, e.g., Temp, CaO and MgO, were found to have high correlations with lp, which suggests
these could potentially be most important factors to predict lp. The adequacy of regression models is
generally measured while using a quantity known as R2, which is defined as

R2 = 1−
SSE
SST

(4)

where SSE =
n∑

i=1
(lp,i − l̂p,i)

2
, SST =

n∑
i=1

(lp,i − lp)
2
, and lp,i, l̂p,i, and lp are i-th observed value, i-th

predicted value and sample mean of lp, respectively.
The R2 value does not seem to be too high for any predictor individually, signifying none of them

alone can explain the variability in lp satisfactorily. Furthermore, there does not seem to be a non-linear
(polynomial, exponential, or logarithmic) relationship amongst lp and any other predictor individually.
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Table 2. Parameter Estimates, Standard Errors, T-values, and p-values of the regression parameter estimates.

Plant I Estimate Standard Error T p

Intercept 15.3238 0.2542 60.28 <0.0001
CaO 0.0209 0.0018 11.64 <0.0001
MgO −0.0363 0.0022 −16.29 <0.0001
SiO2 −0.0434 0.0022 −19.96 <0.0001
FeO 0.0049 0.0023 2.10 0.0360
MnO 0.0273 0.0042 6.52 <0.0003
Al2O3 −0.0294 0.005 −5.85 <0.0002
TiO2 −0.0573 0.0102 −5.62 <0.0001
V2O5 −0.0299 0.0047 −6.35 <0.0000
Temp −0.0067 0.0001 −56.71 <0.0001

Plant II Estimate Standard Error T p

Intercept 19.0145 0.7214 26.40 <0.0001
CaO 0.0019 0.0072 0.26 0.7920
MgO −0.0382 0.0181 −2.10 0.0350
SiO2 −0.0399 0.0078 −5.10 <0.0001
FeO −0.0173 0.0097 −1.77 0.0780
MnO −0.1654 0.0315 −5.24 <0.0001
Temp −0.0080 0.0001 −44.50 <0.0001

3.3. Multiple Linear Regression Model Fit

A full MLR model was fit to the data with lp as the response variable for both plant I and II
considering all available predictors. However, this model is not the final one that we would be used
for prediction. To come up with the best MLR model, the following steps were carried out.

Identification of influential observations and Outliers: For plant I, 387 influential observations
were removed from the analysis data set whose DFFITS values were greater than the cut-off value
2
√
(p + 1)/(n− p− 1) = 0.0537 [17]. For plant II, cut-off value was taken as 0.1140 for DFFITS and 22

influential observations were removed from the analysis data set.
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Validation of error assumptions: As discussed in Section 2.3, the QQ plot was used to check for
normality of errors [17]. QQ plot is a scatter plot between theoretical normal distribution quantiles
(percentiles) and quantiles obtained from the observed errors [15]. If the errors are truly normal, then
this plot would show points lying on a straight line. QQ plots (Figure 4) of the lp values did not show
adherence to normality for both plant I and II, as the graphs show significant departure from linearity.
The Standardized Residual Plots (Figure 5) for plant I and plant II data show almost randomly scattered
points without any recognizable pattern, which implies linearity and homoscedasticity assumptions of
errors [15]. Index Plot of Standardized Residuals (Figure 6) indicate independence among errors, since
the lines joining points frequently crosses the line x = 0 at regular intervals.
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Check for multicollinearity: Table 3 presents the VIF values for the predictors considered in
plant I and plant II. While using a threshold value of 10, it was observed that the predictor FeO (% of
iron oxide in slag) has a strong correlation with other factors for both plant I and II, and CaO has
a strong correlation with other factors only for plant II [17]. Generally, multicollinearity generally
creates problems of unstable parameter estimates and large standard errors when VIFs are significantly
large (in hundreds). Since none of the VIFs were significantly large, and FeO had a huge practical
significance in prediction of the phosphorus partition, all of the predictors were kept in the model.
On applying stepwise regression, it was observed that none of the features in the model for plant I were
redundant. For the data from plant II, the stepwise regression algorithm eliminated CaO and Al2O3

based on AIC, as discussed in Section 3. Removing CaO and Al2O3 did not significantly change AIC.
However, since CaO is practically significant in eliminating phosphorus content from slag, it was kept
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in the model. Table 4 presents Residual Deviances and AIC values for the redundant predictors. It can
be seen that the AIC values did not change significantly on removing CaO or Al2O3 from the model.
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Table 3. Variance Inflation Factor (VIF) values corresponding to Predictors used to model data from
plant I and plant II.

Plant Temperature CaO MgO SiO2 FeO MnO Al2O3 TiO2 V2O5

Plant I 1.09 8.91 1.97 3.03 14.4 1.83 1.2 1.73 1.16
Plant II 1.06 13.14 1.64 5.7 19.51 1.36 1.52 - -

Table 4. Residual Deviances and Akaike Information Criterion (AIC) values corresponding to the
redundant Predictors for plant II.

Predictor Residual Deviance AIC

Full Model 210.9133 −8176.002
Except CaO 210.9137 −8177.997

Except Al2O3 211.0168 −8178.501

3.4. Final Predictive Models

After removing the influential observations, outliers, and redundant variables, the respective final
predictive multiple linear regression models for the plant I and plant II were found to be,

l̂p = 15.324 + 0.021(%CaO) − 0.036(%MgO) − 0.043(%SiO2) + 0.004(%FeO)

+ 0.027(%MnO) − 0.029(%Al2O3) − 0.057(%TiO2)

− 0.029(%V2O5) − 0.006(Temp)
(5)

l̂p = 19.014 + 0.002(%CaO) − 0.038(%MgO) − 0.039(%SiO2) − 0.017(%FeO)

− 0.165(%MnO) − 0.008(Temp)
(6)

The estimates of the least squared regression coefficients, their standard errors, and corresponding
t-values for testing if the predictors are significant and the corresponding p-values are presented in
Table 2. From the output of plant I, it can be observed that each predictor individually is significant at
the 5% level in predicting lp. The full models are also significant in prediction of lp. However, the results
for plant II show CaO and FeO are not individually significant at the 5% level. The coefficients
corresponding to these non-significant predictors should not be used for interpretations.
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3.5. Model Validation Results

Applying K-fold cross validations with K=10 on the data revealed the root mean squared error (E)
as 0.262 for plant I and 0.264 for plant II. These relatively small values of E imply that these predictive
models perform reasonably well on independent data sets. Figure 7 presents plots of observed or
measured values of lp versus the predicted values of lp. The proximity to the line y = x represents the
adequacy of our models in predicting or explaining lp values.
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3.6. Exploratory Analysis

Generalized Linear Model (GLM): When the normality or homoscedasticity (constant variance) of
error assumptions get violated in MLR model, we may resort to GLM [21] Although GLM is similar to
MLR, the errors are not considered to be normally distributed or may have variances varying with
the feature set. Mathematically, we define GLM as µ = g−1(XTβ), where µ is the theoretical mean of
the distribution of the response variable, X is the feature matrix, β is the parameter vector that we
want to estimate and g(.) is known as the link function that linearly connects the mean of Y to X.
Since the response variable lp here is continuous, we have fewer choices for the family of distributions
for the error and the link functions for linking the mean of Y to the feature set X. Table 5 presents
details of fitting GLM to the data with the family of error distributions as Gaussian, Gamma, and
Inverse Gaussian. The selection criterion for appropriate model is AIC. Note that, the link function as
“Identity” for Gaussian error distribution is equivalent to MLR model, as defined in (2). The model
with the minimum values of AIC should be selected for prediction. Consequently, for both plants,
Gaussian model with “Identity” link provides the minimum AIC values. This further illustrates that
an MLR model is more adequate in explaining the variability in lp than any other candidate linear
models and no interaction.

Table 5. AIC values for candidate models.

Data Family of Distribution of Errors Link Function AIC

Plant I
Gaussian “Identity” 2228.1
Gamma “Inverse” 2485.7

Inverse Gaussian “1/µ2” 2693.5

Plant II
Gaussian “Identity” 608.6
Gamma “Inverse” 893.8

Inverse Gaussian “1/µ2” 1067.1
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4. Discussion

The predictive models in Equations (5) and (6) provide insights into the nature of the
dephosphorization process. Figures 8 and 9 graphically represent the positives and negatives
of slag chemistry on P-partitioning in the form of a waterfall plot. The plots suggest that, by tweaking
the percentages of the slag components by certain specified degree, it is possible to widen the
partition of phosphorus content in slag and steel by a significant amount, which signifies that a lesser
amount of phosphorus would be present in steel. For plant I, it was observed that, by increasing
the contents of CaO and MnO by 1%, the respective values of lp can be increased by 0.021%, 0.027%
when all other components are kept at fixed levels. These results are in excellent agreement with
the findings of Suito et al. [12], wherein it was reported that reducing %MnO in the slag increases lp
value. Furthermore, in slag, Fe resides as FeO and serves two purposes: (a) provides an oxidizing
environment (for P to convert to P2O5), which promotes dephosphorization, and (b) reduces the
basicity of slag by replacing %CaO leading to a deterioration in lp. A rule of thumb for the optimum
value of FeO in slag is 15–20 wt%. We observe both effects in Figures 8 and 9. For example, in plant I,
where %FeO is smaller than plant II (Table 1), a 1% increase in %FeO improves lp by 0.005%, probably
by promoting the following reaction:2P + 5FeO = P2O5 + 5Fe. However, in plant II, wherein %FeO
is larger (i.e., 19.34%) a 1% decrease in %FeO results in a 0.017% increase in lp, which was probably due
to a reduction in slag basicity, as discussed above.Metals 2019, 9, x FOR PEER REVIEW 12 of 20 
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On the other hand, a decrease in the contents of MgO, SiO2, Al2O3, TiO2, V2O5, and tapping
temperature of the slag by 1%, the respective values of lp would increase by 0.036%, 0.043%, 0.029%,
0.057%, 0.029%, and 0.006%. A reduction in SiO2 content of the slag leads to an increase in slag basicity
that can improve lp by promoting the conversion of P to P2O5. Similarly, an increase in the MgO
content of slag causes an elevation in its viscosity and melting point, deteriorating P-partitioning due
to less dynamic interactions. G. Chen et al. [23] reported that, for slags with %FeO more than 24%,
lp reduces with increasing MgO content. Drain et al. [14] had observed that there exists a negative
correlation between these metal oxides and lp, which agrees well with the predictions for Al2O3, TiO2,
and V2O5, as shown in Figure 8.
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While using the predictive formulae in (5) and (6), one can determine the extent of
dephosphorization on basis of slag chemistry and tapping temperature. Hence, the performance in a
plant can be tuned for a new heat by controlling both the slag chemistry and tapping temperature.
%FeO in slag needs to be optimized for maximum dephosphorization. This is also related to the yield
of steel in a BOF. FeO content beyond the optimum value can lead to a reduction in dephosphorization
as well as hot metal to liquid steel yield. Therefore, one can decide on the optimized value of %FeO
while using Equations (5) and (6). Furthermore, it was found that SiO2 and Al2O3 have a negative
impact on dephosphorization as these compounds reduce the basicity of slag. Basicity can be increased
while using CaO, but the effect of CaO on lp is comparatively less. The marginal effect of adding CaO
on lp is lower than the marginal effect of reducing SiO2 and Al2O3. Hence, the reduction in amount
of SiO2 and Al2O3 is more beneficial for dephosphorization and one can decide on the beneficiation
technique for reducing these oxides in iron ore. V2O5 and TiO2 contents can also be controlled by
proper scrap and iron ore selection. Low V and Ti scrap will be useful for high lp values.

As discussed in Section 1, there have been few well-established data driven regression models
that attempted to predict phosphorus partition measure lp. Depending on the availability of data on
the features, 25 existing working models were selected to compare our models with, as described by
Equations (5) and (6). These 25 models are given in Table 6, where all existing models are denoted
using [M1]–[M25] and they were compared with (5) or (6) based on Pearson’s correlation coefficient (R)
between lp and l̂p and root mean squared error (RMSE), which is defined in Section 2. 26 candidate
models, including the ones given in (5) or (6), depending on whether the data is from plant I or II,
were fitted and the values of lp were predicted. For each observation, residual lp − l̂p was calculated.
RMSE is the root mean squared value of these residuals. Higher positive value of R and lower value of
RMSE suggest better model adequacy and higher predictive power. The results of this comparison
are presented in Figures 10–13. It can be observed that our model provides highest R and least RMSE
values as compared to other models for both plant I and plant II.
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Table 6. List of existing candidate model to predict dephosphorization in steel.

Model Equation

[M1]
[24,25]

l̂p = 0.06[(%CaO) + 0.37(%MgO) + 4.65(%P2O5) − 0.05(%Al2O3) − 0.2(%SiO2)]

− 10.52 + 2.5 log(%Fe.total) + 11570
Temp

[M2]
[24,25]

l̂p = 0.0680[(%CaO) + 0.42(%MgO) + 1.16(%P2O5) + 0.2(%MnO)] + 11570
Temp − 10.52

+ 2.5 log(%Fe.total)

[M3]
[16]

l̂p = 0.07(%CaO) + 0.031(%MgO) + 0.31(%Al2O3) + 0.02(%MnO) + 10911
Temp − 11.4

+ 2.84 log(%Fe.total)

[M4]
[16]

l̂p = 0.026(%CaO) + 0.092(%MgO) + 0.08(%Al2O3) + 0.04(%MnO) + 12217
Temp − 6.29

+ 0.35 log(%Fe.total)

[M5]
[16]

l̂p = 0.075(%CaO) + 0.025(%MgO) + 0.3(%Al2O3) + 0.14(%MnO) + 6042
Temp − 10.27

+ 3.5 log(%Fe.total)

[M6]
[4]

l̂p = 0.431[(%CaO)/(%SiO2)] − 0.361 log(%MgO) + 13590
Temp − 5.71

+ 0.384 log(%Fe.total)

[M7]
[26]

l̂p = 0.072[(%CaO) + 0.15(%MgO) + 0.6(%P2O5) + 0.6(%MnO)] + 11570
Temp − 10.50

+ 2.5 log(%Fe.total)

[M8]
[27]

l̂p = 5.89 log(%CaO) + 0.5 log(%P2O5) + 0.6(%MnO) + 15340
Temp − 18.542

+ 2.5 log(%Fe.total)

[M9]
[28]

l̂p = 0.056 log(%CaO) + 0.5 log(%P2O5) +
12000
Temp − 10.42 + 2.5 log(%Fe.total)

[M10]
[29]

l̂p = 5.6 log(%CaO) + 22350
Temp − 21.876 + 2.5 log(%Fe.total)

[M11]
[9,30]

l̂p = 0.5 log(%P2O5) +
12625
Temp − 7.787 + 2.5 log(%Fe.total)

[M12]
[8,31,32] l̂p = 5.9 log(%CaO) + 0.5 log(%P2O5) − 0.00461Temp− 2.0845 + 2.5 log(%Fe.total)

[M13]
[8,31,32] l̂p = 5.39 log(%CaO) + 0.5 log(%P2O5) − 0.00447Temp− 3.0355 + 2.5 log(%Fe.total)

[M14]
[4]

l̂p = 0.346[(%CaO)/(%SiO2)] − 0.144 log(%MgO) + 10173
Temp − 5.41

+ 0.855 log(%Fe.total) + 0.0088 log(%C)

[M15]
[33]

l̂p = 0.0023(%CaO) − 0.0094(%MgO) − 0.1910(%C) + 9736
Temp − 3.297

+ 0.00053(%FetO)

[M16]
[33]

l̂p = 0.0066(%CaO) − 0.0123(%MgO) − 1.2270(%C) + 11913
Temp − 4.384

+ 0.00426(%FetO)

[M17]
[34]

l̂p = 0.13(%C) + 20000
Temp − 12.24 + 2.5 log(%FetO)

+ 6.65 log
(

(%CaO)+0.8(%MgO)

(%SiO2)+(%Al2O3)+0.8(%P2O5)

)
[M18]
[35,36]

l̂p = 0.0715[(%CaO) + 0.25(%MgO)] + 7710.2
Temp − 8.55 + 2.5 log(%Fe.total)

+
(

105.1
Temp + .0723

)
(%C)

[M19]
[4]

l̂p = 13958
Temp − 7.9517 + 2.5 log(%FetO) − (%FetO)(0.0143 + 0.0001032(%FetO)) − 0.36

[M20]
[2]

l̂p = 3.52 log(%CaO) + 2.5 log(%FeO) + 0.5 log(%P2O5) +
4977

Temp+17.8 − 10.46
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Table 6. Cont.

Model Equation

[M21]
[37,38]

l̂p = 1.53126 log(%FeO) − 6.909 + 12940
Temp

+ 33.23369 log(%CaO) − 5.3505

+ log

 1.6+
√

1.28+(%P)−1.6(0.64+(%P))0.5

1.82


−

(
0.00129(%Al2O3)+0.00098(%TiO2)+0.00026(%V2O5)

(%SiO2)+(%Al2O3)+(%V2O5)+ (%TiO2)

)
[M22]

[4]
l̂p = 0.6639[(%CaO)/(%SiO2)] +

8198.1
Temp − 3.113 + 0.3956 log(%Fe.total)

+ 0.2075 log(%C)

[M23]
[39]

l̂p = 0.5[162(%CaO) + 127.5(%MgO) + 28.5(%MnO)] + 11000
Temp − 0.000628(SiO2)

2

+ 2.5 log(%FeO) − 10.76

[M24]
[11]

l̂p = 0.08(%CaO) + 2.5 log(%FetO) + 22350
Temp − 16.0

[M25]
[11]

l̂p = 7 log(%CaO) + 2.5 log(%FetO) + 22350
Temp − 24.0Metals 2019, 9, x FOR PEER REVIEW 16 of 20 
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5. Conclusion and Future Work

The present study was undertaken to analyze dephosphorization in BOF steelmaking while using
data-driven models with specific emphasis on reducing phosphorus content in steel. The focus of the
analysis was the prediction of phosphorus partition (given by lp) between slag and liquid steel, which
characterizes the extent of dephosphorization during steelmaking. Multiple linear regression-based
models were developed to predict for lp based on several predictors. The application of MLR models to
any data requires rigorous validation of the underlying assumptions, which could otherwise make the
prediction inconsistent and unreliable. This study attempts to incorporate all these steps for validating
the implementation of MLR model to two steel plant data, and hence provide corrective measures in
case some assumptions do not hold true.

All of the predictors were found to be significant for plant I, while Al2O3 data was removed from
the model for plant II due to statistical redundancy. Several model adequacy and model validation
techniques were executed to ensure higher predictive power of the model, previously unaccounted for.
The data was found to be marred with numerous outliers that were systematically removed from the
dataset to make the predictive models more reliable. None of the predictors possessed significantly
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high correlation with other predictors, which was verified by multicollinearity analysis. Furthermore,
a stepwise method to select variables was incorporated depending on their impact on the predictive
models. Qualitatively, the graphical representations of observed versus predicted plot for lp values
suggested that the models fit the data adequately. The standard errors of the estimates indicated
that the predictions were reasonably accurate. Our MLR models mentioned in Equations (5) and (6)
consistently provided minimum average RMSE values s compared to previous works. By strategically
manipulating the percentages of the slag constituents, it was possible to achieve higher phosphorus
partitions. Furthermore, it was observed that an increase of CaO, MnO and total iron content is likely to
enhance the process of dephosphorization, while reducing the contents of MgO, SiO2, Al2O3, TiO2, and
V2O5 proved to be beneficial for the partitioning process. These results corroborate with the findings
of existing empirical model-based analyses [14,16]. Therefore, our predictive regression models can be
applied to control and maintain desired level of flux and assist operators in establishing new fluxing or
blowing procedure. An elaborate comparative study that was carried out with 25 existing models that
attempted to predict dephosphorization based on linear models, demonstrated that our suggested
models in (5) and (6) provided the most accurate prediction in terms of R and RMSE.

As a part of future work, the variants of more evolved machine learning algorithms, viz., artificial
neural networks, support vector machines, decision trees, and non-linear regressions could be applied
on plant I and II data to unravel intrinsic and implicit underlying mechanisms of BOF steelmaking.
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