
metals

Article

Prediction of the Weld Qualities Using Surface
Appearance Image in Resistance Spot Welding

Sang-Gyu Choi 1, Insung Hwang 1, Young-Min Kim 1 , Bongyong Kang 2 and Munjin Kang 1,*
1 Joining R&D Group, Korea Institute of Industrial Technology, 156 Gaetbeol-ro (Songdo-dong), Yeonsu-Gu,

Incheon 21999, Korea
2 Carbon & Light Materials Application R&D Group, Korea Institute of Industrial Technology,

Jeonju 54853, Korea
* Correspondence: moonjin@kitech.re.kr; Tel.: +82-32-850-0215

Received: 10 July 2019; Accepted: 25 July 2019; Published: 26 July 2019
����������
�������

Abstract: The quality of the resistance spot weld is predicted qualitatively using information from the
weld’s external apparent image. The predicting tool used for weld qualities was a convolution neural
network (CNN) algorithm with excellent performance in pattern recognition. A heat trace image of
the weld surface was used as information on the external apparent image of welds. The materials used
in the experiment were advanced high strength steel (AHSS) with 980 MPa strength, and uncoated
cold-rolled (CR) steel sheets and galvannealed (GA) steel sheets were used. The quantitatively
predicted weld quality information contained tensile shear strength, nugget diameter, fracture mode
of welds, and expulsion occurrence. The predicted performance of the verification step of the model
determined through the learning process was as follows; the predicted error rate for tensile shear
strength and nugget diameter were 2.2% and 2.6%, respectively. And the predicted accuracy on
fracture mode and expulsion occurrence was 100%.

Keywords: resistance spot welding; weld quality convolution neural network; surface appearance
image

1. Introduction

The ability to predict or evaluate the quality of resistance spot welding (RSW) in real-time using
nondestructive methods is key to the automation of automotive assembly processes. The tensile shear
strength (TSS) of the weld, nugget diameter, button size after the peel test, and failure mode (interfacial
fracture or pull-out fracture) have generally been used as evaluation items of the conventional resistance
spot welding. However, since the quality evaluation method requires time and manpower, many
studies have been conducted to predict the quality nondestructively. Several research results predicted
quality using the process variable setting conditions. Hao et al. [1] studied statistical models on
nugget diameter, weld strength, and expulsion according to process variable conditions using multiple
linear regression analysis. Muhammad et al. [2] proposed the models to predict the growth of nugget
diameter and heat-affected zone (HAZ), which consisted of welding current, welding time and hold
time as variables using the surface response analysis method in RSW of mild steel. Darwish et al. [3]
studied the prediction model of TSS, which consisted of welding current, electrode force, welding time,
and material thickness as variables using surface response analysis method in aluminum resistance
spot welding. Choi et al. [4] studied the optimal welding conditions with electrode force and welding
current as variables using the response surface analysis method and demonstrated that the minimum
nugget diameter of 4

√
t guaranteed the minimum button fracture in RSW of 980 MPa third-generation

AHSS. Studies on the quality prediction of resistance point welds using numerical analysis have been
reported as follows. Nied et al. [5] reported that the simulated results were very excellent when the
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finite element modeling of RSW process included heat transfer-electrical behavior-mechanical balance
equations and temperature-dependent material properties. The results of the study on the quality
evaluation of resistance spot welds using nondestructive detection technology were also reported.
Denisov et al. [6] measured the nugget diameter using the 2D ultrasonic arrays technique (PAUT).
However, this method has shown the disadvantage of requiring expensive ultrasonic equipment or
added processes. Predictive models by statistical regressive methods had limitations inaccurate quality
predictions because the condition of the electrode surface in continuous welding did not reflect changes
in weld quality due to contamination.

Studies of predicting the weld quality using measured waveforms of welding process variables
(current, voltage, dynamic resistance, displacement, etc.) have been reported. Johnson et al. showed
that the weld quality was different due to variations in electrode displacement [7]. Dickinson et al. [8]
studied the mechanism for controlling expulsion occurrence conditions using a dynamic resistance
monitoring system that can continuously monitor voltage, current, resistance, and power during RSW.
Brown et al. [9] tried to applicate data of standardized dynamic resistance waveform, welding current
waveform and electrode diameter to the artificial neural network to predict the nugget diameter, which
is closely related to weld strength. Dilthey et al. [10] reported a neural network, in which changes in
welding parameters, test materials, and electrode wear are considered, that can perform very well in
evaluating the quality of spot welds. Wan et al. [11] proposed a weld quality monitoring approach
based on dynamic resistance signal to predict the nugget size and failure load for the resistance spot
welding of titanium alloy. Xing et al. [12] proposed a scheme of online quality monitoring of RSW using
the random forest (RF) classification featuring with dynamic resistance signals. Also Hwang et al. [13]
reported that the predicted error rate was within 5% using adaptive resonance theory (ART) artificial
neural network (pattern recognition). The input parameters used were welding current, the voltage
between electrodes and welding power waveforms and the output parameters used were TSS and the
nugget diameter.

Some studies on the quality evaluation of welds through image analysis have also been reported.
Ruisz et al. [14] reported quality evaluation of resistance spot weld based on computer vision algorithm.
Simončič et al. [15] predicted the resistance spot weld strength from electrode tip displacement/velocity
by image processing.

On the other hand, light-weighting of the automotive body to improve fuel efficiency has been
rapidly taking place around the world. As a result, the application of third-generation AHSS steel
is expanding. The optimal welding conditions of these GPa-grade steels have a very narrow range
compared to conventional AHSS steels, and the interfacial fracture occurs frequently in the weld
fracture mode. Also, differences in weld quality may occur under the same welding conditions.
Therefore, it is urgent to predict the quality of the welds in RSW of these third-generation AHSS steel.

In RSW, the shape of the weld ultimately has an important effect on the weld quality, no matter
what welding equipment is used. In RSW, a heat trace is produced around the weld surface due to a
high current input. The heat traces are formed in round shapes and colors. The greater the heat input
and the greater the melt, the greater the range of the heat trace and the deeper the indentation depth.
In other words, the increase in weld current and weld time will result in an increase in the weld and
HAZ, while increasing the size of the same time.

The purpose of this study is to suggest how to predict the weld quality of GPa-grade steel, where
the quality of welds (TSS, nugget diameter, and fracture mode) varies significantly despite slight
changes in the process setting conditions. For this purpose, a heat trace image of the surface appearance
of welds was used as a determinant factor of weld quality after welding of RSW of a two-layer 980 MPa
steel. These images are slightly different between zinc-coated steel and uncoated steel in the case of
GPa-grade steel with the same strength. In this study, these heat trace images were used as an input
variable, and the qualities of the weld (TSS, nugget diameter, and fracture mode of the weld (interfacial
or button)) were predicted through the convolution natural network (CNN) algorithm using uncoated
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cold-rolled (CR) and galvannealed (GA) steel sheets. The prediction performance of qualities was
investigated in the learning process and verification process with different experimental data sets.

2. Experiments and Learning Methods

2.1. Materials and Welding Conditions

The materials used were GA steel sheet and CR steel sheet with the tensile strength of 980 MPa
(21% elongation). The thickness of the material is 1.2 mm for both sheets. The test specimen was
prepared by ISO 10447:2015 specifications. The length and width of specimen used were 100 mm and
30 mm, respectively with the overlap of 30 mm as shown in Figure 1. The chemical composition and
mechanical properties of the materials used are shown in Table 1. The welding equipment used in the
experiment is a medium frequency direct current (MFDC) welder.
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Table 1. The chemical composition and mechanical properties of 980 MPa-grade GA, CR steel.

Materials

Chemical composition (wt. %) Mechanical properties

C Si Mn Fe
Ultimate Tensile

Strength
(MPa)

Elongation
(%)

Yield Strength
(MPa)

GA steel 0.22 1.62 2.12 Bal. 988 15 400

CR steel 0.20 1.59 2.40 Bal. 990 15 500

Dome type electrode with an electrode face diameter of 6 mm is applied, whose detailed dimensions
are shown in Figure 2.
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The process setting conditions of RSW for CNN learning are shown in Table 2. Welding parameters
mentioned in Table 2 are determined through the weld lobe for same base material and joint geometry
used in this study. To reduce test errors, 10-iteration welding was conducted for each welding condition.
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Five of ten welded specimen were used to measure TSS, while the other five were used to measure the
nugget diameter. Weld current was set to three levels of 4.0, 5.5, and 7.0 kA. Weld time was also set to
three levels of 250, 333, and 417 ms. The electrode force was fixed at 300 kgf.

Table 2. Welding conditions of training data set.

Welding Conditions 980 MPa-Grade GA Steel 980 MPa-Grade CR Steel

Welding current (kA) 4.0, 5.5, 7.0

Welding time (ms) 250, 333, 417

Electrode Force (kgf) 300

2.2. Weld Surface Appearance Image Processing

Figure 3 is a conceptual diagram of the surface appearance of the weld. Though not expressed in
Figure 3, the photographing was carried out within an enclosed space where no outside light could
enter. Illumination was used for the same exposure to the surface of the weld. The distance between
the illuminating and the surface of the weld was 2 m and illuminated with an angle of 30◦ from vertical.
The color of the light was white. The amount of light is 1600 lm. The distance between the surface
of the weld and the camera was 120 mm vertically. The pixel size of the image taken was 128 × 128.
The original image taken was a color image, but in this study, it was converted to a gray image and
used as a quality prediction video input data. The data values of each pixel of the converted gray
image were normalized as values between [0, 1] with the minimum value of 0 and the maximum value
of 1. The mapped image between 0 and 1 and those image processing process is shown as Figure 4.
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2.3. Convolution Neural Network Algorithm for Prediction of Weld Quality

In this study, CNN was used to predict the quality of RSW. CNN is one of the deep learning
algorithms that showed excellent performance in image recognition. In the general in-depth neural
network, the meaning of successive lines and shapes of images is occasionally ignored when analyzing
images. Each pixel datum affects all nodes. Input data of the general in-depth neural network have
been flattened with simple one-dimensional vector data, and have been learned. So, limitations in the
prediction accuracy have been shown. However, the convolution layer uses a kernel of a specified
size in the shape of the image data. Image is reconstructed by extracting characteristic variables from
areas as large as kernel sizes. So, the successive lines or characteristic data influences the results.
As a result, the convolution neural network shows the prediction performance with higher accuracy
in image recognition. Figure 5 shows the structure of CNN applied in this study. A total of 90 heat
trace images were taken for each parameter of welding in two types of steel. The pixel size of each
image was 16,384 pixels (128 × 128). After converting to Gray image, all pixel data were normalized as
values between 0 and 1. Mapped image data was used as input data. A total of four CNN models for
predicting the weld qualities were obtained using the input mapped data. Each model predicts the
TSS, nugget diameter, fracture mode, and expulsion occurrence, which are criteria for determining the
quality of RSW. Therefore, each model has different weights and biases.
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Two layers were used as the hidden layer of CNN for predicting the TSS and the nugget diameter.
Also, two layers were used as pooling layer. One layer with 200 nodes was used as the hidden layer
of CNN for predicting the fracture shape and the expulsion occurrence. The method of slope used
(optimizer) used Adam. The rectified linear unit (ReLU) function was used as an activation function for
predicting the TSS and the nugget diameter. The sigmoid function was used as an activation function
for predicting the fracture shape and the expulsion occurrence. The reason for using the sigmoid
function is that it is more accurate than the ReLU when predicting the results by classifying the results
of the prediction by 0 and 1, such as fracture shape and expulsion occurrence. The function of the
ReLU and its differential values are shown in Equations (1) and (2), respectively.

y =

{
x (x > 0)
0 (x ≤ 0)

(1)

∂y
∂x

=

{
1 (x > 0)
0 (x ≤ 0)

(2)

The ReLU function has zero slope value when the output value is negative and one when
the output value is positive. Even if the neural network layer is thick, the differential value is 1
when the output value is positive, so the parameter renewal of each node is made during an error
backpropagation procedure. In this process, the characteristics of input data greatly affect parameter
updates. Thus, the ReLU function contributes to increasing the accuracy of the neural network model.
The exact parameter values of the applied CNN algorithm are specified in Table 3.



Metals 2019, 9, 831 6 of 14

Table 3. Convolution neural network algorithm for weldability prediction.

Convolution Layer 1

Kernel amount 32
Kernel size 4,4
Pooling size 2,2

Activation function ReLU

Convolution Layer 2

Kernel amount 32
Kernel size 4,4
Pooling size 2,2

Activation function ReLU

Fully Connected Layer

Node 200, 400, 800, 1200, 800, 400, 200
Activation function ReLU

The learning process of neural networks is the process of finding the optimum values of weights
and bias values using the training dataset. Repeated learning was conducted to find parameters
(weights and bias values) with minimum error values between the actual and calculated results using
the error calculation, as shown in Equation (3).

E =
1
2

∑
k

(yk − tk)
2 (3)

where yk is the desired output tk is the target output.

3. Results and Discussion

3.1. Result of Welding Experiments for Surface Heat Trace

Figure 6 represents the heat trace images of the weld surface under several welding conditions.
It has been found that the more current and time the welds have, the greater the heat marks on the
surface of the specimen. The dilation of the heat trace means an increase in the TSS and the nugget
diameter. The GA sheet showed heat traces smaller than CR sheet. Figure 7 is the converted gray
images of welds in CR sheet used in the test. According to Figure 7, the image of the heat trace
at the same welding current and time was not the same. In addition to welding conditions, many
factors affect welding, so each image is very slightly different. In particular, the last image of Figure 7
was shown as a dimmer heat trace, with no apparent circumference of the heat trace circles than the
other four.
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3.2. Comparison of Welding Quality Results and Predicted Values According to Welding Conditions

The actual measured values and the predicted values by CNN on the TSSs, the nugget diameters,
the fracture shapes, and the expulsion occurrence at all welding conditions were shown in Table 4. In
the fracture mode, the button fracture was marked as 1 and the interfacial fracture as 0. In the case of
CR steel sheet, the expulsion was occurred at the welding current of 7 kA, regardless of the welding
time. The TSS was shown a maximum of 19.2 kN and the nugget diameter was enlarged to 6.3 mm.
In the case of GA, no expulsions were occurred at welding current 7 kA and interfacial fractures
have occurred under all conditions. The TSS was shown up to 19.4 kN and the nugget diameter was
enlarged up to 6.1 mm.

Table 4. Results of spot weldability for each parameter.

Order.

Welding Condition Measured Result Predicted Result

Material Current
(kA)

Time
(ms)

Tensile
Shear

Strength
(kN)

Nugget
Size

(mm)

Fracture
Mode Expulsion

Tensile
Shear

Strength
(kN)

Nugget
Size

(mm)

Fracture
Mode Expulsion

1 CR 4 250 7.3 3.6 0 0 7.3 3.6 0 0
2 CR 4 250 7.6 3.5 0 0 7.6 3.5 0 0
3 CR 4 250 7.5 3.5 0 0 7.5 3.5 0 0
4 CR 4 250 7.6 3.4 0 0 7.6 3.4 0 0
5 CR 4 250 7.5 3.5 0 0 7.6 3.4 0 0
6 CR 4 333 7.7 3.8 0 0 7.7 3.8 0 0
7 CR 4 333 8.1 3.6 0 0 8.1 3.6 0 0
8 CR 4 333 8.5 3.5 0 0 8.5 3.5 0 0
9 CR 4 333 8 3.5 0 0 8 3.5 0 0
10 CR 4 333 8 3.6 0 0 8 3.6 0 0
11 CR 4 417 8 3.9 0 0 8 3.9 0 0
12 CR 4 417 7.8 3.9 0 0 7.8 3.9 0 0
13 CR 4 417 8.3 4 0 0 8.3 4 0 0
14 CR 4 417 8.7 4 0 0 8.7 4 0 0
15 CR 4 417 8.8 4 0 0 7.6 3.7 0 0
16 CR 5.5 250 14.1 5 0 0 14.1 5 0 0
17 CR 5.5 250 14.9 4.8 0 0 14.9 4.8 0 0
18 CR 5.5 250 14.2 4.7 0 0 14.2 4.7 0 0
19 CR 5.5 250 14.5 4.7 0 0 14.5 4.7 0 0
20 CR 5.5 250 14.8 5 0 0 9.4 4.2 0 0
21 CR 5.5 333 14.6 5 0 0 14.6 5 0 0
22 CR 5.5 333 14.8 5.1 0 0 14.8 5.1 0 0
23 CR 5.5 333 15 5.2 0 0 15 5.2 0 0
24 CR 5.5 333 14.9 5.3 0 0 14.9 5.3 0 0
25 CR 5.5 333 14.7 5 0 0 14.8 5.4 0 0
26 CR 5.5 417 14.6 5.2 0 0 14.6 5.2 0 0
27 CR 5.5 417 15.3 5.4 0 0 15.3 5.4 0 0
28 CR 5.5 417 15.1 5.4 0 0 15.1 5.4 0 0
29 CR 5.5 417 14.8 5.3 0 0 14.8 5.3 0 0
30 CR 5.5 417 14.6 5.4 0 0 14.7 5.1 0 0
31 CR 7 250 17.8 5.9 1 1 17.8 5.9 1 1
32 CR 7 250 17.9 5.8 1 1 17.9 5.8 1 1
33 CR 7 250 17.8 5.5 1 1 17.8 5.5 1 1
34 CR 7 250 18 5.7 1 1 18 5.7 1 1
35 CR 7 250 17.6 5.9 1 1 18.1 5.9 1 1
36 CR 7 333 18.5 6 1 1 18.5 6 1 1
37 CR 7 333 18.5 6 1 1 18.5 6 1 1
38 CR 7 333 18.8 5.9 1 1 18.8 5.9 1 1
39 CR 7 333 18.3 5.9 1 1 18.3 5.9 1 1
40 CR 7 333 18.6 6.2 1 1 18.3 5.8 1 1
41 CR 7 417 18.4 6.2 1 1 18.4 6.2 1 1
42 CR 7 417 18.5 6.3 1 1 18.5 6.3 1 1
43 CR 7 417 17.8 5.9 1 1 17.8 5.9 1 1
44 CR 7 417 19.2 6.2 1 1 19.2 6.2 1 1
45 CR 7 417 18.9 6 1 1 14.7 5.8 1 1
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Table 4. Cont.

Order.

Welding Condition Measured Result Predicted Result

Material Current
(kA)

Time
(ms)

Tensile
Shear

Strength
(kN)

Nugget
Size

(mm)

Fracture
Mode Expulsion

Tensile
Shear

Strength
(kN)

Nugget
Size

(mm)

Fracture
Mode Expulsion

46 GA 4 250 5.2 2.1 0 0 5.1 2.1 0 0
47 GA 4 250 5.2 2.2 0 0 5.2 2.2 0 0
48 GA 4 250 5.1 2.1 0 0 5.1 2.1 0 0
49 GA 4 250 4.8 2.2 0 0 4.8 2.2 0 0
50 GA 4 250 5 2.3 0 0 6.5 2.5 0 0
51 GA 4 333 6.4 2.4 0 0 6.4 2.4 0 0
52 GA 4 333 6.2 2.5 0 0 6.2 2.5 0 0
53 GA 4 333 6.3 2.5 0 0 6.3 2.5 0 0
54 GA 4 333 6.1 2.7 0 0 6.1 2.6 0 0
55 GA 4 333 5.9 2.4 0 0 6.7 2.5 0 0
56 GA 4 417 5.9 2.6 0 0 5.9 2.6 0 0
57 GA 4 417 5.9 2.3 0 0 5.9 2.3 0 0
58 GA 4 417 5.8 2.6 0 0 5.8 2.6 0 0
59 GA 4 417 6 2.7 0 0 6 2.7 0 0
60 GA 4 417 5.5 2.5 0 0 7.6 2.6 0 0
61 GA 5.5 250 12.4 4.6 0 0 12.4 4.6 0 0
62 GA 5.5 250 12.6 4.7 0 0 12.6 4.7 0 0
63 GA 5.5 250 13 4.5 0 0 13 4.5 0 0
64 GA 5.5 250 13.1 4.3 0 0 13.1 4.3 0 0
65 GA 5.5 250 12.9 4.7 0 0 12.9 4.5 0 0
66 GA 5.5 333 13.7 4.9 0 0 13.7 4.9 0 0
67 GA 5.5 333 13.8 4.9 0 0 13.8 4.9 0 0
68 GA 5.5 333 13.9 4.7 0 0 13.9 4.7 0 0
69 GA 5.5 333 13.6 4.7 0 0 13.6 4.7 0 0
70 GA 5.5 333 14.1 4.9 0 0 12.4 4.6 0 0
71 GA 5.5 417 12.9 5 0 0 12.9 5 0 0
72 GA 5.5 417 13.6 5.1 0 0 13.6 5.1 0 0
73 GA 5.5 417 13.7 5.2 0 0 13.7 5.2 0 0
74 GA 5.5 417 13.5 5.1 0 0 13.5 5.1 0 0
75 GA 5.5 417 14.2 5.2 0 0 14.2 4.9 0 0
76 GA 7 250 18.4 5.4 0 0 18.4 5.4 0 0
77 GA 7 250 18.1 5.6 0 0 18.1 5.6 0 0
78 GA 7 250 18 5.5 0 0 18 5.5 0 0
79 GA 7 250 18.5 5.3 0 0 18.5 5.3 0 0
80 GA 7 250 18.3 5.6 0 0 17.9 5.3 0 0
81 GA 7 333 18.8 5.8 0 0 18.8 5.8 0 0
82 GA 7 333 18.8 5.7 0 0 18.8 5.7 0 0
83 GA 7 333 18.8 5.7 0 0 18.8 5.7 0 0
84 GA 7 333 19.2 5.5 0 0 19.2 5.5 0 0
85 GA 7 333 19.4 5.9 0 0 15.1 5.2 0 0
86 GA 7 417 18.7 5.9 0 0 18.7 5.9 0 0
87 GA 7 417 19.1 6.1 0 0 19.1 6.1 0 0
88 GA 7 417 19.2 5.9 0 0 19.2 5.9 0 0
89 GA 7 417 19.2 5.7 0 0 19.2 5.7 0 0
90 GA 7 417 19.4 6 0 0 18.8 5.7 0 0

3.3. Neural Network Learning Using CNN

Figure 8 is a graph that compares the measured and predicted TSSs at all welding conditions of
the learning process. The prediction accuracy of the TSSs used for learning process was 98.6% and the
coefficient of determination was 0.9943. Figure 9 is a graph to compare between the measured and the
predicted nugget diameters at all welding conditions of the learning process. The prediction accuracy of
the nugget diameters used for learning process was 98.8% and the coefficient of determination was 0.9857.
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Figure 10 shows the predicted results of the fracture shapes and expulsions. In the fracture mode
prediction, value 0 means the interfacial fracture, and 1 means the button fracture. In the expulsion
occurrence prediction, 0 means no expulsion occurrence, and 1 means expulsion occurrence. As a
result, both the prediction accuracies of the fracture shape and the expulsion occurrence were 100% at
all welding conditions. In Figure 10, all the data on the graph is concentrated on 0 and 1, and it is seen
as only one point.
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Figure 11 is a graph that is grouped by steel from the predicted results of Figures 8 and 9.
The predicted accuracy of TSS of CR steel was 99.5% and the coefficient of determination was 0.9978.
The predicted accuracy of the nugget diameter was 98.9% and the coefficient of determination was
0.9732. The predicted accuracy of TSS of GA steel was 97.7% and the coefficient of determination was
0.9923. The predicted accuracy of the nugget diameter was 98.7% and the coefficient of determination
is 0.9908. Comparing the predicted accuracy of TSS and the nugget diameter by steel type, CR steel
was shown slightly higher accuracy than GA steel. This is thought to be because the heat traces vary
depending on whether the surface is plated or not. In the surface heat trace images of the CR steel of
Figure 6 above, the surface colors among the indented zone, shoulder zone, and HAZ were bounded
and widely spread. It is thought that the difference between these colors may have affected the accuracy
of the prediction. In the case of GA steel of Figure 6, the surface colors were slightly dim than CR steel.
So, the prediction accuracies of GA steel were shown slightly lower than CR steel. It meant that input
data were different depending on the surface heat trace image of different material types.
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3.4. Verification of Predictive CNN Models

The setting conditions of RSW for CNN verification are shown in Table 5. A total of 4 welding
conditions were selected and the verification experiment was repeated five times at same one condition.
For these four verification test conditions, welding current and welding time were selected, except for
the welding conditions used in the learning.

Table 5. Welding conditions of verification data.

Welding Conditions of verification test 980 MPa-Grade GA Steel 980 MPa-Grade CR Steel

Welding current (kA) 6 5

Welding time (ms) 300, 400 300, 400

Electrode Force (kgf) 300

Table 6 shows the measured and predicted results using the CNN model produced during the
learning process in the 20 verification conditions of. The maximum prediction error was 1 kN for TSS
and the error of nugget diameter was max 0.5 mm. Fracture shape and expulsion occurrence were
correctly predicted in all verification tests.
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Table 6. Results of verification test.

Order.

Welding Condition Measured Result Predicted Result

Material Current
(kA)

Time
(ms)

Tensile
Shear

Strength
(kN)

Nugget
Size

(mm)

Fracture
Mode Expulsion

Tensile
Shear

Strength
(kN)

Nugget
Size

(mm)

Fracture
Mode Expulsion

1 CR 5 300 12.1 3.9 0 0 12.3 3.7 0 0
2 CR 5 300 12.4 4.0 0 0 12.7 3.8 0 0
3 CR 5 300 11.8 4.0 0 0 10.2 4.1 0 0
4 CR 5 300 11.9 3.8 0 0 12.0 3.8 0 0
5 CR 5 300 12.0 3.8 0 0 11.7 3.9 0 0
6 CR 5 400 15.5 4.2 0 0 15.2 4.1 0 0
7 CR 5 400 15.9 4.2 0 0 16.4 4.2 0 0
8 CR 5 400 15.9 4.1 0 0 16.2 4.1 0 0
9 CR 5 400 15.8 4.1 0 0 15.3 4.1 0 0
10 CR 5 400 15.8 4.2 0 0 16.8 4.3 0 0
11 GA 6 300 9.7 4.5 0 0 9.5 4.6 0 0
12 GA 6 300 9.8 4.6 0 0 9.7 4.5 0 0
13 GA 6 300 10.3 4.7 0 0 10.9 4.7 0 0
14 GA 6 300 10.2 4.6 0 0 9.8 4.7 0 0
15 GA 6 300 10.0 4.7 0 0 10.2 4.6 0 0
16 GA 6 400 14.1 5.0 0 0 13.1 5.2 0 0
17 GA 6 400 14.6 4.9 0 0 14.9 5.1 0 0
18 GA 6 400 14.3 4.6 0 0 14.3 5.1 0 0
19 GA 6 400 14.3 5.0 0 0 14.2 4.9 0 0
20 GA 6 400 14.4 5.0 0 0 14.7 4.9 0 0

Figure 12 is a graph comparing the predicted and measured values of TSS and nugget diameter
in the verification test results. The predicted accuracy of TSS was 97.8% and the coefficient of
determination was 0.9463. For nugget diameter, the average accuracy of the forecast was 97.4% and the
coefficient of determination was 0.888. The predicted results of the verification tests demonstrated that
CNN quality prediction is highly accurately predicted using surface heat trace images of welds in RSW.
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Figure 13 shows a surface heat trace image of welds with lower prediction accuracy in verification
tests. In Figure 13a–f, data with large errors between measured and predicted values are shown.
For Figure 13a,b, the measured value was measured at 11.8 kN, while the predicted value was 10.2 kN
with a 13.6% error rate. Comparing with the other surface heat trace images at the same condition, the
abnormal heat trace shape stains at shoulder zone was shown, differencing from the heat trace shape
of the normal circular shape. For Figure 13c,d, the measured value of TSS was 15.8 kN, the predicted
value was 16.8 kN, and the error was 6.3%. Comparing with the other surface heat trace images of
the same condition, the bigger black circle at the center of the indented zone was shown. In the case
of Figure 13e,f, the measured value of nugget diameter was 4.6 mm while the predicted value was
5.1 mm and the error rate was 10.9%. Comparing with the other surface heat trace images of the same
condition, due to the lack of focus in the photographing process, the entire weld area was blurred with



Metals 2019, 9, 831 12 of 14

a little clear boundary. The state of the image may have been viewed differently because the state
of the light in the learning and the state of the light in the verification process did not match exactly.
This study tried to predict qualities of welds using the surface heat trace images in RSW. By using this
prediction technique, it is possible to predict the quality of the resistance spot weld in the production
line. It also enables monitor the weld quality and reduces the defect rate. However, the surface heat
trace images depend on heat transfer conditions, contamination of electrodes, the slope of electrodes,
misalignment, etc. Therefore, it is very important to obtain an image under the same photographing
condition to make accurate prediction. Prediction of weld quality when the image condition is bad or
inaccurate as mentioned above will be discussed in future studies. Also, in this study, the weld quality
is predicted by applying CNN to base material and welding conditions under specific conditions.
If the type, thickness of base material and welding conditions are different, it is expected that accurate
welding quality can be predicted by optimizing the weight between nodes through additional learning.
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4. Conclusions

Using the surface heat trace image of weld in the resistance spot welding of 980 MPa-grade GA
steel and CR steel as an input variable of convolution neural network, tensile shear strength, nugget
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diameter, fracture shape, and expulsion occurrence were predicted, and the following conclusions
were obtained.

(1) In the learning process, the coefficient of determination of tensile shear strength is 0.9943 and
the coefficient of determination of nugget diameter is 0.9857. In the verification process, the
predicted average error rate of tensile shear strength and nugget diameter are 3.2% and 2.6%,
respectively, and the fracture shape and expulsion occurrence are accurately predicted. It has
been demonstrated that accurate quality predictions can be made using the image of the welds in
resistance spot welding.

(2) Even if the surface treatment of steel is different, it has been proven that good weld quality can
be predicted.

(3) In the process of photographing a surface heat trace image, if disturbances that affect the image,
such as the focus or lighting of the camera, occur, a large error in the prediction of quality
can occur.
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