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Abstract: This paper deals with the development of a cyclic plasticity model suitable for predicting
the strain range-dependent behavior of austenitic steels. The proposed cyclic plasticity model uses the
virtual back-stress variable corresponding to a cyclically-stable material under strain control. This new
internal variable is defined by means of a memory surface introduced in the stress space. The linear
isotropic hardening rule is also superposed. First, the proposed model was validated on experimental
data published for the SS304 material (Kang et al., Constitutive modeling of strain range dependent
cyclic hardening. Int J Plast 19 (2003) 1801–1819). Subsequently, the proposed cyclic plasticity
model was applied to our own experimental data from uniaxial tests realized on 08Ch18N10T at
room temperature. The new cyclic plasticity model can be calibrated by the relatively simple fitting
procedure that is described in the paper. A comparison between the results of a numerical simulation
and the results of real experiments demonstrates the robustness of the proposed approach.

Keywords: cyclic plasticity; cyclic hardening; finite element method; austenitic steel 08Ch18N10T;
stainless steel 304

1. Introduction

The SS304 material, which includes 18 percent chromium and eight percent nickel, is the most
widely-used austenitic stainless steel. It has good drawability and welding properties together with
strong corrosion resistance. Austenitic stainless steel 08Ch18N10T is a chrome-nickel steel that is
stabilized by titanium. This steel is widely used in the nuclear industry for piping systems and reactor
internals in the Russian-designed VVERwater-water power reactors for nuclear power plants (NPP).
Reactor internals are the part of an NPP that provides support, guidance, and protection for the reactor
core and for the control elements. The block of guided tubes, the core barrel, the core barrel bottom,
and the core shroud are some of the internal components that are exposed to very harsh operating
regimes. The operating regime, e.g., heating and shut-downs, has a significant influence on the service
life of the components. The vibration and pressure pulsation of the water pumps also have to be taken
into account. These regimes expose the reactor internals to cyclic loading.

In practice, cyclic loading of structural parts can lead to the formation and propagation of cracks
through the process referred to as fatigue. In all areas of industry, the operational safety of machinery

Metals 2019, 9, 832; doi:10.3390/met9080832 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0002-3546-4660
http://dx.doi.org/10.3390/met9080832
http://www.mdpi.com/journal/metals
https://www.mdpi.com/2075-4701/9/8/832?type=check_update&version=2


Metals 2019, 9, 832 2 of 26

depends on an appropriate design process, which includes an analysis of all possible critical states.
In the low-cycle fatigue domain, seismic analysis and the simulation of operational tests of the piping
systems of NPPs may be used as an example. In these cases, it is crucial to have an accurate description
of the stress–strain behavior of the material that is being considered.

Phenomenological models [1] are the most widely-used models in practical applications.
Their goal is to provide an as accurate as possible description of the stress–strain behavior of the
material, which is found on the basis of experiments [2]. The stress–strain behavior of structural
materials under cyclic loading is very diverse, and a case-by-case approach is required [3].

The most progressive group of cyclic plasticity models, which are commonly encountered in
commercial finite element method programs, is the single yield surface models based on differential
equations. Their development is closely linked to the creation of a nonlinear kinematic hardening rule
with a memory term, introduced by Armstrong and Frederick in 1966 for the evolution of back-stress [4]
and the discovery by Chaboche [5] of the vast possibilities offered by the superposition of several
back-stress parts.

Developments in the field of non-linear kinematic hardening rules were mapped in detail in [1].
In the current paper, we will mention only the most important theories. In 1993, Ohno and Wang [6]
proposed two nonlinear kinematic hardening rules. For both models, it was considered that each
part of the back-stress had a certain critical state of dynamic recovery. Ohno–Wang Model I leads
to plastic shakedown under uniaxial loading with a nonzero mean axial stress value (no ratcheting),
and under multiaxial loading, it gives lower accumulated plastic deformation values than have been
observed in experiments. The memory term of Ohno–Wang Model II [6] is partially active before
reaching the critical state of dynamic recovery, which allows a good prediction of ratcheting under
uniaxial loading and also under multiaxial loading. The Abdel-Karim–Ohno nonlinear kinematic
hardening rule [7] was published in 2000. This rule is in fact a superposition of the Ohno–Wang I and
Armstrong–Frederick rules. The proposed model was designed to predict the behavior of materials
that exhibit a constant increment of plastic deformation during ratcheting. Other modifications to
this kinematic hardening rule, leading to a better prediction of uniaxial ratcheting and also multiaxial
ratcheting, were proposed by one of the authors of the paper [8]. In order to capture the additional
effects of cyclic plasticity, the concept of kinematic and isotropic hardening has been further modified.
Basically, the available theories can be divided into two approaches. The first approach is related to the
actual distortion of the yield surface [9–11], while the second approach is related to the memory effect
of the material [5,12]. The effect of cyclic hardening as a function of the size of the strain amplitude is
usually assumed in the second approach.

The first comprehensive model of cyclic plasticity with a memory surface was proposed by
Chaboche and co-authors in [5]. Chaboche’s memory surface was established in the principal plastic
strain space and captures the influence of plastic strain amplitude and also the mean value of the
plastic strain. The memory surface is associated with a non-hardening strain region in a material point,
as was explained by Ohno [12] for the general case of variable amplitude loading. Memory surfaces
established in the stress space have also been developed. Their main advantage is that they enable
more accurate ratcheting strain prediction to be achieved, as presented by Jiang and Sehitoglu in their
robust cyclic plasticity model [13].

It should be mentioned that both of these memory surface concepts lead to an increase in the
number of material parameters and in the number of evolution equations, which complicates their use
in engineering practice.

The original application of the memory surface, introduced by Jiang and Sehitoglu, was extended
by some authors of the present paper to capture the memory effect of ST52 material, in [14].
Uniaxial experiments indicated that, in the case of a cyclically-softening/hardening material, larger
strain amplitudes cause a significant change in the shape of the hysteresis loops. Only a very small
number of researchers in the field of cyclic plasticity have investigated the influence of strain amplitude
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on the cyclic hardening effect. Good agreement with experiments has been achieved in the case of steel
SS304 [15], but at the cost of defining more than 70 material parameters.

Some of the material models have been used to capture cyclic material behavior. To describe
the cyclic behavior of SAE4150 martensitic steel [16], Schäfer et al. considered three kinematic
hardening models, i.e., the Chaboche [5], Armstrong-Frederick [4] and Ohno–Wang [6] models.
They used these kinematic approaches to simulate the micromechanical behavior of the selected
material. Moeini et al. [17] used the Chaboche model [5] to predict the low cyclic behavior of
dual-phase steel. The selected kinematic hardening model provided good agreement with experimental
results. Msolli used the unified viscoplastic model [18] developed by Chaboche when modeling
the elastoviscoplastic behavior of JLF-1 steel at higher temperatures (400 ◦C and 600 ◦C). In this
study, the Chaboche model was slightly modified to capture cyclic hardening followed by cyclic
softening. The material model also falls into the category of coupled damage models. The material
model showed good agreement with the experimental results. The effect of torsional pre-strain on
low cycle fatigue performance of SS304 was studied in [19]. Kang et al. [20] used the viscoplastic
constitutive model with the extended Abdel-Karim–Ohno nonlinear kinematic hardening rule
with some temperature-dependent terms. This constitutive model was verified on uniaxial and
non-proportional multiaxial ratcheting experimental results at room temperature and at elevated
temperatures. Another viscoplastic constitutive model was used by Kang, Gao, and Yang [21] in their
study to simulate uniaxial and multiaxial ratcheting of cyclically-hardening materials. They used the
Ohno–Wang kinematic hardening rule with the critical state of dynamic recovery. The effect of loading
history was also considered by introducing a fading memorization function for the maximum plastic
strain amplitude.

This paper shows the advantages of using the memory surface established by Jiang and Sehitoglu
in 1996 [13] to treat the impact of the strain amplitude on the material stress response. The new
theory is shown on the kinematic hardening rule based on Chaboche’s model with three back-stress
parts, but it can also easily be applied to the Abdel-Karim–Ohno model or its modified version with
promised ratcheting prediction [8]. Recently, an approach was introduced that takes into account a
new internal variable referred to as virtual back-stress, corresponding to a cyclically-stable material.
This provides an easy way to identify the parameters and to use fewer material parameters than in
earlier models, for example [21]. New experimental results from uniaxial fatigue tests realized on
08Ch18N10T at room temperature are presented and subsequently used for the validation of the new
cyclic plasticity model.

2. New Constitutive Model

In this paper, isothermal conditions are considered, and the influence of the strain rate is neglected.
However, the model can be extended by standard techniques for use in the area of viscoplasticity [7].

2.1. Yield Surface and Flow Rule

In this work, the concept of a single yield surface for metallic materials is used, based on the von
Mises yield function, which can be expressed for the general mixed hardening model as:

f =

√
2
3
(s− a) : (s− a)−Y = 0, (1)

where s is the deviatoric part of stress tensor σ, a is the deviatoric part of back-stress α, and the current
size of yield surface (or the actual yield stress) Y is defined as the sum of the isotropic variable R and
the initial size of the yield surface σy (the yield strength) by the equation:

Y = σy + R. (2)
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It should be mentioned that the colon between the second-order tensors in Equation (1) denotes
their inner product x : y = xijyij (considering the Einstein summation convention).

The associative plasticity is considered, so the normality flow rule is considered in the case of
active loading:

dεp = dλ
∂ f
∂σ

. (3)

This expresses mathematically that the plastic strain increment dεp is collinear with the exterior
normal to the yield surface for the current stress state. In associative plasticity, the scalar multiplier dλ

is equal to the accumulated plastic strain increment dp, which is defined as:

dp =

√
2
3

dεp : dεp. (4)

2.2. Virtual Back-Stress

A new internal variable is established to provide an easy way to calibrate the model. The variable is
the back-stress of a cyclically-stable material corresponding to the response of the material investigated
under a large strain range. It will be referred to as the virtual back-stress. The Chaboche superposition
of the back stress parts is used in the following form:

αvirt =
M

∑
i=1

αi
virt (5)

taking into consideration the nonlinear kinematic hardening rule of Armstrong and Frederick [4] for
each part:

dαi
virt =

2
3

Cidεp − γiα
i
virtdp, (6)

where Ci and γi are material parameters. For all calculations in this paper, the superposition of three
kinematic hardening rules (M = 3) will be used.

It should be mentioned that the virtual back-stress is used only in the definition of the memory
surface, which will be described in the next section. Zero components of the virtual back-stress are
considered in the initial state. The increment of the virtual back-stress is calculated according to
Equations (5) and (6) assuming the current increment of accumulated plastic strain dp and the current
increment of plastic strain tensor dεp in each iteration of the local problem. Further details of the
implementation algorithm that is used can be found in [22], where a more complex model with the
memory surface of Jiang and Sehitoglu [13] was considered.

2.3. Memory Surface

To provide a correct description of the cyclic hardening for various strain ranges, a memory surface
in the stress space is established. The concept is analogous to the theory of Jiang and Sehitoglu [13].
A scalar function is introduced to represent the memory surface in the deviatoric stress space:

g = ‖αvirt‖ − RM ≤ 0, (7)

where RM is the size of the memory surface and ‖αvirt‖ is the magnitude of the total virtual back-stress,
which is defined as ‖αvirt‖ =

√
αvirt : αvirt. The evolution equation ensuring the possibility of memory

surface expansion, Figure 1, is therefore:

dRM = H(g) 〈L : dαvirt〉 , (8)
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where

L =
αvirt
‖αvirt‖

. (9)

Contraction of the memory surface is not allowed in this paper. It can be implemented according
to the stress space-based memory surface concept of Jiang and Sehitoglu [13].
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Figure 1. Expansion of the memory surface and the stabilized memory surface. (a) Equation (13) is not
active; (b) Equation (13) is active.

2.4. Kinematic Hardening Rule

Consistent with the previous sections, the back-stress is composed of M parts:

α =
M

∑
i=1

αi, (10)

but the memory term is dependent on the size of memory surface RM and accumulated plastic strain
p; thus:

dαi =
2
3

Cidεp − γiφ(p, RM)αidp, (11)

where Ci and γi are the same as in Equation (6). The multiplier φ of parameters γi is composed of a
static part and a cyclic part:

φ(p, RM) = φ0 + φcyc(p, RM), (12)

where φ0 has the meaning of a material parameter, while the cyclic part is variable and can change
only in the case of ṘM = 0. In this case, the evolution equation is defined in the following way:

dφcyc = ω(RM) ·
(
φ∞ + φcyc(p, RM)

)
dp. (13)

φ∞(RM) = A∞R4
M + B∞R3

M + C∞R2
M + D∞RM + F∞, (14)

ω(RM) = Aω + BωR−Cω
M for RM ≥ RMω, (15)
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ω(RM) = Aω + BωR−Cω
Mω otherwise, (16)

where A∞, B∞, C∞, D∞, F∞, Aω, Bω, Cω, RMω, and RM0 are additional parameters to Chaboche’s
material parameters Ci and γi. The evolution parameter ω directs the rate of cyclic hardening behavior
according to the current size of memory surface RM.

2.5. Isotropic Hardening Rule

Continuous cyclic hardening has been observed for austenitic stainless steels for a large strain
range under uniaxial loading [15]. To capture this behavior, we introduce the linear isotropic
hardening rule:

dR = R0(RM)dp, (17)

where parameter R0 is dependent on the size of the memory surface:

R0(RM) = ARR2
M + BRM + CR for RM ≥ RM0, (18)

R0(RM) = ARR2
M0 + BRM0 + CR otherwise, (19)

because of the strong dependence on the strain range observed in the experiments [15].

3. Identification of Material Parameters and Model Verification on SS304 Data

The cyclic plasticity model was implemented in the ANSYS FE code, using the algorithm described
in [22]. The methodology for calibrating the proposed material model will be explained according to
the classical Chaboche material model, which requires the following parameters to be identified: σy, E,
µ, C1, C2, C3, γ1, γ2, and γ3, where E is the Young modulus and µ is the Poisson ratio.

Generally, 14 additional parameters have to be specified for the proposed cyclic plasticity model:
φ0, A∞, B∞, C∞, D∞, F∞, Aω, Bω, Cω, RM0, RMω, AR, BR, CR.

It is customary to determine the Young modulus E from cyclic curves rather than from a tensile
test. The Poisson ratio µ can be determined by standard procedures. The material parameter E was
established from the elastic region of the largest available hysteresis loop, using a linear regression.
The initial yield strength σy was chosen to get the best possible description of the static stress–strain
curve using Equation (23).

A sequence of steps is retained that should be applied in the following description of the
calibration of the proposed model. The sections are named according to the required experimental data.
The parameters are identified on the basis of the experimental set of stainless steel SS304, available at [15].

3.1. Uniaxial Large Hysteresis Loop

It is well known that the material parameters of the Chaboche model can be determined (under
cyclic loading) from the cyclic strain curve or from the large uniaxial hysteresis loop [23]. Figure 2
shows us the results for identifying the parameter in the case of stainless steel 304. According to [24],
it is possible to use a relation that defines the loading part of the stabilized hysteresis loop in the
stress—plastic strain diagram:

σx = σy + αvirt, (20)

σx = σy +
C1

γ1

(
1− 2e−γ1(εp−(−εpL))

)
+

C2

γ2

(
1− 2e−γ2(εp−(−εpL))

)
+ C3εp, (21)
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where εpl is the plastic strain corresponding to the compressive peak strain and σx is the axial stress.
Relation (21) is valid in the case of γ3 = 0 and for a large hysteresis loop.

If the Chaboche model is calibrated using the large hysteresis loop (∆ε = 6%), it predicts a higher
stress amplitude for small strain amplitudes than was observed in the experiments. This phenomenon
is shown for 1% strain amplitude in Figure 2. For this reason, a new cyclic plasticity model is needed.
Parameters Ci and γi can be obtained for the newly-proposed model after applying Relation (21) to
data from the largest available hysteresis loop, while parameter γ3 = 0. In our case, we have used the
Levenberg–Marquardt algorithm of the nonlinear least squares method. It is now clear that material
parameters Ci and γi in the new model can be estimated on the basis of a single uniaxial hysteresis
loop. The applicability of the new model to different strain ranges is given by the multiplier φ in
Equation (11). Its evolution depends on memory surface size RM and accumulated plastic strain p.
How the necessary parameters are identified will be explained below.
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Figure 2. Prediction of two uniaxial hysteresis loops of SS304 (experimental data were taken from [15]).

3.2. Static Strain Curve

Under monotonic loading, the kinematic hardening rule of the proposed model is reduced to:

dαi =
2
3

Cidεp − γiφ0αidp. (22)

If isotropic hardening is neglected, the material parameter φ0 can be determined by a constitutive
relation commonly used for the Chaboche model:

σ = σy +
C1

γ1φ0

(
1− e−γ1φ0εp

)
+

C2

γ2φ0

(
1− e−γ2φ0εp

)
+ C3εp. (23)

For stainless steel SS304, the value of the parameter is φ0 = 4.5. The material model prediction of
the static stress–strain curve is depicted in Figure 3.
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Figure 3. Prediction of static and cyclic uniaxial stress–strain curves; the experimental data for SS304
were reproduced from [15].

3.3. Cyclic Stress–Strain Curve

For the Chaboche model, the relation between stress amplitude and plastic strain amplitude can
be derived, in accordance with [23], in the form:

∆σ/2 = σy +
C1

γ1
tanh

(
γ1∆εp/2

)
+

C2

γ2
tanh

(
γ2∆εp/2

)
+ C3∆εp/2. (24)

By analogy, the relation for the cyclic hardening curve can be obtained for the proposed
constitutive model. Neglecting the isotropic part, we can write,

∆σ/2 = σy +
C1

γ1φ∞
tanh

(
γ1φ∞∆εp/2

)
+

C2

γ2φ∞
tanh

(
γ2φ∞∆εp/2

)
+ C3∆εp/2.

(25)

This is a scalar nonlinear equation, which can be solved for selected experimental points,
for example by the successive substitution method. Afterwards, the φ∞ values for each peak of
the hysteresis loop are fitted by the approximate function (13).

The experimental cyclic stress–strain curve data considered without linear isotropic hardening
(published in [15]) and the predicted data corresponding to the proposed model are also shown in
Figure 3. The cyclic stress–strain curve of the classic Chaboche model, calibrated using the large
hysteresis loop (∆ε = 6%), is also presented in Figure 3. It is again clear that a more robust model
is needed.

3.4. Cyclic Hardening Curves

In order to provide a good description of the cyclic hardening properties for a wide range of strain
amplitudes, it is necessary to identify the isotropic hardening and kinematic hardening functions.

The remaining parameters Aω, Bω, Cω, RMω, RM0, AR, BR, and CR were estimated by a fitting
procedure, using the nonlinear relations between the peak stress and the accumulated plastic strain
p for all available cases of constant strain amplitude tests for the particular type of stainless steel
(∆ε = 1, 2, 4, 6, and 8%).

The isotropic hardening parameters were determined from the slope of each cyclic
hardening/softening curve in a saturated state. More precisely, a unique value for each case of a strain
range was obtained, which was afterwards used for approximation by (18) and (19). The estimated
material parameters of the proposed cyclic plasticity model are stated in Table 1.
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Note that parameter γ3 was equal to 10, which corresponds more to the behavior of metallic
materials, e.g., if ratcheting occurs under stress-controlled loading with a nonzero mean axial
stress value.

Table 1. Material parameters of the proposed model for SS304.

E [MPa] ν σy [MPa] C1 [MPa] γ1 C2 [MPa]
196,000 0.3 150 150,000 622 19,827

γ2 C3 [MPa] γ3 A∞ B∞ C∞

128 2000 10 0 1.15× 10−7 −1.23× 10−4

D∞ F∞ AR [MPa−1] BR CR [MPa] RM0 [MPa]
0.032 −3.6 0.000915 −0.5 60.7 305
Aω Bω Cω RMω [MPa] φ0

0 4.02× 10−17 6.424 344 4.5

3.5. Prediction Results for SS304

For implementation in ANSYS, the user subroutine called USERMAT1D.F, which was originally
distributed for bilinear isotropic hardening. It was necessary to modify the user subroutine according
to the used radial return algorithm [22]. A single LINK180 element was used for all analyses in ANSYS,
because only uniaxial loading cases are considered in this paper. Material SS304, which was used
as an example to explain the calibration procedure, exhibited very strong cyclic hardening at larger
amplitudes of plastic strain. All investigated cases corresponded to the uniaxial experiments published
by Kang et al. [15]. Predictions of cyclic hardening, corresponding to the proposed model, are shown
together with the results of experiments in the form of peak tensile stress values as a function of the
number of cycles (Figure 4).
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Figure 4. A comparison of simulations and experiments in the form of tensile peak stress variation;
uniaxial strain controlled tests (the experiment was taken from [15]).

The results of the prediction of the transition behavior of the SS304 steel material during uniaxial
cyclic loading (Figure 4) were supplemented by hysteresis loops for strain amplitudes of 1% and
6%, respectively (Figures 5 and 6). These results can be compared with the experimentally-obtained
hysteresis loops published in [15].
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Figure 5. Prediction of the uniaxial test with ∆ε = 1% (experimental data were taken from [15]).

Another simulation was of a cyclic test with a linearly-increased/-decreased strain amplitude
composed of five identical blocks. In each block, the strain range was increased within 20 cycles to a
value of 5%, and subsequently, it was reduced, with the same increment. The resulting stress–total
strain dependence for the strain range increasing stage is shown in Figure 7. The increasing amplitude
of the stress was more progressive in the prediction than in the experiment, as can also be seen in
Figure 8.

Figure 8 presents a comparison with an experiment, in which the peaks of the hysteresis loops are
plotted for the first and fifth loading block. The relative error of the prediction was about 12.3% in the
first block (for amplitude of strain 2.5%), but it was reduced to 6.7% in the fifth loading block.

The proposed model was able to capture the static and cyclic stress–strain curve for SS304 correctly.
It also simulated well the shapes of the stress–strain hysteresis loops in all investigated cases, as well
as the Bauschniger effect, which became weaker for higher strain ranges. The non-Masing behavior of
the SS304 material was very strong, and this can be modeled better with superposition of the kinematic
hardening and isotropic hardening, as in the proposed constitutive model. For the incremental test,
the prediction was very good, especially in the fifth loading block. The overprediction of the peak
stresses in the first block of loading can be reduced, for example, by introducing memory surface
contraction, as was proposed in the original model of Jiang and Sehitoglu [13].
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Figure 6. Prediction of the uniaxial test with ∆ε = 6%(experimental data were taken from [15]).
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peak stress for the incremental test (the experiment was taken from [15]): (a) first block, (b) fifth block.

4. Application to Uniaxial Cyclic Tests of 08Ch18N10T Stainless Steel

4.1. Identification of the Material Parameters for 08Ch18N10T Stainless Steel

The model was also calibrated for original experimental data on austenitic steel 08Ch18N10T [25].
A total of 12 uniaxial specimens were used for the material parameters’ identification process (marked
by the abbreviation IDF in the following text, each specimen representing a different level of loading).
According to the ASTM standard [26], the classic uniform-gauge geometry of the specimen is limited up
to the amplitude of the total strain εa = 0.5%. For higher strain levels, an hour-glass type geometry is
required. According to this standard, the IDF specimens were compiled from uniform-gauge geometry
(specimens IDF1–IDF5) and hourglass geometry (specimens IDF6–IDF12); see Figure 9.

12

R20

6 10

Lext = 10

a)

ellipse

18

6

6 10

Lext = 20

b)

Figure 9. Specimen geometries: (a) uniform-gauge; (b) hourglass.

Another 17 uniaxial specimens (all with hourglass geometry) were used to verify the prediction
ability of the model.

The loading force F applied to the IDF specimen was known, as was the strain field of the surface
of the specimen. The strain field was measured by the extensometer in the case of uniform-gauge
geometry, or by the digital image correlation method in the case of hourglass geometry. Considering
the uniaxial stress field in the cross-section of a specimen, the stress can be determined as σ = F/A,
where A is the cross-section surface of the specimen. This allowed the use of a different calibration
process, based on knowledge of the shape of the stress–strain hysteresis loops in all cycles during the
experiment to failure.

Let us select one hysteresis stress–strain loop of a point on the specimen representing one loading
cycle. This can be optimally simulated by a set of material parameters C1, γ1, C2, γ2, C3, γ3, and σy.
However, in the next cycle, the optimal set of these parameters can be slightly different, as can the set
of parameters of a specimen with different loading conditions. This material model uses the memory
surface concept by setting these material parameters as functions of RM and making these coefficients
dependent on the loading history and the loading level conditions.
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The material model did not include a simulation of the material damage process, so only
experimental data up to damage were used for the calibration. The number of cycles used was
Nd, and this number corresponded to the drop in the loading force during the experiment by 2%, due
to crack initiation and propagation, leading to failure.

First, the fatigue life was divided into about 10 evenly-spaced parts by selecting hysteresis loops
(SHLs), and the cycle number of each selected hysteresis loop (SHL) is given as n ' Nd/k, where
k = 1, 2, . . . , 10. The Young modulus E, the Poisson ratio ν, and the yield strength σy were determined
from the tensile test according to the ISO standard [27].

σy can be interpreted as the point where the linear part of the tensile curve turns into the non-linear
part (see Figure 10). The root mean squared error method (RMSE) can be applied to find the point.
In the tensile test (or in the first cycle of the cyclic test), the yield strength σy corresponded to RMSE ≈ 8.
Applying RMSE = 8 to each SHL, the actual yield stress Y was found. This shows the development of
the actual yield stress Y during the fatigue life; see Figure 11.

∝ RMSE

ǫ[−]

σ[MPa]

Figure 10. Actual yield stress determination.

Two SHLs were chosen, the bigger one and the smaller one, each with cycle number n = Nd (the
last cycle). The Chaboche material model parameters C1, γ1, C2, γ2, C3, and γ3 were found using an
optimization process. The target function was set to the optimal shape match between the simulation
and experiment of the two SHLs. The result is shown in Figure 12.

Knowing the Chaboche material parameters, a first guess of the memory surface size for each
specimen was determined, using Equations (5)–(9). The formulation of RM and the constant amplitude
of the loading conditions resulted in fast saturation of the RM value for each specimen (after the
first cycle), which made the calibration process easier.

The yield stress was now fitted as a function of RM, using Equations (17)–(19), by finding material
parameters AR, BR, and CR. Using the tensile test experimental data and performing a simulation
of this test, parameter φ0 was found using Equation (11) as an optimal value of φ for the tensile
test simulation. The value of function φ from Equation (11) was found for SHLs, using a similar
optimization process as for determining the Chaboche material parameters. φ∞ was the value of φ for
n = Nd, and from Equation (14), φ∞ was then set as a function of RM by finding material parameters
A∞, B∞, C∞, D∞, and F∞. Function ω determined the transition of function φ between its border
values φ0 and φ∞. Knowing the course of function φ during the fatigue life, ω was determined as a
function of RM by finding material parameters Aω, Bω, and Cω from Equation (15). This result was
not necessarily optimal, so one more optimization was performed to find better φ∞ and ω material
parameters. The target function was set to the best possible match of the amplitude stress response
between simulation and experiment during the whole fatigue life (not only SHLs).
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Figure 11. Actual yield stress development during fatigue life evaluated for 08Ch18N10T.
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Figure 12. Chaboche coefficients fitting: (a) small loop; (b) large loop.

The RM value for each specimen was determined only as a first guess, so a number of iterations
of the whole calibration process had to be carried out to find the final and optimal set of material
parameters. The optimal material parameters are presented in Table 2.

Table 2. Material parameters of the proposed model for 08Ch18N10T.

E [MPa] ν σy [MPa] C1 [MPa] γ1 C2 [MPa]
210,000 0.3 150 63,400 148.6 10,000

γ2 C3 [MPa] γ3 A∞ B∞ C∞

911.4 2000 0 −1.441× 10−9 1.911× 10−6 −8.951× 10−4

D∞ F∞ AR [MPa−1] BR CR [MPa] RM0 [MPa]
1.688× 10−1 −10.6 1.264× 10−4 −4.709× 10−2 3.801 225.4

Aω Bω Cω RMω [MPa] φ0

0 3.456× 10−11 −4.197 130.5 2.318
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4.2. Uniaxial Prediction for 08Ch18N10T Stainless Steel

The proposed model was used for an FE simulation of the uniaxial experimental program.
The error of the amplitude of the force between experiment and simulation is formulated as:

Error =
Fa exp − Fa sim

Fa exp
· 100[%] (26)

The mean error over the specimen is defined as:

Mean Error =
1

Nd

N

∑
n=1

Errorn (27)

where Errorn is the error in cycle n and N is the overall number of cycles in the simulation. The total
error over all specimens is calculated as:

Total Error =
1
S

S

∑
s=1

Mean Errors = 4.83% (28)

where Mean Errors is the mean error of specimen number s and S = 17 is the total number of specimens.
The results of the experiments and the FEA simulations of all 17 uniaxial specimens are shown in
Figures 13–29.
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Figure 13. Specimen E9-1.
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Figure 14. Specimen E9-2.
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Figure 15. Specimen E9-3.
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Figure 16. Specimen E9-4.
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Figure 17. Specimen E9-5.
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Figure 18. Specimen E9-6.
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Figure 19. Specimen E9-7.
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Figure 20. Specimen E9-8.
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Figure 21. Specimen E9-9.
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Figure 22. Specimen E9-10.
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Figure 23. Specimen E9-11.
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Figure 24. Specimen E9-12.
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Figure 25. Specimen E9-13.
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Figure 26. Specimen E9-14.

0 50 100 150 200
Number of Cycles [-]

11

12

13

14

15

16

17

18

19

A
m

pl
itu

de
 o

f F
or

ce
 [k

N
]

0

2

4

6

8

10

12

14

16

18

20

E
rr

or
 [%

] Experiment
Simulation
Error
Mean Error

Figure 27. Specimen E9-15.
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Figure 28. Specimen E9-16.
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Figure 29. Specimen E9-17.
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5. Discussion

As was shown in the previous section, the proposed model was able to capture the static curve and
the cyclic stress–strain curve of SS304 very well. It also simulated well the shapes of the stress–strain
hysteresis loops in all investigated cases, as well as the Bauschniger effect. The non-Masing behavior
of the SS304 material was very strong, and this can be modeled better by superposing the kinematic
and isotropic hardening, as proposed in the new constitutive model.

For the incremental test, the prediction was very good, especially in the fifth loading block, where
it outperformed Kang’s model [15]. Overprediction of the peak stresses in the first block of loading
can be reduced, e.g., by introducing the memory surface contraction, as was proposed in the original
model of Jiang and Sehitoglu [13].

The proposed model also provided a good description of the uniaxial tests of austenitic steel
08Ch18N10T. It captured the strain range-dependent cyclic hardening of this material, with an average
simulation error of 4.83%. The proposed model slightly overestimated the initial phase of hardening.
Furthermore, the model was unable to describe the softening at the end of the fatigue life caused by
the fatigue crack growth. This phenomenon was not included in the model.

Figure 14 (Specimen E9-2) shows the attentive reader what seems to be a jump on the error axis
at about 8200 cycles. Zooming on the data shows that the amplitude of the force predicted by the
simulation was constant, while there was a relatively small gradual increase in the amplitude of the
force in the experiment that took place over dozens of cycles. This is a common phenomenon in
cyclic testing. Along with the relatively small value of the error between experimental prediction and
simulation in that area, it optically intensified the jump effect in the graph.

6. Conclusions

In this paper, a new model of cyclic plasticity was proposed for describing the cyclic hardening of a
material, when there is an influence of strain amplitude, based on the Jiang–Sehitoglu memory surface
stated in the stress space. The introduction of a new internal variable in the form of virtual back-stress,
which characterizes the behavior of the material in the case of a large strain amplitude, significantly
reduced the number of material constants. Moreover, these parameters were now relatively easy
to identify. Particular effects of cyclic plasticity could be described thanks to the introduction of
dependency between selected parameters of the Chaboche kinematic hardening rule and the nonlinear
isotropic hardening rule and the radius of memory surface RM. The model contained 23 parameters in
total, two of which were considered as zero for the SS304 material used here. The number of required
parameters was less than one-third of the number required for the Kang model [15], while maintaining
the accuracy of the description of the stress–strain behavior. Acceptable results were also obtained
by the new cyclic plasticity model in simulations of our own experimental data for austenitic steel
08Ch18N10T. The idea of a stress-based memory surface applied to a virtual back-stress can also be
used with other nonlinear kinematic hardening rules. The authors will focus on incorporating the
modified Abdel-Karim–Ohno hardening rule [8] into the proposed model to get a better prediction of
the ratcheting and stress relaxation of stainless steels in future works. Some interesting results of the
Abdel-Karim–Ohno model enhanced by a memory surface can be found in [28].
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