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Abstract: In this paper, a novel analytical modeling of the growth and dissolution of precipitates
in substitutional alloys is presented. This model uses an existing solution for the shape-preserved
growth of ellipsoidal precipitates in the mixed-mode regime, which takes into account the interfacial
mobility of the precipitate. The dissolution model is developed by neglecting the transient term in the
mass conservation equation, keeping the convective term. It is shown that such an approach yields the
so-called reversed-growth approximation. A time discretization procedure is proposed to take into
account the evolution of the solute concentration in the matrix as the phase transformation progresses.
The model is applied to calculate the evolution of the radius of spherical θ-Al2Cu precipitates in an
Al rich matrix at two different temperatures, for which growth or dissolution occurs. A comparison
of the model is made, with the results obtained using the numerical solver DICTRA. The very good
agreement obtained for cases where the interfacial mobility is very high indicates that the time
discretization procedure is accurate.
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1. Introduction

The mathematical modelling of the growth and dissolution of precipitates in metals is of prime
importance in the development of predictive tools dedicated to the optimization of heat treatments and
material properties. For that purpose, numerical models are perhaps the most flexible and accurate
tools, but their low computational efficiency and unresolved theoretical problems associated to the
thermodynamics and kinetics of the interface limits their use. As a result, analytical models are
preferred for the simulation of precipitate growth and dissolution in commercial software applications
dedicated to precipitation kinetics. The evolution equations used today in these applications differ
by the approximations made to simulate multicomponent diffusion efficiently. PrecipiCal uses the
growth model proposed by Jou et al. [1], who used the stationary field approximation to solve the
mass conservation equation. This approach neglects, however, the moving boundary problem and
cannot provide a very good solution when the growth velocity is high. The evolution equations used
in MatCalc were developed according to the thermodynamic extremal principle [2]. This method
assumes that the matrix phase has a uniform composition, which has a major drawback of neglecting
the effect of interfacial concentrations. The application packages TC-PRISMA and PanPrecipitation
use different models to cover a wide range of cases. The simplified model used in these applications
is the one proposed by Morral and Purdy [3], which is based on the stationary field assumption.
As an advanced model, TC-PRISMA and PanPrecipitation use the solution of the quasi-stationary
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mass conservation equation proposed by Chen et al. [4], who applied a binary exact solution to
the multicomponent case, assuming that the diffusion length of each specie depends only on the
specie’s own supersaturation. This assumption was proven to have some limitations and inaccuracies
by Guillemot and Gandin [5], who provided a more exact treatment of the quasi-stationary mass
conservation problem in a multicomponent system.

For the modelling of dissolution, mathematical treatments are curiously not well developed since,
according to Aaron et al. [6], there is no exact solution available for spherical precipitates. This statement
was written in 1970 but has been recently acknowledged by Guo et al. [7]. The available dissolution
models, therefore, have been based, up to now, on one of the frequently used approximate solutions.

The models mentioned above assume that local equilibrium prevails at the interface. This implies
that thermodynamic constraints must be applied at the interface to obtain the solution. However, as
pointed out in the user guide of TC-PRISMA [8], an advanced multicomponent model can be time
consuming and can fail to find a solution to the flux-balance equations. To add robustness and time
efficiency to the calculation scheme, one may further simplify the models by replacing the interfacial
compositions by nuclei and matrix compositions, as is suggested in the TC-PRISMA user guide.

The role of the interface kinetics is taken into account via the interfacial mobility. The software
applications mentioned above have included the interfacial mobility in their growth kinetics models to
simulate situations where the interfacial mobility is limited for some reason. This variable is introduced
according to its energy dissipative effect, which reduces the available driving force. This is correct
in principle, but the calculation scheme allowing the computation of interfacial compositions is not
clear, especially if this is combined with the alternative tie-lines of the phase diagram or the average
phase compositions. Moreover, the dissipative effect is proportional to the interfacial velocity, and this
certainly does not help the computational efficiency if the thermodynamics constraints are not relaxed
at the interface. The regime during which the growth velocity is controlled by both the diffusion of the
elements in the matrix, and the mobility of the interface is called the mixed-mode. This is the general
case, since one can say that growth kinetics is always in the mixed-mode, with the diffusion-controlled
and interface-controlled regimes being just the two extreme regimes. Larouche [9] provided an exact
analytical solution for the quasi-stationary mixed-mode growth of an ellipsoidal precipitate in a binary
system. Naseri et al. [10] later extended the mixed-mode solution to calculate the growth of a precipitate
containing more than one specie diffusing in the matrix. These authors showed that the search for
alternative tie-lines is useless for the calculation of interfacial compositions, since the interface is not at
equilibrium during growth.

Considering that the mixed-mode approach encompasses all previous diffusion-controlled
models and gives the possibility to calculate more precisely interfacial compositions with better
computational efficiency, we decided to find a solution for the dissolution of precipitates and to
adapt the quasi-stationary mixed-mode solution to a finite system. This will give the possibility to
use these solutions for the simulation of growth and dissolution of precipitates in a given volume.
The mathematical treatment will be applied on a binary system, to focus the scope on the dissolution
problem and on the time discretization procedure.

2. Dissolution in the Quasi-Stationary Regime of an Ellipsoidal Precipitate

As mentioned in the introduction, analytical solutions for the mass conservation equation are not
available for the dissolution of a spherical or an ellipsoidal precipitate. The only solution available is
for the planar dissolution, and the reason why no solution was found for the other geometries must be
clarified first. Let us suppose that during a phase transformation process, a reference frame moves
with the interface, so that the latter remains at the coordinate x′ = 0, while the atoms move as a whole
in a direction perpendicular to the interface. The mass conservation equation in this frame of reference
is [11]:

→

∇ ·

(
D
→

∇c
)
=
→
v ·
→

∇c +
∂c
∂t

(1)
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where D is the coefficient of diffusion, c is the molar concentration, t is the time, and
→
v is the

molar-average velocity of the atoms. The solution of the quasi-stationary regime is obtained by setting
∂c/∂t equal to zero. For the situation depicted in Figure 1, the growth of the precipitate requires that the
atoms have a negative velocity in the moving reference frame, opposite to the velocity of the interface.
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Figure 1. Relationship between the stationary (x) and the moving (x′) reference frames for a precipitate
growing at the expense of the matrix.

For constant and uniform material properties, the following equation is then obtained for the
planar interface:

D
∂2c
∂x′2

= −v ·
∂c
∂x′

. (2)

Suppose now that a new frame of reference is defined such that it travels with the atoms, at the
same average-molar velocity. The matrix–precipitate system is, therefore, immobile in this frame of
reference while the interface is moving. Let x be the coordinates in this frame. The relationship between
the two systems of coordinates depends on the direction along which the interface is moving. It follows
that for a precipitate growing at the expense of the matrix (growth), we have the following relationship:

Growth:
x′ = x− v · t. (3)

For a matrix growing at the expense of the precipitate (dissolution), we have this relationship:
Dissolution:

x′ = x + v · t. (4)

Since v = −∂x′/∂t, when the precipitate is growing and the interface is moving to the right (atoms
moving to the left in the x′ system of coordinates), Equation (2) can then be rewritten as:

Growth:

D
∂2c
∂x′2

=
∂x′

∂t
·
∂c
∂x′

. (5)

However, when the precipitate is dissolving, v = ∂x′/∂t, and Equation (2) is expressed as follows:
Dissolution:

D
∂2c
∂x′2

= −
∂x′

∂t
·
∂c
∂x′

. (6)

For the dissolution of a spherical particle, the following equation is then obtained:

D
r2
∂
∂r

(
r2 ∂c
∂r

)
= −

∂r
∂t
·
∂c
∂r

. (7)

Solving Equation (7) yields the so-called reversed-growth approximate solution, which was first
provided by Aaron et al. [6] for the spherical particle. These authors did not mention that their solution
was in fact obtained from Equation (7), but one can easily show that their expression for the solute
concentration profile is in fact a solution of that mass conservation equation. The reversed growth
solution is not exact because the initial conditions cannot be met, having neglected the transient term



Metals 2019, 9, 889 4 of 15

∂c/∂t in Equation (1). Thus, if an exact analytical solution of the dissolving spherical particle could
be found, perhaps solving Equation (1) instead of the standard Fick’s second law could be an option.
According to Aaron et al. [6] and Guo et al. [7], the reversed-growth approximation is not the best method
to calculate the dissolution rates. However, one can acknowledge from the comparison made in [6]
between the dissolution rates calculated by the recommended method (invariant size-approximation)
and the reversed-growth approximation, that the dissolution times calculated by both methods are close
one to each other, especially in the limit of small supersaturation. The reversed-growth approximation
has an advantage that we will use hereafter. The advantage is that the limiting effect of the interfacial
mobility can be taken into account easily with the reversed-growth solution. Therefore, we will use
the reversed-growth solution of the mass conservation equation applied to an ellipsoidal precipitate,
which will be found using the solution procedure outlined by Larouche [9] for the mixed-mode growth
of an ellipsoidal precipitate evolving with constant eccentricities. This solution procedure is detailed in
the Appendix A. The different parameters of the problem are defined in Figure 2.
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c∗−c
c∗
β
−c∗ =

a3
1

√
1−e2

12

√
1−e2

31
2D·τ exp

(
a2

1
4D·τ

)∞∫
a1

[(
ρ2
− e2

12a2
1

)−1/2(
ρ2
− e2

31a2
1

)−1/2
exp

(
−

ρ2

4D·τ

)]
dρ (8)

where τ is the time remaining before complete dissolution. The molar fraction of the matrix at the
interface, c*, is expressed as:

c∗ = c∞eq exp

 −Vm · a1

2c∗
β

MRT · kdτ
3/2

+
2Vmγ1

c∗
β

RTa1

 = c∗eq exp

 −Vm · a1

2c∗
β

MRT · kdτ
3/2

 (9)

where M is the interfacial mobility, R is the gas constant, T is the absolute temperature, Vm is the molar
volume of the precipitate, c∞eq is the solubility of the solute element according to the phase diagram,
(planar interface), and γ1 is the interfacial energy at the tip of the precipitate (the smallest radius
of the curvature). The parameter kd is the interface migration coefficient for dissolution, which is
expressed as:

kd =
1
2

√
−υc

ac
(10)
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where ac is the semi-axis length of the precipitate at the end of the mixed mode regime, and υc is the
dissolution velocity occurring during the final interfacial controlled regime. For a dilute binary system,
this velocity can be estimated with the following equation [9]:

υc =
MRT
Vm

c∗β · ln

 c
c∗eq

. (11)

Since c∗eq > c for a dissolving precipitate, the calculated value of υc is negative.

3. Application of the Dissolution Model

For a dissolution problem, one must consider that a pre-existing precipitate has grown to a certain
size and then, suddenly, the conditions changed such that the solubility of the matrix rose above the
nominal composition of the system. To illustrate such a case, we will consider a spherical θ-Al2Cu
precipitate having an initial size of 175 nm surrounded by an infinite Al rich matrix having a Cu molar
fraction c = 0.00285. At a temperature of 730 K, the solubility of the matrix is c∞eq = 0.011 according
to the Al–Cu phase diagram. We will neglect the interfacial energy and assume that ac = 2 nm and
Vm = 1 × 10−5 m3/mol. A constant coefficient of diffusion of 1.0 × 10−14 m2 s−1 will be assumed.
Figure 3a presents the time evolution of the radius of the precipitate for different values of the interfacial
mobility, and Figure 3b presents the corresponding evolution of the Cu molar fraction at the interface.
It is clear that if the interfacial mobility (M) is larger than 1 × 10−15 m4 J−1 s−1, one can consider that
dissolution occurs essentially in the diffusion-controlled regime. This results from the fact that c∗ is,
most of the time, equal to c∞eq with a high interfacial mobility.Metals 2019, 9, x FOR PEER REVIEW 6 of 15 
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θ-Al2Cu precipitate dissolving in an infinite matrix with different values of the interfacial mobility.

4. Growth and Dissolution in a Finite System

The analytical solutions proposed for the mixed-mode regime were developed for one particle
evolving in an infinite system. These solutions were based on the fact that the molar fraction c is
constant, as well as the temperature and material properties. In the following, we will consider that
the temperature remains constant but, due to the finite size of the system, c will vary with time.
The coefficient of diffusion can also be assumed to vary with c. Numerical time discretization is
required in such a case to calculate the evolution of the precipitate. The latter can be approximated
using the first two terms of the Taylor expansion of the explicit (unknown) solution. The value of a1 at
time t + ∆t can then be approximated with the following equation:

a1(t + ∆t) ≈ a1(t) +
∂a1

∂t

∣∣∣∣∣
c(t)

∆t. (12)
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At each time t, the value of the interface velocity ∂a/∂t|c(t) is first calculated with the current
value of c. If the time step is small enough, Equation (12) will give an accurate estimation of the
updated size of the precipitate, assuming that the variation of c is negligible during this small time step.
The interface velocity in the mixed-mode regime can be evaluated from the slopes of a1(t), evaluated
at time t and t + ∆t, using Equations (8) and (9) to evaluate the values of a1 when the precipitate is
dissolving. For growth, the following equations must be used [9]:

c− c∗

c∗
β
− c∗

=
a3

1

√
1− e2

12

√
1− e2

13

2D · t
exp

 a2
1

4D · t

 ∞∫
a1

[(
ρ2
− e2

12a2
1

)−1/2(
ρ2
− e2

13a2
1

)−1/2
exp

(
−

ρ2

4D · t

)]
dρ (13)

where

c∗ = c∗eq exp

 Vm · a1

2cβMRT · kgt3/2

. (14)

The interface migration coefficient for growth (kg) is expressed as:

kg =
1
2

√
υc

ac
. (15)

Time discretization can be done by setting a time step and calculating the size of the precipitate
at time t1 and t2 = t1 + ∆t with Equations (8) and (9) or Equations (13) and (14). Alternatively, one
can define the time step according to a predefined ∆c, and calculate the corresponding times for the
current value of a1. Figure 4 presents schematically the evolution of a1 during growth, as calculated
with two values of c, namely c1 and c2 = c1 + ∆c. Notice that ∆c < 0 for growth. The interface velocity
can be evaluated by first, choosing a value of ∆c that is sufficiently small in comparison with the
current value of c to make the estimation accurate. With these two values of c, one calculates with
Equation (13) the values of t1 and t2 with the current value of a1. The time step ∆t will then be equal to
t2 − t1. For dissolution, Equation (8) must be solved to obtain the values of τ1 and τ2. The interface
velocities can be estimated from the slopes evaluated at time t1 and t2 (τ1 and τ2 for dissolution). Since
c changes continuously during the time interval, one can use the average value of the two velocities,
v1 and v2. The following expression can then be used to calculate the interface velocity appearing in
Equation (12):

∂a
∂t

∣∣∣∣∣
c(t)
≈
ν1 + ν2

2
. (16)
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Other techniques of time discretization are possible. The advantage of the technique proposed
above is that one can easily find a time step adjusted to ∆c, irrespective of the magnitude of the interface



Metals 2019, 9, 889 7 of 15

velocity. Thus, when the system is close to reaching equilibrium, a very small ∆c will result in a very
large ∆t.

Once a1(t + ∆t) is obtained from Equation (12), the value of c can then be updated for the next step.
It should be noted that since the value of c changes during the transformation in a finite system,

the maximum growth velocity υc is not constant, so the interface migration coefficient is not constant,
as well. Therefore, these parameters must be updated at each time step.

5. Application of the Model

To make a direct comparison with DICTRA [12], we will consider the growth and dissolution
of spherical θ-Al2Cu precipitates in an Al rich matrix. A one-size distribution of precipitates will be
assumed to simplify the comparison. For that matter, we will consider that the system contains a given
number density (Nβ) of identical precipitates. If c0 is the nominal solute molar fraction of the system,
the value of c will be calculated at each time step with the following expression:

c =
c0 − gβcβ

1− gβ
(17)

where gβ is the volume fraction of precipitates. Notice that this expression neglects the impact of the
concentration gradients near the precipitates in the estimation of the average molar fraction in the
matrix, as no distinction is made between this parameter and the molar fraction at infinity. This is
acceptable only if the distance between the precipitates is large in comparison to the diffusion length.
For a one-size distribution of ellipsoidal precipitates, gβ is simply given by

gβ = Nβ ·
4
3
πa3

1

√
1− e2

12

√
1− e2

31. (18)

For spherical precipitates, e12 and e31 are equal to zero. Table 1 presents the parameters describing
the system in which the precipitates are evolving. For the DICTRA simulation, the matrix is an FCC
(the name of the phase in the DICTRA software application). A1 phase having an external radius
matching the number density of the approximate finite size model. All calculations were performed
with DICTRA version 2016a using the TCAL5 [13] and MOBAL1 [14] databases.

Table 1. Parameters defining the growth of θ-Al2Cu precipitates in the Al–Cu system.

Parameter Value

Temperature (K) 600
Nominal molar fraction of Cu, c0 0.01

Radius of the precipitate at the start of the mixed-mode model,
ac

2 nm

Number density of precipitate, Nβ 1 × 1018 m−3

Radius of the precipitate at the start of simulation 2 nm
Initial layer thickness of the matrix in the DICTRA model 618.4 nm

Molar volume of the precipitate, Vm 1 × 10−5 m3/mol

In addition, we require some equilibrium parameters, which are shown in Table 2. The equilibrium
data were obtained by using Thermo-Calc [12] and the TCAL5 [13] database.

Table 2. Thermodynamic variables used in the models.

Parameter Value

The maximum molar fraction of Cu in the matrix at 600 K, c∞eq 0.00285
Molar fraction of Cu in the precipitate 0.33
Molar fraction of Al in the precipitate 0.67

Surface energy, γ 0
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The coefficient of diffusion was assumed to vary with the amount of copper in the matrix. DICTRA
takes this variation into account at each grid node. In our model, the coefficient of diffusion was
considered to be a global variable changing with the molar fraction c. Figure 5 shows the variation of
the coefficient of diffusion of Cu in an Al rich matrix when the concentration of Cu is less than 1.5 at%
at 600 K and 730 K. The plot for T = 730 K will be used later for the dissolution of the precipitates.
According to this figure, the growth of the precipitates occurs simultaneously with a rise of the
coefficient of diffusion. Therefore, the accuracy of the calculation will increase by using a variable
coefficient of diffusion.
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600 K and 730 K, estimated with Thermo-Calc and the databases TCAL5 [13] and MOBAL1 [14].

Figure 6 shows the evolution of the radius of the θ-Al2Cu precipitates calculated with different
values of the interfacial mobility, while Figure 7 presents the corresponding evolutions of c and c∗.
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1.0 × 1018 m−3.
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Figure 7. Evolution of c and c∗ for a spherical θ-Al2Cu precipitate growing in a finite Al-1.0 at%Cu
matrix with different values for the interfacial mobility.

As far as the comparison with DICTRA is concerned, one can say that the case with
M = 1.0 × 10−15 m4/J/s gives a very close agreement with the DICTRA simulation. With such a
high interfacial mobility, we have c∗ ≈ c∞eq , so one can consider that the growth regime is essentially
diffusion-controlled in this circumstance. It is worthwhile to mention that the value of ac has a
negligible impact on the results when the interfacial mobility is such that growth or dissolution can
be assumed to be diffusion-controlled. This stems from the fact that when the kinetics of phase
transformation are diffusion controlled, the k-parameter is assumed to be very high, which is consistent
with a diffusion-controlled regime starting almost at time zero. The DICTRA curves start to deviate
slightly from the high M case for a time > 1 h. To understand the origin of this deviation, one may
consider the impact of the number density in the size evolution. Figure 8 presents the evolution of the
radius (on a logarithmic scale) as computed with three different values of the number density. One
can see that the discrepancy between the DICTRA curves and the model is reduced as the number
density increases. If the discrepancy was caused by our time discretization procedure or by not taking
into account the concentration gradient in the matrix to calculate c, then one would have observed the
discrepancy to increase as the number density increased. Indeed, as the number density increases,
the model moves away from the ideal case where the matrix is infinite. A closer look of the DICTRA
results can explain this discrepancy. Figure 9 presents the solute concentration profile in front of the
precipitate as calculated by DICTRA for the three values of the number density. These curves reveal
that the calculated solute concentration profiles near the interface differ from the ideal case where a
smooth and gradual increase of the solute molar fraction would be obtained in front of the interface
up to the limit of the system. This is likely the result of the numerical procedure of DICTRA, which
introduces the discrepancy between the two methods. Notice that increasing the node density in the
matrix domain in the DICTRA model did not change the results. However, selecting a planar geometry
instead of the spherical one removes the secondary minimum in the solute concentration profile in the
vicinity of the interface and reduces the large gap existing between c∞eq imposed at the interface and the
value of the solute molar fraction obtained at the first node in front of the interface. We did not try,
however, numerical parameters differing from those set by default in DICTRA.
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We, therefore, consider our model to be very accurate for evaluating theoretical growth rates,
especially for cases including a strongly dissipative precipitate–matrix interface (low mobility).

From the final state of the previous system, one can imagine that the temperature is then suddenly
raised to 730 K, which activates the dissolution of the precipitates. The parameters describing the
dissolution of θ-Al2Cu precipitates in this system are presented in Table 3. According to the Al–Cu
phase diagram [15], the solubility of copper in the FCC aluminum matrix at 730 K is 1.1 at%. Since
the nominal concentration of copper in the studied system is 1.0 at%, it is expected that keeping the
system at 730 K will make the second phase to dissolve completely.

Table 3. Parameters describing the dissolution of θ-Al2Cu precipitates in the Al–Cu system. All other
parameters are the same as in Tables 1 and 2.

Parameter Value

Temperature (K) 730
The maximum molar fraction of Cu in the matrix c∞eq 0.011

Radius of the precipitate at the end of the mixed-mode model, ac 2 nm
Radius of the precipitate at the start of simulation 175 nm

Initial layer thickness of the matrix in the DICTRA model 445.4 nm

The time evolution of the radius of the precipitates is plotted in Figure 10 for different values of
the interfacial mobility. The agreement between the dissolution with a high interfacial mobility and
the DICTRA simulation is very good. A maximum time delay of 19 s between the two models was
obtained at the end of the dissolution process. For the lower interfacial mobility cases, the evolution
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of c and c∗ are very close one to each other, as is shown in Figure 11 for M = 5.0 × 10−20 m4 J−1 s−1.
For such a low interfacial mobility, one can assume that dissolution is essentially an interface controlled
process, while for growth, it is clearly a mixed-mode process (see Figure 7). For a high mobility case,
one can see that c∗ ≈ c∞eq = 0.011 during almost the entire process.
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the precipitates is assumed to be 1.0 × 1018 m−3.
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6. Discussion

The mixed-mode model, which was originally developed for the growth of one particle in an
infinite matrix, has been adapted for the growth and dissolution in a finite system, making the model
suitable for comparison with a software application like DICTRA. The agreement with the DICTRA
simulations for cases where the interfacial mobility is very high is such that one can acknowledge the
accuracy of the time discretization procedure described above. Although some authors stated that the
reverse-growth approximation is not the best method to calculate the dissolution rate of a precipitate,
our results show that the agreement between our reversed-growth model and the DICTRA fully
transient solution is in fact excellent, and could only be improved if the analytical procedure accounted
for the transient term in the mass conservation equation. The diffusion-controlled reversed-growth
solution ignores the transient period, during which the dissolution rate is accelerated by the very high
concentration gradients existing at the start. This high concentration gradient makes the DICTRA
simulation able to predict a slightly faster dissolution. This error is not very significant considering that
the dissolution rate is likely limited by the interfacial mobility at the beginning because of the too steep
concentration gradients required to have equilibrium at the interface. A possible option to improve
the agreement between DICTRA and our model is to consider the dissolution of a smaller precipitate
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surrounded by its steady-state concentration field, the latter being composed of atoms liberated by the
precipitate having the nominal size. This is an option that may be of interest for comparison purposes.

7. Conclusion

Since the quasi-stationary solution of the precipitation is based on the assumption that the
concentration of the solute in the matrix is constant, theoretically it cannot be used when a variation of
the concentration happens in the system. In this contribution, the previous mixed-mode model [9]
has been modified in two ways. First, a reversed-growth approximate solution was developed for the
dissolution in the mixed-mode regime. Second, a time discretization technique was proposed, which
makes possible to model the evolution of precipitates inside a finite matrix. The model was validated
with DICTRA for the diffusion controlled-regime and can be applied to the fully diffusion-controlled,
as well as the fully interface controlled, regime.
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Appendix A

Reversed-Growth Solution of the Mass Conservation Equation in the Mixed-Mode Regime for an Ellipsoidal
Precipitate

The reversed-growth model for dissolution is found, as discussed in the main text, by considering
the following quasi-stationary mass conservation equation:

D · ∇2c = −
→

∇c ·
d
→
r

dt
(A1)

where
→
r is the vector position of a point located on the interface. For a dissolving ellipsoidal particle,

we will assume that the dissolution occurs with constant eccentricities. Considering the Eulerian set of
ellipsoidal coordinates (ρ, µ, ν), we are, therefore, searching for a solution for which the concentration
of the species will be uniform on ellipsoids ρ = constant, so that c = c(ρ, t). Under these circumstances,
Equation (A1) becomes:

D
hρhµhν

∂
∂ρ

(
hµhν

hρ
∂c
∂ρ

)
= −

→

∇c ·
d
→
r

dt
(A2)

where hρ, hµ, and hν are the metric coefficients. The convective term will be rearranged by using a new
set of coordinates (ξ, η, ζ) moving with the interface. Introducing the interface migration coefficient kd,
one can propose the following substitutions:

ξ = ρ/kdτ
1/2 (A3)

η = µ/kdτ
1/2 (A4)

ζ = ν/kdτ
1/2 (A5)

H2 = h2/kdτ
1/2 =

√
a2

1 − a2
3

kdτ
1/2

(A6)
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H3 = h3/kdτ
1/2 =

√
a2

1 − a2
2

kdτ
1/2

(A7)

with
τ = t f − t (A8)

where t is the time, and t f is the time where complete dissolution occurs. The parameters h2 and h3 are
the semi-focal distances of the ellipsoid. Equations (A6) and (A7) are necessary for a shape preserved
dissolution.

Since ξ is a curvilinear coordinate and that
→

∇c = 0 along the unit vectors η̂ and ζ̂, we have

−
→

∇c ·
d
→
r

dt
= −∇ξc · ∇ξξ ·

∂ξ
∂t

= −
1

h2
ξ

∂c
∂ξ
·
∂ξ
∂t

=
1

h2
ξ

∂c
∂ξ
·
∂ξ
∂τ

. (A9)

The mass conservation equation can now be rewritten as

D
hρhµhν

∂
∂ρ

(
hµhν

hρ
∂c
∂ρ

)
=

1
h2
ξ

∂c
∂ξ
·
∂ξ
∂τ

. (A10)

The last equation is identical to the equation for growth, except that the time t has been replaced
by the reversed-time variable τ. The differential equation can therefore be solved following the
procedure detailed in [9]. Only the most relevant equations will be presented below. The solution of
Equation (A10), which meets the boundary conditions for the solute concentration distribution in the
matrix, is given by the following equation:

c− c = (c∗ − c)
[

F(ξ)
F(ξ0)

]
(A11)

where

F(ξ) =

ξ∫
∞

exp
(
−

k2
dξ

2

4D

)
dξ√

ξ2
−H2

3

√
ξ2
−H2

2

. (A12)

The variable ξ0 is the ellipsoidal coordinate corresponding to the interface in this frame of reference.
Now, to calculate the time evolution of a1 and c∗, other conditions must be imposed. The first one is the
Stefan boundary condition, which imposes that the velocity of the interface is related to the flux of
atoms across the interface. If

.
N is the number of moles of solute lost by the ellipsoidal precipitate, one

can show that
.

N =

∫
ξ0

J · dS = −4πD ·
(c∗ − c)
F(ξ0)

exp

−k2
dξ

2
0

4D

 = −(c∗β − c∗
)
·

dV
dt

(A13)

where S and V are respectively the surface and the volume of the precipitate. Notice that the expressions
on both sides of the equation are positive since F(ξ0) < 0. From Equation (A13), one can show that the
following expression is obtained:

da1

dt
=

D

a2
1 ·

√
1− e2

12

√
1− e2

31

·
(c∗ − c)(
c∗
β
− c∗

) exp
(
−

k2
dξ

2
0

4D

)
ξ0∫
∞

(
ξ2
−H2

3

)−1/2(
ξ2
−H2

2

)−1/2
exp

(
−

k2
dξ

2

4D

)
dξ

. (A14)

For the rest of the demonstration, c∗, c, and c∗
β

will represent solute molar fractions on the basis that
all elements have the same partial molar volume irrespective of the fact they are in the precipitate or in
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the matrix. This is an acceptable simplification for substitutional alloys. Another boundary condition
must be imposed, this one relating the evolution of c∗ with the progress of the phase transformation.
This condition is given by the following expression, relating the velocity of the interface with the
interfacial mobility and the driving force:

da1

dt
=

c∗
β

MRT

Vm
ln

 c∗

c∞eq
exp

− 2Vmγ1

c∗
β

RTa1

. (A15)

Equations (A14) and (A15) are linked via the interface migration kinetic coefficient kd, which
establishes the correspondence between these two expressions for the velocity and the velocity of the
reference frame moving with the interface. The latter is given by:

Vr = −∇ξξ ·
∂ξ
∂t

= −
1

hξ
·
∂ξ
∂τ
·
∂τ
∂t

= −
1

hρ
·

ρ

2kdτ
3/2

. (A16)

The velocity da1/dt is determined at the tip of the ellipsoid (x1 = a1, x2 = 0, x3 = 0), which
corresponds to the coordinates (ρ = a1, µ = h3, ν = h2). After substitution, one obtains

Vr(a1, h3, h2) = −
a1

2kdτ
3/2

. (A17)

When the size of the precipitate reaches a critical value called ac, we assume that the dissolution
regime switches to an interface controlled-regime, where the interfacial velocity is constant and remains
a characteristic of the system. This velocity is labelled υc and is given by

υc = −
ac

τc
. (A18)

Accordingly, one can show with Equations (A17) and (A18) that

kd =
1
2

√
−υc

ac
. (A19)

Typical values for ac have to be chosen according to the system. In principle, this value should
correspond to a size where the concentration gradients no longer exist because of the limiting effect of
the interfacial mobility.

Equations (8) and (9) are found by enforcing the equality between respectively Equations (A14)
and (A17) and between Equations (A15) and (A17). Once Equation (9) is inserted into Equation (8), the
latter can be solved to obtain the time τ associated to a given a1. Putting the result back into Equation
(9), one obtains the corresponding value of c*.
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