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Abstract: The quality of the resistance spot weld is predicted qualitatively using information from
the weld’s external apparent image. The predicting tool used for weld qualities was a convolution
neural network (CNN) algorithm with excellent performance in pattern recognition. A heat trace
image of the weld surface was used as information on the external apparent image of welds. The
materials used in the experiment were advanced high strength steel (AHSS) with 980 MPa strength,
and uncoated cold-rolled (CR) steel sheets and galvannealed (GA) steel sheets were used. The
quantitatively predicted weld quality information contained tensile shear strength, nugget
diameter, fracture mode of welds, and expulsion occurrence. The predicted performance of the
verification step of the model determined through the learning process was as follows; the
predicted error rate for tensile shear strength and nugget diameter were 2.2% and 2.6%,
respectively. And the predicted accuracy on fracture mode and expulsion occurrence was 100%.

Keywords: resistance spot welding; weld quality convolution neural network;
surface appearance image

1. Introduction

The ability to predict or evaluate the quality of resistance spot welding (RSW) in real-time using
nondestructive methods is key to the automation of automotive assembly processes. The tensile
shear strength (TSS) of the weld, nugget diameter, button size after the peel test, and failure mode
(interfacial fracture or pull-out fracture) have generally been used as evaluation items of the
conventional resistance spot welding. However, since the quality evaluation method requires time
and manpower, many studies have been conducted to predict the quality nondestructively. Several
research results predicted quality using the process variable setting conditions. Hao et al. [1] studied
statistical models on nugget diameter, weld strength, and expulsion according to process variable
conditions using multiple linear regression analysis. Muhammad et al. [2] proposed the models to
predict the growth of nugget diameter and heat-affected zone (HAZ), which consisted of welding
current, welding time and hold time as variables using the surface response analysis method in RSW
of mild steel. Darwish et al. [3] studied the prediction model of TSS, which consisted of welding
current, electrode force, welding time, and material thickness as variables using surface response
analysis method in aluminum resistance spot welding. Choi et al. [4] studied the optimal welding
conditions with electrode force and welding current as variables using the response surface analysis
method and demonstrated that the minimum nugget diameter of 4yt guaranteed the minimum
button fracture in RSW of 980 MPa third-generation AHSS. Studies on the quality prediction of
resistance point welds using numerical analysis have been reported as follows. Nied et al. [5]
reported that the simulated results were very excellent when the finite element modeling of RSW
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process included heat transfer-electrical behavior-mechanical balance equations and
temperature-dependent material properties. The results of the study on the quality evaluation of
resistance spot welds using nondestructive detection technology were also reported. Denisov et al.
[6] measured the nugget diameter using the 2D ultrasonic arrays technique (PAUT). However, this
method has shown the disadvantage of requiring expensive ultrasonic equipment or added
processes. Predictive models by statistical regressive methods had limitations inaccurate quality
predictions because the condition of the electrode surface in continuous welding did not reflect
changes in weld quality due to contamination.

Studies of predicting the weld quality using measured waveforms of welding process variables
(current, voltage, dynamic resistance, displacement, etc.) have been reported. Johnson et al. showed
that the weld quality was different due to variations in electrode displacement [7]. Dickinson et al.
[8] studied the mechanism for controlling expulsion occurrence conditions using a dynamic
resistance monitoring system that can continuously monitor voltage, current, resistance, and power
during RSW. Brown et al. [9] tried to applicate data of standardized dynamic resistance waveform,
welding current waveform and electrode diameter to the artificial neural network to predict the
nugget diameter, which is closely related to weld strength. Dilthey et al. [10] reported a neural
network, in which changes in welding parameters, test materials, and electrode wear are considered,
that can perform very well in evaluating the quality of spot welds. Wan et al. [11] proposed a weld
quality monitoring approach based on dynamic resistance signal to predict the nugget size and
failure load for the resistance spot welding of titanium alloy. Xing et al. [12] proposed a scheme of
online quality monitoring of RSW using the random forest (RF) classification featuring with
dynamic resistance signals. Also Hwang et al. [13] reported that the predicted error rate was within
5% using adaptive resonance theory (ART) artificial neural network (pattern recognition). The input
parameters used were welding current, the voltage between electrodes and welding power
waveforms and the output parameters used were TSS and the nugget diameter.

Some studies on the quality evaluation of welds through image analysis have also been
reported. Ruisz et al. [14] reported quality evaluation of resistance spot weld based on computer
vision algorithm. Simoncic et al. [15] predicted the resistance spot weld strength from electrode tip
displacement/velocity by image processing.

On the other hand, light-weighting of the automotive body to improve fuel efficiency has been
rapidly taking place around the world. As a result, the application of third-generation AHSS steel is
expanding. The optimal welding conditions of these GPa-grade steels have a very narrow range
compared to conventional AHSS steels, and the interfacial fracture occurs frequently in the weld
fracture mode. Also, differences in weld quality may occur under the same welding conditions.
Therefore, it is urgent to predict the quality of the welds in RSW of these third-generation AHSS
steel.

In RSW, the shape of the weld ultimately has an important effect on the weld quality, no matter
what welding equipment is used. In RSW, a heat trace is produced around the weld surface due to a
high current input. The heat traces are formed in round shapes and colors. The greater the heat input
and the greater the melt, the greater the range of the heat trace and the deeper the indentation depth.
In other words, the increase in weld current and weld time will result in an increase in the weld and
HAZ, while increasing the size of the same time.

The purpose of this study is to suggest how to predict the weld quality of GPa-grade steel,
where the quality of welds (TSS, nugget diameter, and fracture mode) varies significantly despite
slight changes in the process setting conditions. For this purpose, a heat trace image of the surface
appearance of welds was used as a determinant factor of weld quality after welding of RSW of a
two-layer 980 MPa steel. These images are slightly different between zinc-coated steel and uncoated
steel in the case of GPa-grade steel with the same strength. In this study, these heat trace images
were used as an input variable, and the qualities of the weld (TSS, nugget diameter, and fracture
mode of the weld (interfacial or button)) were predicted through the convolution natural network
(CNN) algorithm using uncoated cold-rolled (CR) and galvannealed (GA) steel sheets. The
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prediction performance of qualities was investigated in the learning process and verification process
with different experimental data sets.

2. Experiments and Learning Methods

2.1. Materials and Welding Conditions

The materials used were GA steel sheet and CR steel sheet with the tensile strength of 980 MPa
(21% elongation). The thickness of the material is 1.2 mm for both sheets. The test specimen was
prepared by ISO 10447:2015 specifications. The length and width of specimen used were 100 mm
and 30 mm, respectively with the overlap of 30 mm as shown in Figure 1. The chemical composition
and mechanical properties of the materials used are shown in Table 1. The welding equipment used
in the experiment is a medium frequency direct current (MFDC) welder.
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Figure 1. Geometry of welding specimen.

Table 1. The chemical composition and mechanical properties of 980 MPa-grade GA, CR steel.

Chemical composition (wt. %) Mechanical properties
Materials . Ultimate Tensile Elongation  Yield Strength
Si Mn Fe Strength %) (MPa)
(MPa)
GA steel 0.22 1.62 2.12 Bal. 988 15 400
CR steel 0.20 1.59 2.40 Bal. 990 15 500

Dome type electrode with an electrode face diameter of 6 mm is applied, whose detailed
dimensions are shown in Figure 2.
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Figure 2. Schematic diagram of electrode.
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The process setting conditions of RSW for CNN learning are shown in Table 2. Welding
parameters mentioned in Table 2 are determined through the weld lobe for same base material and
joint geometry used in this study. To reduce test errors, 10-iteration welding was conducted for each
welding condition. Five of ten welded specimen were used to measure TSS, while the other five were
used to measure the nugget diameter. Weld current was set to three levels of 4.0, 5.5, and 7.0 kKA.
Weld time was also set to three levels of 250, 333, and 417 ms. The electrode force was fixed at 300
kgf.

Table 2. Welding conditions of training data set.

Welding Conditions 980 MPa-Grade GA Steel 980 MPa-Grade CR Steel

Welding current (kA) 4.0,5.5,7.0
Welding time (ms) 250, 333, 417
Electrode Force (kgf) 300

2.2. Weld Surface Appearance Image Processing
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Figure 4. Image data conversion process.

Figure 3 is a conceptual diagram of the surface appearance of the weld. Though not expressed
in Figure 3, the photographing was carried out within an enclosed space where no outside light
could enter. Illumination was used for the same exposure to the surface of the weld. The distance
between the illuminating and the surface of the weld was 2 m and illuminated with an angle of 30°
from vertical. The color of the light was white. The amount of light is 1600 Im. The distance between
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the surface of the weld and the camera was 120 mm vertically. The pixel size of the image taken was
128 x 128. The original image taken was a color image, but in this study, it was converted to a gray
image and used as a quality prediction video input data. The data values of each pixel of the
converted gray image were normalized as values between [0, 1] with the minimum value of 0 and
the maximum value of 1. The mapped image between 0 and 1 and those image processing process is
shown as Figure 4.

2.3. Convolution Neural Network Algorithm for Prediction of Weld Quality

In this study, CNN was used to predict the quality of RSW. CNN is one of the deep learning
algorithms that showed excellent performance in image recognition. In the general in-depth neural
network, the meaning of successive lines and shapes of images is occasionally ignored when
analyzing images. Each pixel datum affects all nodes. Input data of the general in-depth neural
network have been flattened with simple one-dimensional vector data, and have been learned. So,
limitations in the prediction accuracy have been shown. However, the convolution layer uses a
kernel of a specified size in the shape of the image data. Image is reconstructed by extracting
characteristic variables from areas as large as kernel sizes. So, the successive lines or characteristic
data influences the results. As a result, the convolution neural network shows the prediction
performance with higher accuracy in image recognition. Figure 5 shows the structure of CNN
applied in this study. A total of 90 heat trace images were taken for each parameter of welding in
two types of steel. The pixel size of each image was 16,384 pixels (128 x 128). After converting to
Gray image, all pixel data were normalized as values between 0 and 1. Mapped image data was used
as input data. A total of four CNN models for predicting the weld qualities were obtained using the
input mapped data. Each model predicts the TSS, nugget diameter, fracture mode, and expulsion
occurrence, which are criteria for determining the quality of RSW. Therefore, each model has
different weights and biases.

Post data process Convolution layer Fully connected layer
Output data
Image size Image size « Tensile shear strength
(64,64) (32,32) + Nugget size
Image size « Fracture mode

(128,128)

e e

Input Gray
image data scale
90ea

« Expulsion

Normalizing

Convolution Pooling Convolution Pooling Node Node Node Node Node Node Node
layer 1 — kernel Layer  layer 2 —Kernel Layer 200 400 800 1200 800 400 200
amount 32ea 2,2 amount 32ea 2,2

Figure 5. Convolution neural network algorithm for weldability prediction.

Two layers were used as the hidden layer of CNN for predicting the TSS and the nugget
diameter. Also, two layers were used as pooling layer. One layer with 200 nodes was used as the
hidden layer of CNN for predicting the fracture shape and the expulsion occurrence. The method of
slope used (optimizer) used Adam. The rectified linear unit (ReLU) function was used as an
activation function for predicting the TSS and the nugget diameter. The sigmoid function was used
as an activation function for predicting the fracture shape and the expulsion occurrence. The reason
for using the sigmoid function is that it is more accurate than the ReLU when predicting the results
by classifying the results of the prediction by 0 and 1, such as fracture shape and expulsion
occurrence. The function of the ReLU and its differential values are shown in Equations (1) and (2),
respectively.

_(x(x>0)
y_{O(xSO) M
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The ReLU function has zero slope value when the output value is negative and one when the
output value is positive. Even if the neural network layer is thick, the differential value is 1 when the
output value is positive, so the parameter renewal of each node is made during an error
backpropagation procedure. In this process, the characteristics of input data greatly affect parameter
updates. Thus, the ReLU function contributes to increasing the accuracy of the neural network
model. The exact parameter values of the applied CNN algorithm are specified in Table 3.

Table 3. Convolution neural network algorithm for weldability prediction.

Convolution Layer 1

Kernel amount 32

Kernel size 44

Pooling size 2,2
Activation function ReLU

Convolution Layer 2

Kernel amount 32
Kernel size 44
Pooling size 2,2
Activation function ReLU
Fully Connected Layer
Node 200, 400, 800, 1200, 800, 400, 200
Activation function ReLU

The learning process of neural networks is the process of finding the optimum values of
weights and bias values using the training dataset. Repeated learning was conducted to find
parameters (weights and bias values) with minimum error values between the actual and calculated
results using the error calculation, as shown in Equation (3).

_1 2
E= EZ(yk — ty) ©)
3
where yx is the desired output # is the target output.
3. Results and Discussion

3.1. Result of Welding Experiments for Surface Heat Trace

Galva
annealed

Time

(ms)

Current
P 4 55 7

Figure 6. Reference welds part images of all parameter.

Figure 6 represents the heat trace images of the weld surface under several welding conditions.
It has been found that the more current and time the welds have, the greater the heat marks on the
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surface of the specimen. The dilation of the heat trace means an increase in the TSS and the nugget
diameter. The GA sheet showed heat traces smaller than CR sheet. Figure 7 is the converted gray
images of welds in CR sheet used in the test. According to Figure 7, the image of the heat trace at the
same welding current and time was not the same. In addition to welding conditions, many factors
affect welding, so each image is very slightly different. In particular, the last image of Figure 7 was
shown as a dimmer heat trace, with no apparent circumference of the heat trace circles than the other
four.

Figure 7. Various gray images of welds in CR steel sheet under the welding time of 417 ms and
welding current of 7 kA.

3.2. Comparison of Welding Quality Results and Predicted Values According to Welding Conditions

The actual measured values and the predicted values by CNN on the TSSs, the nugget
diameters, the fracture shapes, and the expulsion occurrence at all welding conditions were shown
in Table 4. In the fracture mode, the button fracture was marked as 1 and the interfacial fracture as 0.
In the case of CR steel sheet, the expulsion was occurred at the welding current of 7 kA, regardless of
the welding time. The TSS was shown a maximum of 19.2 kN and the nugget diameter was enlarged
to 6.3 mm. In the case of GA, no expulsions were occurred at welding current 7 kA and interfacial
fractures have occurred under all conditions. The TSS was shown up to 19.4 kN and the nugget
diameter was enlarged up to 6.1 mm.

Table 4. Results of spot weldability for each parameter.

Welding Condition Measured Result Predicted Result
Tensile Nugget Tensile Nugge
Order. Material Current Time Shear Size Fracture Expulsion Shear Size Fracture Expulsion
(kA)  (ms) Strength (mm) Mode Strength (mm) Mode
(kN) (kN)
1 CR 4 250 7.3 3.6 0 0 7.3 3.6 0 0
2 CR 4 250 7.6 35 0 0 7.6 35 0 0
3 CR 4 250 7.5 3.5 0 0 7.5 3.5 0 0
4 CR 4 250 7.6 3.4 0 0 7.6 3.4 0 0
5 CR 4 250 7.5 35 0 0 7.6 3.4 0 0
6 CR 4 333 7.7 3.8 0 0 7.7 3.8 0 0
7 CR 4 333 8.1 3.6 0 0 8.1 3.6 0 0
8 CR 4 333 8.5 3.5 0 0 8.5 3.5 0 0
9 CR 4 333 8 3.5 0 0 8 3.5 0 0
10 CR 4 333 8 3.6 0 0 8 3.6 0 0
11 CR 4 417 8 3.9 0 0 8 3.9 0 0
12 CR 4 417 7.8 3.9 0 0 7.8 3.9 0 0
13 CR 4 417 8.3 4 0 0 8.3 4 0 0
14 CR 4 417 8.7 4 0 0 8.7 4 0 0
15 CR 4 417 8.8 4 0 0 7.6 3.7 0 0
16 CR 55 250 14.1 5 0 0 14.1 5 0 0
17 CR 55 250 14.9 4.8 0 0 14.9 4.8 0 0
18 CR 5.5 250 14.2 4.7 0 0 14.2 4.7 0 0
19 CR 5.5 250 14.5 4.7 0 0 14.5 4.7 0 0
20 CR 5.5 250 14.8 5 0 0 9.4 4.2 0 0
21 CR 55 333 14.6 5 0 0 14.6 5 0 0
22 CR 5.5 333 14.8 5.1 0 0 14.8 5.1 0 0
23 CR 5.5 333 15 52 0 0 15 52 0 0
24 CR 5.5 333 14.9 53 0 0 14.9 53 0 0
25 CR 55 333 14.7 5 0 0 14.8 5.4 0 0
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26 CR 55 417 14.6 52 0 0 14.6 52 0 0
27 CR 55 417 15.3 5.4 0 0 15.3 5.4 0 0
28 CR 55 417 15.1 54 0 0 15.1 54 0 0
29 CR 55 417 14.8 53 0 0 14.8 53 0 0
30 CR 55 417 14.6 5.4 0 0 14.7 5.1 0 0
31 CR 7 250 17.8 59 1 1 17.8 5.9 1 1
32 CR 7 250 17.9 5.8 1 1 17.9 5.8 1 1
33 CR 7 250 17.8 55 1 1 17.8 55 1 1
34 CR 7 250 18 5.7 1 1 18 5.7 1 1
35 CR 7 250 17.6 59 1 1 18.1 5.9 1 1
36 CR 7 333 18.5 6 1 1 18.5 6 1 1
37 CR 7 333 18.5 6 1 1 18.5 6 1 1
38 CR 7 333 18.8 59 1 1 18.8 5.9 1 1
39 CR 7 333 18.3 59 1 1 18.3 5.9 1 1
40 CR 7 333 18.6 6.2 1 1 18.3 5.8 1 1
41 CR 7 417 18.4 6.2 1 1 18.4 6.2 1 1
42 CR 7 417 18.5 6.3 1 1 18.5 6.3 1 1
43 CR 7 417 17.8 59 1 1 17.8 5.9 1 1
44 CR 7 417 19.2 6.2 1 1 19.2 6.2 1 1
45 CR 7 417 18.9 6 1 1 14.7 5.8 1 1
46 GA 4 250 52 2.1 0 0 5.1 2.1 0 0
47 GA 4 250 52 22 0 0 52 22 0 0
48 GA 4 250 5.1 2.1 0 0 5.1 2.1 0 0
49 GA 4 250 4.8 22 0 0 4.8 22 0 0
50 GA 4 250 5 2.3 0 0 6.5 25 0 0
51 GA 4 333 6.4 2.4 0 0 6.4 24 0 0
52 GA 4 333 6.2 25 0 0 6.2 2.5 0 0
53 GA 4 333 6.3 2.5 0 0 6.3 25 0 0
54 GA 4 333 6.1 2.7 0 0 6.1 2.6 0 0
55 GA 4 333 59 2.4 0 0 6.7 25 0 0
56 GA 4 417 59 2.6 0 0 5.9 2.6 0 0
57 GA 4 417 59 2.3 0 0 5.9 23 0 0
58 GA 4 417 5.8 2.6 0 0 5.8 2.6 0 0
59 GA 4 417 6 2.7 0 0 6 27 0 0
60 GA 4 417 55 2.5 0 0 7.6 2.6 0 0
61 GA 55 250 124 4.6 0 0 12.4 4.6 0 0
62 GA 55 250 12.6 4.7 0 0 12.6 47 0 0
63 GA 55 250 13 4.5 0 0 13 4.5 0 0
64 GA 55 250 13.1 4.3 0 0 13.1 43 0 0
65 GA 55 250 12.9 4.7 0 0 12.9 4.5 0 0
66 GA 55 333 13.7 4.9 0 0 13.7 49 0 0
67 GA 55 333 13.8 4.9 0 0 13.8 49 0 0
68 GA 55 333 13.9 4.7 0 0 13.9 47 0 0
69 GA 55 333 13.6 4.7 0 0 13.6 47 0 0
70 GA 55 333 14.1 4.9 0 0 12.4 4.6 0 0
71 GA 55 417 12.9 5 0 0 12.9 5 0 0
72 GA 55 417 13.6 5.1 0 0 13.6 5.1 0 0
73 GA 55 417 13.7 52 0 0 13.7 52 0 0
74 GA 55 417 13.5 5.1 0 0 13.5 5.1 0 0
75 GA 55 417 14.2 52 0 0 14.2 49 0 0
76 GA 7 250 18.4 5.4 0 0 18.4 5.4 0 0
77 GA 7 250 18.1 5.6 0 0 18.1 5.6 0 0
78 GA 7 250 18 55 0 0 18 55 0 0
79 GA 7 250 18.5 53 0 0 18.5 5.3 0 0
80 GA 7 250 18.3 5.6 0 0 17.9 5.3 0 0
81 GA 7 333 18.8 5.8 0 0 18.8 5.8 0 0
82 GA 7 333 18.8 5.7 0 0 18.8 57 0 0
83 GA 7 333 18.8 5.7 0 0 18.8 57 0 0
84 GA 7 333 19.2 55 0 0 19.2 5.5 0 0
85 GA 7 333 194 59 0 0 15.1 52 0 0
86 GA 7 417 18.7 59 0 0 18.7 5.9 0 0
87 GA 7 417 19.1 6.1 0 0 19.1 6.1 0 0
88 GA 7 417 19.2 59 0 0 19.2 5.9 0 0
89 GA 7 417 19.2 5.7 0 0 19.2 57 0 0
90 GA 7 417 19.4 6 0 0 18.8 5.7 0 0
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3.3. Neural Network Learning Using CNN
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Figure 8 is a graph that compares the measured and predicted TSSs at all welding conditions of
the learning process. The prediction accuracy of the TSSs used for learning process was 98.6% and
the coefficient of determination was 0.9943. Figure 9 is a graph to compare between the measured
and the predicted nugget diameters at all welding conditions of the learning process. The prediction
accuracy of the nugget diameters used for learning process was 98.8% and the coefficient of
determination was 0.9857.
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Figure 10. Correlation between predicted and measured values of (a) fracture mode and (b)
expulsion.
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Figure 10 shows the predicted results of the fracture shapes and expulsions. In the fracture
mode prediction, value 0 means the interfacial fracture, and 1 means the button fracture. In the
expulsion occurrence prediction, 0 means no expulsion occurrence, and 1 means expulsion
occurrence. As a result, both the prediction accuracies of the fracture shape and the expulsion
occurrence were 100% at all welding conditions. In Figure 10, all the data on the graph is

concentrated on 0 and 1, and it is seen as only one point.
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Figure 11. Comparison between predicted and measured values for (a) tensile shear strength of CR
and (b) GA steel sheets, (c) nugget size of CR, and (d) GA steel sheets.

Figure 11 is a graph that is grouped by steel from the predicted results of Figure 8 and Figure 9.
The predicted accuracy of TSS of CR steel was 99.5% and the coefficient of determination was 0.9978.
The predicted accuracy of the nugget diameter was 98.9% and the coefficient of determination was
0.9732. The predicted accuracy of TSS of GA steel was 97.7% and the coefficient of determination
was 0.9923. The predicted accuracy of the nugget diameter was 98.7% and the coefficient of
determination is 0.9908. Comparing the predicted accuracy of TSS and the nugget diameter by steel
type, CR steel was shown slightly higher accuracy than GA steel. This is thought to be because the
heat traces vary depending on whether the surface is plated or not. In the surface heat trace images
of the CR steel of Figure 6 above, the surface colors among the indented zone, shoulder zone, and
HAZ were bounded and widely spread. It is thought that the difference between these colors may
have affected the accuracy of the prediction. In the case of GA steel of Figure 6, the surface colors
were slightly dim than CR steel. So, the prediction accuracies of GA steel were shown slightly lower
than CR steel. It meant that input data were different depending on the surface heat trace image of
different material types.
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3.4. Verification of Predictive CNN Models

The setting conditions of RSW for CNN verification are shown in Table 5. A total of 4 welding
conditions were selected and the verification experiment was repeated five times at same one
condition. For these four verification test conditions, welding current and welding time were
selected, except for the welding conditions used in the learning.

Table 5. Welding conditions of verification data.

Welding Conditions of verification test 980 MPa-Grade GA Steel 980 MPa-Grade CR Steel

Welding current (kA) 6 5
Welding time (ms) 300, 400 300, 400
Electrode Force (kgf) 300

Table 6 shows the measured and predicted results using the CNN model produced during the
learning process in the 20 verification conditions of. The maximum prediction error was 1 kN for TSS
and the error of nugget diameter was max 0.5 mm. Fracture shape and expulsion occurrence were
correctly predicted in all verification tests.

Table 6. Results of verification test.

Welding Condition Measured Result Predicted Result
Tensile Nugget Tensile Nugget
Order. Material Current Time Shear Size Fracture Expulsion Shear ive Fracture Expulsion
(kA) (ms) Strength (mm) Mode Strength (mm) Mode
(kN) (kN)
1 CR 5 300 12.1 3.9 0 0 12.3 37 0 0
2 CR 5 300 12.4 4.0 0 0 12.7 3.8 0 0
3 CR 5 300 11.8 4.0 0 0 10.2 4.1 0 0
4 CR 5 300 11.9 3.8 0 0 12.0 3.8 0 0
5 CR 5 300 12.0 3.8 0 0 11.7 3.9 0 0
6 CR 5 400 15.5 4.2 0 0 15.2 41 0 0
7 CR 5 400 15.9 4.2 0 0 16.4 42 0 0
8 CR 5 400 15.9 41 0 0 16.2 4.1 0 0
9 CR 5 400 15.8 41 0 0 15.3 41 0 0
10 CR 5 400 15.8 4.2 0 0 16.8 4.3 0 0
11 GA 6 300 9.7 4.5 0 0 9.5 4.6 0 0
12 GA 6 300 9.8 4.6 0 0 9.7 4.5 0 0
13 GA 6 300 10.3 4.7 0 0 10.9 4.7 0 0
14 GA 6 300 10.2 4.6 0 0 9.8 4.7 0 0
15 GA 6 300 10.0 4.7 0 0 10.2 4.6 0 0
16 GA 6 400 14.1 5.0 0 0 13.1 5.2 0 0
17 GA 6 400 14.6 4.9 0 0 14.9 5.1 0 0
18 GA 6 400 14.3 4.6 0 0 14.3 5.1 0 0
19 GA 6 400 14.3 5.0 0 0 14.2 4.9 0 0
20 GA 6 400 14.4 5.0 0 0 14.7 4.9 0 0

Figure 12 is a graph comparing the predicted and measured values of TSS and nugget diameter
in the verification test results. The predicted accuracy of TSS was 97.8% and the coefficient of
determination was 0.9463. For nugget diameter, the average accuracy of the forecast was 97.4% and
the coefficient of determination was 0.888. The predicted results of the verification tests
demonstrated that CNN quality prediction is highly accurately predicted using surface heat trace
images of welds in RSW.
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Figure 12. Correlation between predicted and measured values of (a) tensile shear strength and (b)
nugget diameter.

(e) inaccurate image-GA-6kA, 400 ms

Figure 13. Images with inaccurate predicted values.

Figure 13 shows a surface heat trace image of welds with lower prediction accuracy in
verification tests. In Figure 13a—f, data with large errors between measured and predicted values
are shown. For Figure 13a,b, the measured value was measured at 11.8 kN, while the predicted
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value was 10.2 kN with a 13.6% error rate. Comparing with the other surface heat trace images at
the same condition, the abnormal heat trace shape stains at shoulder zone was shown, differencing
from the heat trace shape of the normal circular shape. For Figure 13c,d, the measured value of TSS
was 15.8 kN, the predicted value was 16.8 kN, and the error was 6.3%. Comparing with the other
surface heat trace images of the same condition, the bigger black circle at the center of the indented
zone was shown. In the case of Figure 13e,f, the measured value of nugget diameter was 4.6 mm
while the predicted value was 5.1 mm and the error rate was 10.9%. Comparing with the other
surface heat trace images of the same condition, due to the lack of focus in the photographing
process, the entire weld area was blurred with a little clear boundary. The state of the image may
have been viewed differently because the state of the light in the learning and the state of the light
in the verification process did not match exactly. This study tried to predict qualities of welds using
the surface heat trace images in RSW. By using this prediction technique, it is possible to predict the
quality of the resistance spot weld in the production line. It also enables monitor the weld quality
and reduces the defect rate. However, the surface heat trace images depend on heat transfer
conditions, contamination of electrodes, the slope of electrodes, misalignment, etc. Therefore, it is
very important to obtain an image under the same photographing condition to make accurate
prediction. Prediction of weld quality when the image condition is bad or inaccurate as mentioned
above will be discussed in future studies. Also, in this study, the weld quality is predicted by
applying CNN to base material and welding conditions under specific conditions. If the type,
thickness of base material and welding conditions are different, it is expected that accurate welding
quality can be predicted by optimizing the weight between nodes through additional learning.

4. Conclusions

Using the surface heat trace image of weld in the resistance spot welding of 980 MPa-grade GA
steel and CR steel as an input variable of convolution neural network, tensile shear strength, nugget
diameter, fracture shape, and expulsion occurrence were predicted, and the following conclusions
were obtained.

(1) Inthe learning process, the coefficient of determination of tensile shear strength is 0.9943 and the
coefficient of determination of nugget diameter is 0.9857. In the verification process, the
predicted average error rate of tensile shear strength and nugget diameter are 3.2% and 2.6%,
respectively, and the fracture shape and expulsion occurrence are accurately predicted. It has
been demonstrated that accurate quality predictions can be made using the image of the welds
in resistance spot welding.

(2) Even if the surface treatment of steel is different, it has been proven that good weld quality can
be predicted.

(3) In the process of photographing a surface heat trace image, if disturbances that affect the image,
such as the focus or lighting of the camera, occur, a large error in the prediction of quality can
occur.
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