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Abstract: The effects of the Y- and Ti-containing inclusions on the tensile and impact properties of
reduced activation ferritic martensitic (RAFM) steels were evaluated. Four steels with different Y
and Ti contents were produced via vacuum induction melting. The size and quantity of inclusions
in the steels were analyzed using scanning electron microscopy, and the oxide particle formation
mechanism was clarified. These inclusions helped to enhance the pinning effect of the austenite grain
boundaries based on the Zener pinning force. The average prior austenite grain sizes, measured via
the linear intercept method, were 12.34 (0 wt.% Ti), 9.35 (0.010 wt.% Ti), 10.22 (0.030 wt.% Ti), and 11.83
(0.050 wt.% Ti) um for the four steels, in order of increasing Ti content, respectively. Transmission
electron microscopy was conducted to observe the fine carbides. The strength and impact properties
of the steel containing 0.010 wt.% Ti were improved, and the ductile-to-brittle-transition temperature
was reduced to —70.5 °C. The tensile strength and impact toughness of the steel with 0.050 wt.% Ti
were significantly reduced due to the coarsening of both the inclusions and grain size, as well as
the precipitation of large TiN inclusions. The RAFM steel with approximately 0.015 wt.% Y and
0.010 wt.% Ti exhibited an optimized combination of microstructures, tensile properties, and impact
properties among the four steels.

Keywords: RAFM steel; Y-Ti-containing inclusion; austenite grain; tensile mechanical; DBTT

1. Introduction

Reduced activation ferritic martensitic (RAFM) steels have been widely investigated as potential
candidates for structural materials in future nuclear fusion reactors [1,2]. Several types of RAFM
steels, such as Japanese F82H (8Cr-2W) and JLF-1 (9Cr-2W), European Eurofer97 (9Cr-1W), American
9Cr-2WVTa, and Chinese CLAM (China Low Activation Martensitic steel) and CLF-1, have been
developed in various countries [3,4]. However, the elements that can be added to RAFM steel are
limited due to its reduced activation [5], with current research primarily focusing on the addition of
yttrium (Y) and titanium (Ti) to RAFM steel. Ou and Lai [6] and Danielson and Hin [7] reported that
the Y,03 or Y-Ti-O particles in oxide dispersion-strengthened (ODS) RAFM steel can endure a high
concentration of vacancies, thereby improving the radiation resistance of RAFM steels. This is because
the vacancies could migrate to dispersion-distributed Y,O3 or Y-Ti-O particles and form stable clusters
rather than grain boundaries, resulting in reduced vacancies in the matrix and improving the radiation
resistance and mechanical properties of the alloys. Li and Huang [8] reported that the addition of
0.2 wt.% Y to CLAM steel can degrade the mechanical properties of the steel; however, this increases
its radiation resistance. Shi [9] added the microscale Y,Oj3 particles directly into steel via vacuum
casting; the alloy matrix is strengthened because of the presence of complex oxides, and Y,Oj3 positively
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affects the inhibition of dislocation gliding. Lee [10] and Kim [11] investigated the effects of Ti on the
microstructural stability and tensile properties of the RAFM steel and noted that the yield strength of
the Ti-added RAFM steel (Ti-RAFM) is high because of additional precipitation hardening from the
Ti-rich MX particles. However, the aforementioned studies only dealt with a single element (Y or Ti).
Only few reports exist on RAFM steel with Y and Ti and the formation mechanism of the inclusions
during the smelting process [8,9,12]. Hence, understanding the role of Y and Ti in the evolution of
inclusions as well as the microstructure and properties of the RAFM steel is necessary. This study
aimed to elucidate the oxide particle formation mechanism in steel with different Y and Ti contents
and study the effects of the inclusions on the mechanical properties of 9Cr-RAFM steel.

2. Materials and Experiments

2.1. Materials

The chemical compositions of the analyzed steels are listed in Table 1. The steel was first melted
using a vacuum induction furnace to form a 25-kg ingot that was hot forged and rolled. Before
operating the vacuum induction furnace, pure iron, chromium (99.98 wt.%), tungsten (99.95 wt.%),
and tantalum (99.91 wt.%) were inserted into the crucible. These alloys were melted under low pressure
(below 15 Pa). Then the molten alloy was refined for 60 min at 1570 °C. Hereafter, C (99.5 wt.%),
51 (99.95 wt. %), Mn (99.98 wt.%), V (99.95 wt.%), Ti (99.99 wt.%), and Y (99.9 wt.%) were sequentially
added at 2-min intervals. After 5 min, all the alloys were observed to melt, and the molten steel
was cast under argon protection at 1520 °C. All the pure alloys were provided by boyu company.
Post high-temperature diffusion homogenization at 1200 °C for 60 min, the ingots were forged into
35 mm X 50 mm plates at an initial forging temperature of 1150 °C and a final forging temperature of
950 °C; further, they were hot-rolled into 12-mm-thick plates at temperatures ranging from 950 °C to
1150 °C. The steel alloys were designated C1, C2, C3, and C4 (Table 1). The total O contents of the
alloys were 24, 17, 12, and 10 ppm, respectively, with each possessing a N content of approximately
29 ppm. The heat treatment included austenitization at 1050 °C for 30 min, followed by air quenching,
then tempering at 750 °C for 90 min, and finally air cooling to room temperature.

Table 1. Chemical composition of the analyzed steel alloys (wt.%).

Steel C Si Mn Cr A\ A% Ta S P N (0] Y Ti Bal.

cC1 011 005 045 9.0 1.5 020 0.15 0.003 0.0072 0.0028 0.0024 0.015 - Fe
Cc2 011 005 045 90 1.5 020 015 0.002 0.0074 0.0027 0.0017 0.015 0.010 Fe
Cc3 011 005 045 9.0 1.5 020 015 0.002 0.0073 0.0030 0.0012 0.015 0.030 Fe
c4 011 005 045 9.0 1.5 020 0.15 0.003 0.0075 0.0029 0.0010 0.015 0.050 Fe

2.2. Inclusion Statistics

The particle size distribution in the polished cross-section of each sample cut from the ingots was
observed using a scanning electron microscope (SEM, Zeiss, Jena, Germany) at 1000x magnification
to obtain the inclusion density of the alloys. The observed area (Aqps) of each SEM image was
125 pm X 94 um, and the total observed area of each sample (Atps) ranged from 0.53 to 0.59 mm?,
with 45-50 SEM images acquired for each sample. The number of particles per unit area (N4) and
cross-sectional area of each particle (S4(;)) were measured using a semi-automatic image analyzer
(Sience, Suzhou, China), where the diameter of each particle cross-section (d4(;) was estimated to
be [13]:

da(iy = % “SA(i) 1

The N4 value was determined using the measured number of particles (1) across Agps, such that

Ny = n/Agps. The method employed here was essentially the cross-section method.
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The spatial (dy) and mean spatial (EV) diameters of the spherical particles can be written as [14]:
T
dy = 7 -da 2)

and .
Y (1/d5)

i=1
where the 71/2 coefficient is determined by the geometric relationship between a given three-dimensional
diameter and the two-dimensional sections of the sphere, and c_iA (H) is the harmonic mean diameter of
the particle cross-section.
The number of particles per unit volume (Ny) was calculated using [14]:

N,
Ny == )
dy
The formula for obtaining the volume fraction (f/) of spherical particles can be given as [14]:
fv=(n/6)-dv* Ny ©)

The non-metallic inclusions were then analyzed using the SEM images.

2.3. High-Temperature Confocal Laser Scanning Microscopy (CLSM)

The VL2000DX-SVF17SP CLSM (Yonekura, Osaka, Japan) was used in an inert gas atmosphere
(argon, 6N) to obtain high-quality sample micrographs, and the effect of inclusions on austenitization
was investigated. The cylindrical samples (diameter 4 mm, thickness 6 mm) were first heated to
1050 °C during controlled heating at a rate of 5 °C/s and subsequently held for 10 min. SEM images of
the samples were then acquired after air cooling to room temperature.

2.4. Mechanical Properties

The specimens that were spark machined from the 12-mm-thick heat treatment plates, parallel to
the rolling direction, were used for tensile tests from room temperature to 650 °C. Round-bar tensile
specimens, with a 5 mm X 25 mm gauge section, were tested. The yield strength was defined as
the 0.2% proof strength in this study. An AG-X250kN electronic universal material testing machine
(Shimadzu, Kyoto, Japan) was used for the tensile tests. The Charpy impact test was conducted with
full-size V-notched samples (10 X 10 X 55 mm) using an MTS-ZBC2452-B pendulum impact tester
(MTS, Eden Prairie, MN, USA); the ductile-brittle transition behavior of the samples was evaluated
using a pendulum impact tester in the range of —130 °C to 25 °C. A CDY-80A cryogenic container
(Beiyou, Beijing, China) was used to cool the V-notched samples.

2.5. Microscopy Observation

The specimens are etched with a mixed solution of alcohol (100 mL) and muriatic acid (5 mL) and
picric acid (1 g) for optical microscopy (Leica, Solms, Germany) and scanning electron microscopy (Zeiss,
Jena, Germany). The macro- and micro-views of the fracture surfaces were observed using SEM—energy
dispersive X-ray spectroscopy (EDS). The fine carbides in the steel were observed using a transmission
electron microscope (TEM) (FEI, Hillsboro, OR, USA). The TEM samples were first mechanically
polished and then subjected to twin-jet-polishing with a 7-vol.% perchloric acid ethanol solution.
TenuPol-5 jet polishing (Struers, Copenhagen, Denmark) was used to prepare the TEM samples.
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3. Results and Discussion

3.1. Inclusions in the Steel Ingots

Figure 1 and Table 2 provide the statistical results of the micron dimension inclusions in ingots.
There were few inclusions that were larger than 5 pm in the C1, C2, and C3 alloys, as shown in Figure 1,
with a majority of the inclusions in these three alloys (>85% in every sample) smaller than 2 um.
The inclusions in the C4 alloy were much larger than those in the other three steel alloys, with some
inclusions larger than 5 pm. Table 2 shows the statistical results (EV, fv, and Ny) of the observed
inclusions in the ingots. An increase in dy was observed from 1.35 to 1.89 um and a decrease in Ny
was observed from 4.63 x 10'* to 1.93 x 10'* m~3 with increasing Ti content. Similar results were
also observed in ODS steels containing Y and Ti [10]. The 9Cr-RAFM steels with Y and Ti primarily
contain microscale inclusions that are much smaller than those reported in RAFM steels containing
Y [9]. These latter steels contained some inclusions that were larger than 10 pm. As shown in Table 2,
the average spacing of inclusions (dr) decreased with the increasing Ti content, which indicates that
the dispersion of inclusions deteriorated.

0.6
0.5

c1
E 0.4 C2
=
203 =[e
S
A

S
o

S
P

Y
7777/

N . A . . FE—
1~2 pm 2~3pm  3~5pm 5~10 pm
Inclusion size

S
=

Figure 1. Inclusion size distribution for the four steel alloys.

Table 2. Statistics of the inclusions in the steel ingots.

Steel  dy (um) Ny (x10¥ m=3)  fy(%)  dr(um)

C1 1.44 2.84 0.04573 453
Cc2 1.35 4.63 0.0599 443
C3 1.42 3.49 0.0528 42.2
C4 1.89 1.93 0.0684 37.1

The composition of the inclusions in these alloys was determined via SEM-EDS. More than 30
inclusions were checked in each sample. Figure 2 shows the micromorphology and composition of
typical inclusions in ingots. The inclusions in the C1 alloy were generally regular spherical particles
with a core and a shell, as shown in Figure 2a. They were primarily composed of a Y-O-S core covered
with Y-O (Figure 2a), indicating that Y may first react with S and then with O. The typical inclusions in
the C2 alloy were Y-Ti-O inclusions (Figure 2b) and inclusions that contained a Y-Ti-Mn-O-S core
covered with MnS (Figure 2c). MnS inclusions was precipitated during solidification, which has been
shown by many researchers [15,16]. In addition, Y might be easier to combine with Ti and O. Similar
types of inclusions were observed in the C3 and C4 alloys. These contained a Y-Ti—O core covered
with Y-O (Figure 2d), a Y-Ti-O-S core covered with Y-O-S (Figure 2e,h), a Y-Ti-S-O core covered
with Y-O (Figure 2g), and a Y-Ti-O-S core covered with square TiN (Figure 2f,i), which precipitated
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during solidification [17,18]. The Ti mass fraction for the inclusions in the C3 alloy was higher than
that for the inclusions in the C4 alloy.
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Figure 2. Typical inclusion morphologies in the alloys: (a) C1; (b,c) C2; (d—f) C3; and (g-i) C4.

Line scanning was conducted to study the inclusions and further elucidate the oxide particle
formation mechanism. Figure 3 shows the line scanning results of the typical inclusion. A Y-Ti-Mn-O-S
core covered with MnS is shown in Figure 3a, while a Y-Ti-O-S core covered with square TiN is
shown in Figure 3b. The Ti mass fraction was parabolic across the inclusion, with the lowest mass
fraction observed in the center of the inclusion. A small N mass fraction was also observed on the
right side of the inclusion. These cladded inclusions are generally considered detrimental to the
mechanical properties of RAFM steel [19]. The primary type of inclusion, a Y-Ti-5-O core covered
with Y-O, as shown in Figure 3¢, possessed an O mass fraction with three peaks across the inclusion
that correspond to its center and edges. A small Ti mass fraction was also observed in the center of
the inclusion, as well as more uniform distributions of Y and S. Figure 4 shows schematics of the
evolution of the inclusions during the steel fabrication process. Rare earth elements added into the
steel would react with [S], [O], and Ti-O in the molten steel. Y first reacted with [S] to form the Y-S
core then reacted with [O] to form the Y-O shell, which is shown in Figure 4a. When Ti was added,
Y reacted with Ti-O to form Y-Ti-O (Figure 4b). As shown in Figure 4c, MnS precipitated as a shell
for Y-Ti-O during solidification, which is often found in steels containing Mn [20]. The Y-Ti-O-5
phase in steel continued to react with [O] and [S] in steel to form Y-O or Y-5-O inclusions (Figure 4d).
When excessive Ti was added, [Ti] reacted with [N] to form TiN, which is shown in Figure 4e.
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Figure 3. The line scanning results of the typical inclusions in the steel alloys: (a) C2, (b) C3, and (c) C4.
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Figure 4. Schematic of the evolution of various inclusions in the experimental steel alloys. (a) Y-S-O;
(b) Y-Ti-O; (c) Y-Ti-Mn-5-O; (d) Y-Ti-S-O; (e) Y-Ti-O-S-N.

3.2. Particle Effects on Austenite Grain Size

The grain size of all specimens remained the same after 5 min of heating. The CSLM and SEM
results of the samples heated for 10 min at 1050 °C are shown in Figure 5. Numerous inclusions
were observed at the grain boundary of the steel alloys (Figure 5e-h). Many investigators have
revealed the inhibiting effect of the second phase particles on grain growth, both theoretically and
experimentally [21,22]. These inclusions could help to strengthen the pinning effect of the austenite
grain boundaries based on the Zener pinning force. Gladman [23] indicated the pinning effect of
second-phase particles on austenite grains and expressed the pinning effect as:

ndy 3 2

DCZE(Z Z) (6)

where D¢ is the grain diameter and Z is the inhomogeneity factor. This relationship suggests that
fv has an inverse effect on D¢, whereas dy has a similar effect on Dc. Based on the data in Table 2,
the grain sizes of the steels can be expressed as 60.536A(3 — %), 42.498A(3 — 2), 50.771A(3 - %) and
52.058A(% - %) for the four steels, in order of increasing Ti content, respectively, where A is a constant,
1078, This result is considered to be agreeable with the observed grain size in Figure 5a—d. The grain

sizes of the alloys were 25, 15, 19, and 22 um for the C1, C2, C3, and C4 alloys, respectively.
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20 um

Figure 5. CLSM and SEM results of the samples heated for 10 min at 1050 °C: (a—d) CLSM; (e-h) SEM;
(ae) C1; (b,f) C2; (c,g) C3; and (d,h) C4.

The types of inclusions near the grain boundary were also ascertained using SEM-EDS, as shown
in Figure 6. The largest inclusion size was observed in the C4 alloy, with smaller inclusions observed
in the C2 (Figure 6b) and C3 (Figure 6¢) alloys. Based on the results in Section 3.1, the inclusions in the
C1 alloy primarily contained a Y-O-S core covered with MnS (Figure 6a). No inclusions containing
MnS were found in the other alloys. The inclusions in the C4 alloy primarily contained a Y-Ti—-O core
covered with TiN (Figure 6d). These inclusions had a pinning effect, which could refine the structure,
and the refining effect exhibited the Zener relation.

Figure 6. SEM images of the inclusions observed in experiment: (a) C1, (b) C2, (c) C3, and (d) C4.

3.3. Microstructure and Precipitates

The microstructures of the steels are shown in Figure 7a-d. Typical martensitic structures
were observed, with no evidence of delta-ferrite in these four steels. The average initial austenite
grain sizes, measured using the linear intercept method, were 12.34 (0 wt.% Ti), 9.35 (0.010 wt.% Ti),
10.22 (0.030 wt.% Ti), and 11.83 (0.050 wt.% Ti) um for the four steels, in order of increasing Ti content,
respectively, which were significantly smaller than the CLAM grain sizes (20-30 pm) [24]. The inclusions
in the alloys significantly affected the austenite grain sizes of the steels, as indicated by the CLSM
results. As shown in Figure 7e-h, My;Cy precipitated both in the lath and prior austenite grain
boundaries, and a few MC carbides were randomly distributed in the matrix, in agreement with
observations in other ferritic/martensitic steels [25]. It is well known that MX precipitates play a
significant role in determining the mechanical properties of steel. More MX can be observed in the
Ti-RAFM steels [8,9,12]. The carbides in the C2 alloy were much finer than those in the other alloys.
Some M;3Cg carbides larger than 0.5 pm could be found in the C3 and C4 alloys.
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Figure 7. Microstructures (a-d) and precipitates (e-h) of the tempered RAFM steels: (a,e) C1; (b,f) C2;
(c,g) C3; and (d,h) C4.

The precipitated phases in RAFM steels were primarily considered to be type M3;Cg and MX
carbides [26]. The average particle size of MX precipitation was 20-50 nm, which could effectively
improve its high-temperature creep performance. For example, Ta-rich MX carbides possess the most
effective heat-strengthened phase in heat-resistant steel. Figure 8 indicates typical TEM micrographs of
the normalized and tempered steels.

o o

Figure 8. Precipitates of the tempered RAFM steels: (a) C1 and (b) C2; (c) corresponding fast Fourier
transform (FFT) image of the MX carbides in C2, (d) C3, and (e) C4; and (f) corresponding FFT image
of the MX carbides in C4.

Figure 8a reveals the Mp3Cq (50-200 nm) and MX (15-30 nm) carbides in the C1 alloy, and only
a small amount of MX precipitates were present. Figure 8b,d,e present the precipitate distribution
in the C2, C3, and C4 alloys, respectively, which have more MX carbides in their intragranular
regions than the C1 alloy. No significant difference was observed in the size of M3Cg in the alloys.
The MX carbide size increased with increasing Ti content, with MX carbides that were larger than
200 nm present in the C4 alloy. The size of MX in the C2 alloy was 20-50 nm and that of C3 was
20-100 nm. This suggests that Ti promoted MX precipitation, which is in agreement with C. H. Lee [10],
H. K. Kim [11], and Y. P Zhang [27]. EDS showed that Ti and Ta elements were present in the MX
carbides in the C2-C4 alloys. The corresponding fast Fourier transform (FFT) images of the MX carbides
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in the C2 and C4 alloys are presented in Figure 8c,f, which highlight the face-centered cubic structure of
these precipitates. Based on EDS and the diffraction pattern, the precipitates were identified as (Ti, Ta)
C. Coarsened MX would harm the strength and fracture toughness of the alloy. In addition, the larger
inclusions in C3 and C4 alloys should have the most damaging effect on mechanical properties.

3.4. Tensile Test

Figure 9 shows the comparison of the tensile performances between the RAFM steels at different
test temperatures. The tensile strength (TS) and 0.2% offset yield strength (YS) of all the steels showed
a decreasing trend with increasing temperature, as shown in Figure 9a,b. The elongation (Figure 9c)
first decreased and then increased as the temperature increased, with an inflection point at 300 °C,
as observed in other RAFM steels [28,29]. The room temperature tensile properties of these samples
were closely related with the Ti content. As shown in Figure 9b, the YS increased from 559.6 to
575.4 MPa when 0.010% Ti was added. An increase in the Ti content from 0.010 wt.% to 0.050 wt.%
yielded a decrease in YS and TS from 575.4 to 491.7 MPa and from 703.1 to 618.8 MPa, respectively.
The mechanical performance of the C4 alloy was the poorest among the four alloys. However, the TS and
YS of the other three steels were all higher than those of CLAM [28], EUROFER 97 [30], and JLF-1 [31]
steels. The RAFM steels with Y and Ti had good plasticity, with the smaller grain size and finer
inclusions being the main reasons for this improvement.
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Figure 9. Tensile properties of the steels: (a) tensile strength, (b) YS, and (c) elongation. The data for

Eurofer 97 [30], JLF-1 [31], and CLAM [28] are provided for comparison to the steel alloys analyzed in
this study.

As the inclusions (I) and matrix (M) have different structures and characteristics, they perform
differently during stretching. The contradiction between inclusions (I) and matrix (M) is often
intensified at the interface to form stress concentration, such that holes being formed, causing fracture.
The characteristics of inclusions in the steels are summarized as follows [32]: Small elastic modulus,
low YS, plastic deformation, and weak I-M interface bonding force belong to sulfides. The characteristics
of oxide and nitride are large elastic modulus and YS, respectively. The main cracking mode of sulfide
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is self-cracking [33]. The larger the size of the sulfide, the more are the cracking strips. Cracks can be
formed in two ways in nitride inclusions: self-cracking and interface cracking, which vary with the
size of the nitride [33]. Inclusions with high I-M interfacial bonding force could avoid early stress
concentration to hinder or delay the formation of primary and regenerated micropores such that greater
plasticity and deformation strengthening are obtained for the alloy. Therefore, improving purity;
reducing inclusions; controlling the shape, size, and distribution of inclusions in steel; and adding rare
earth and other surface-active elements to improve the I-M interface bonding force could suppress the
adverse effects of inclusions, thereby improving the strength and toughness of steel.

The microstructures of the tensile fracture of the tested steel alloys at room temperature are
shown in Figure 10. Tear fractures (Figure 10a—d) were observed in each of the steels, with fiber,
radiation, and shear lip areas present in each specimen. Microviews of the fracture surfaces are
shown in Figure 10e-h. The spiral bands resulting from the accumulation of shear stress around
the particles were observed in the dimple walls, and the sample exhibited increasing ductility and
toughness as the dimples expanded and deepened under tensile stress. There were primarily larger
equiaxial dimples on the C1 and C3 alloys, with some dimples greater than 5 pum in size. However,
the dimples on the C2 alloy were smaller and more uniform in size, possessing the smallest dimples of
the analyzed alloys. The C2 alloy also exhibited good mechanical properties. Some square (1-3 pm)
inclusions were observed in the C4 alloy, which may be the main reason why the C4 alloy exhibited
the worst mechanical properties, even though it possessed a small grain size. More details of the
inclusions in the dimples are shown in Figure 10i-1 with the compositions of the typical inclusions.
The typical inclusions in the C1 alloy were mainly Y-Mn-Ta—O-5-C inclusions that were larger than
3 um. These inclusions with weak I-M interface bonding forces broke during stretching to form
holes. The addition of Ti yielded primarily fine Y-Ti-Mn-Ta—O-5-C inclusions in the C2 that were
less than 2 pm. Shi et al. [9] reported that these inclusions had a remarkable effect on the dispersion
strengthening of steel. The Ti content in the inclusions increased as the Ti content of the steel increased,
and the inclusions coarsened. Some larger inclusions that contained N were observed in the C3 and C4
alloys. The larger square TiN inclusions in the C3 and C4 alloys easily caused a stress concentration at
the I-M interface, thus forming cracks.

The fracture process of a given material occurs in three stages: crack initiation, crack propagation in
an individual grain, and crack propagation through the grain boundary to an adjacent grain boundary.
The shapes of the large secondary particles had a significant impact on microcrack formation, with stress
concentrations more readily occurring along the sharp edges and corners of brittle secondary particles,
thereby facilitating microcracking. The TiN inclusions, which possessed a square geometry, were found
in the dimples of the C4 alloy. Cracks can easily initiate at a corner of a TiN inclusion and/or at the
inclusion-matrix interface, and then propagate through the steel. The fracture propagation stress (dy)
of a crack that nucleates within a second particle is given by [34]:

Of =|———
/ (l-n?)d

where E is the elastic modulus, y (i is the effective surface energy of the matrix, 7 is the Poisson’s ratio,

@)

and d is the mean second-particle thickness. Large TiN inclusions reduce the energy required for crack
propagation, thereby facilitating crack propagation. The C4 alloy, which contained the largest TiN
content in the matrix, possessed the worst mechanical properties among the four steel alloys.
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Figure 10. Macro- and micro-views of the fracture surfaces: (a,e, i) C1; (b £,j) C2; (c,g,k) C3; and (d,h,1) C4.

3.5. Charpy Impact Test

The presence of low angle block and lath boundaries, and dislocation substructures in martensitic
steels, were ineffective in resisting cleavage crack propagation, which reduced the Charpy toughness of
the material. The Charpy impact transition curves of the samples with different Y and Ti contents are
presented in Figure 11. The transition curves were determined by fitting the “Boltzmann” function [35]
to the average values of the Charpy impact energy—test temperature data (Figure 11). The upper shelf
regime and the transition temperature regime can be obtained from Figure 11. As shown in Table 3,
the upper shelf energies (USE) first increased and then decreased with an increase in the Ti content,
with the C2 alloy possessing the maximum USE value. The ductile-to-brittle-transition temperatures
(DBTTs) followed a similar trend. The USEs of these four steel samples were higher than those for
F82H and EURFERYY steels, as seen in a comparison graph (Figure 11) between C1—4 and CLAM [28],
EUROEFERY7 [30], and F82H [28,36] steels. It can be seen that the impact energies of C2 and C3 alloys
were higher than these of CLAM, EUROFERY7, and F82H steels at all the test temperatures. The impact
energies of EUROFER97 and F82H alloys were lower than those of C1 and C4 alloys at all the test
temperatures. The factors affecting the Charpy toughness of the material included: (a) the grain
size, with smaller grain sizes increasing the Charpy toughness in the cleavage-dominated fracture
regions; and (b) the type of inclusion boundaries, with regular boundaries hindering the initiation of
cracks between the inclusions and matrix, thereby improving the Charpy toughness. The best impact
properties belonged to the C2 alloy, which had the smallest grain size, and the finest regular inclusions
and carbides. The USEs and DBTTs results are summarized in Figure 12, with the C2 alloy clearly
identified as having an excellent impact toughness.
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Figure 11. The variation in impact energy of the RAFM steels with test temperature.

Table 3. Upper shelf energies (USEs) and ductile-to-brittle-transition temperatures (DBTTs) obtained
from the Charpy impact tests.

Sample C1 C2 C3 C4 CLAM [28] EURFER97 [30] F82H [28,36]

DBTT (°C) -646 -705 -67.6 —-58.7 —-60 —43 -60
USE (J) 2679 3133 3112 2927 275.1 225 250
340 |
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L v
R C4
3 280 O
® [ B CLAM
= 260 | C1
- &
240 | EURFER97
[ O
201 F82H
200 " 1 " 1 " 1 " 1 " 1 " 1 " 1

-80 =75 -70 -65 -60 =55 -50 -45 -40
DBTT /°C

Figure 12. USEs and DBTTs of the alloys.
4. Conclusions

The effects of alloying elements on inclusions, microstructures, and the mechanical performances
of 9Cr-RAFM steels were extensively illustrated, with the following results obtained from this analysis:

(1) The 9Cr-RAFM steels primarily contained microscale inclusions. The addition of Ti decreased
the average spatial diameter of the inclusions for the formation of new particles with Y and Ti.
The average spatial diameter of the inclusions decreased from 1.44 to 1.35 pm and the inclusion
densities increased from 2.84 x 10 to 4.63 x 104 m=.

(2) The addition of Y led to reactions with the Ti—O inclusions to form inclusions with a Ti-Y-O
core. Y then continued to react with O or S to form the outer layer of the inclusion. Some TiN
inclusions were precipitated during solidification.

(3) The addition of Ti could precipitate as fine (Ti, Ta) C carbide that was 50-200 nm in size, with much
finer carbides observed in the C2 alloy.
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4)

The addition of Ti (0.010 wt.%) improved the tensile strength (TS) and impact toughness of the
steel alloys and reduced the DBTT, which could be attributed to the refinement of the austenite
grains and the inclusions. However, the TS and the impact toughness remarkably decreased
as the Ti content increased from 0.01 wt.% to 0.050 wt.%, owing to the coarsening of both the
inclusions and grain size, as well as the precipitation of large TiN inclusions.
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