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Abstract: Shot peening is a mechanical surface treatment to improve the fatigue strength of metallic
components. Similarities exist between regular shot peening and conventional industrial clean
blasting. However, the main difference between these two processes is the peening media used
and the lack of control and documentation of peening parameters. The clean blasting process is
not yet qualified to optimize fatigue enhancement, although it holds a similar potential to regular
shot peening. Clean blasting is frequently applied to welded components, with the purpose of
surface preparation for application of corrosion protection. This article presents the results of regular
shot peened double V-groove (DV) butt welds made from construction steels S355N and S960QL,
as well as the high strength aluminum alloy Al-6082. The peening parameters are varied widely.
Furthermore, the effect of coverage and intensity is investigated to test the robustness of the peening
processes. The data is completed with industrially clean blasted welds, representing typical workshop
conditions. The overall objective of this work is to derive minimum peening parameters that still
allow significant fatigue strength benefits. The presented data show a high robustness of the fatigue
results to peening parameters.

Keywords: welded joints; fatigue strength; steel; aluminum; post-weld treatment; shot peening; clean
blasting; residual stresses

1. Introduction

1.1. Post-Weld Treatment of Welds

Post-weld treatment of welds for fatigue strength enhancement has become common in many
industry applications. Grinding and thermal stress annealing, in particular, are widely used and
accepted by technical standards, such as [1,2]. In the past few years, mechanical surface treatment
methods have become more and more popular in the welding industry. Recently, the most discussed
has been high frequency mechanical impact hammer peening (HFMI), which is locally applied to
fatigue critical weld toes. Mechanical surface treatment methods, such as HFMI, utilize different
fatigue beneficial effects to some degree [3,4]. These effects are the generation of compressive residual
stress, cold work hardening, and geometric changes of the weld profile. The International Institute
of Welding (IIW) has already adopted HFMI treatment in terms of a widely accepted guideline [5].
Further examples of accepted post-weld treatments are Tungsten Inert Gas (TIG)-dressing, as well as
conventional hammer and needle peening [6]. However, all these mentioned methods have in common
is that their application usually results in additional production costs.

This article focusses on shot peening and clean blasting as alternative mechanical surface
treatments. The main difference between these two processes is that shot peening is applied aiming at
fatigue strength enhancements, mainly applied in industrial engineering, while clean blasting aims
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generally at surface cleaning. Furthermore, the surface roughness can be adjusted by clean blasting
for the application of corrosion protection. Thus, shot peening is used under control of the peening
parameters (e.g., shot media, peening intensity, coverage), while clean blasting is mainly controlled
by the appearance of the surface (e.g., cleanliness, roughness). The peening media used for clean
blasting is normally of lower quality (multiple re-use) and edged. Nevertheless, clean blasting has
similar effects as shot peening in terms of the generation of compressive residual stress and cold
work hardening.

Shot peening is widely used in the automotive and aviation industries and has proven its potential
for fatigue strength enhancement. A good overview on the principles and applications of shot peening
can for instance be found in [7,8]. Unfortunately, the benefits of shot peening on fatigue strength cannot
yet be used in the design of welded structures, because shot peening is not currently covered by design
codes. This article presents fatigue test results from shot peened and clean blasted DV-butt welds. The
objective of this work is to investigate the effects of different peening media and peening parameters on
fatigue results of different construction metals. Finally, it should be possible to qualify regularly applied
clean blasting as a post-weld treatment method. Hopefully, this would result in a way to increase the
fatigue resistance of welded components without significantly increasing manufacturing costs.

1.2. Shot Peening as a Post-Weld Treatment Method of Welded Joints

Shot peening is a flexible peening method for surfaces of various metallic and non-metallic
components. Typical applications are the enhancement of surface roughness, cleanliness, or the
enhancement of mechanical parameters and corrosion resistance [3]. The most important peening
parameters of shot peening, in terms of fatigue improvement, are shot size, shot geometry, peening
intensity, and coverage [9]. There are several shot peening media available, such as steel, glass, ceramic,
or organic components. The user can influence the kinematic energy of the peening impacts by the
choice of the peening media, shot size, impact angle, and shot velocity. Steel components are normally
shot peened using steel balls. Glass beads are used in the case of demands for low peening intensity,
for instance, low sheet thickness. Furthermore, they are used to smooth surfaces (finishing) or to avoid
(chemical) reactions between peening media and peened components. Clean blasting is normally
performed using cheaper peening media, like sand, corundum, or broken cast steel. The possibility for
re-use of the peening media depends on the requirements regarding the surface quality of the peened
component. The shot peening process can be further adjusted with the help of the peening parameters,
which are controlled by the Almen test [10].

The peening intensity is a measure for the kinematic energy that is transferred from the shots
to the surface. In practice, this is controlled by the empirical Almen strip test. The Almen strip is a
steel specimen with defined thickness, hardness, and mechanical parameters. Almen strips are peened
using a defined parameter set, resulting in a specific plastic deformation of the strip. The intensity
of the peening process is measured by the plastic deformation of the Almen strips and denoted in
mm (or inch) and the Almen strip used. Coverage of the surface is defined as the percentage of the
peened surface related to the un-peened surface. A coverage of 98% is the highest coverage value that
can be experimentally determined, as the indentation spots of the shots are still distinguishable here.
A coverage of 98% is normally denoted as “full” coverage. Higher or lower values of coverage are
normally adjusted by a control of the peening time per surface area, e.g., 0.25 × 98% means a reduction
of the peening time to 25%. Shots should ideally hit the surface at 90◦ impact angle.

Two effects are relevant for the fatigue improvement of shot peening: (1) the generation of
compressive residual stress, and (2) cold work hardening. The reduction of surface roughness by
plastic deformation may be of advantage in cases of high strength metals (hardened steels). The
induced compressive residual stress field may retard fatigue micro cracks or slow down crack growth
considerably. The magnitude of the induced compressive residual stress and the penetration depth of
the residual stress field are important. The effects of residual stress on the fatigue strength of peened
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surfaces depend on the ultimate strength and can be expressed by means of the sensitivity to residual
stress m [11].

Cold work hardening can be utilized in un-notched or mildly notched specimens to enhance
their fatigue strength. The fatigue strength of such specimens depends on the ultimate strength of the
material. The significance of this effect is more pronounced in metals with low hardness. Hard metals
show less sensitivity to cold working. Furthermore, an increase in roughness lowers the effectiveness of
beneficial fatigue effects through cold work hardening in the case of high hardness [3]. Investigations
on fatigue strength improvements of welded steels by shot peening can be found in the literature,
for instance [12–16]. The general success of shot peening is proven well. However, the peening
parameters were not varied widely. The fatigue strength improvement of welded aluminum alloys
by shot peening has also been proven already [17]. Peening with steel shots and standard peening
parameters (0.2 mmA, 200% coverage) was applied to metal inert gas (MIG)- and TIG-welded Al-5083
alloys. The fatigue strength of welds was improved almost up to the base metal fatigue strength.
However, the possibility of softening in the heat affected zone must always be considered in cases of
high strength precipitation hardening alloys.

2. Experimental Work

The effect of shot peening and clean blasting on the fatigue strength of general metal arc
(GMA)-welded butt welds was investigated using three different materials, steel grades S355N (1.0545)
and S960 (1.8933), as well as aluminum Al-6082 T6 (EN AW-AlSi1MgMn/3.2315). The sheet thickness was
10 mm (steel) and 5 mm (aluminum). The peening media were varied, reflecting regular shot blasting
(steel shots S280) as well as clean blasting (glass beads and corundum). Furthermore, the coverage
(peening time) was varied between 0.25 × 98% (low coverage) and 2 × 98% (double coverage),
simulating different scenarios. A low coverage of 25% reflects the lower boundary of clean blasting
of a time-optimized cleaning process, while 2 × 98% coverage is used in conventional shot peening
processes. Another parameter investigated was the influence of the peening intensity. This parameter
was described by means of the Almen intensity, measured as the deflection of specific Almen strips
of varying thickness, Table 3. The three peening intensities used here were 0.3 to 0.4 mmA, mmN,
and mmC (0.3 to 0.4 mm deflection of Almen strips A, N and C respectively). An overview is given in
Tables 1–3. Specimens prepared by means of combinations of the aforementioned parameters were
used for fatigue testing. The surface roughness, hardness, surface, and near surface residual stresses
were documented.

Table 1. Base metals used for specimen preparation: mechanical and chemical parameters determined
by tensile test respectively spectroscopy.

Material Yield Limit Tensile
Strength

Elongation at
Fracture CEV Thickness

S355N 376 MPa 518 MPa 27% 0.41 10 mm
S960QL 995 MPa 1033 MPa 16% 0.56 10 mm

Al-6082 T6 317 MPa 340 MPa 17% - 5 mm

Table 2. Peening media used.

Parameter Steel Shots S280 Glass Beads Corundum NK 24

Particle size 600–1180 µm 300–400 µm 595–841 µm
Shape spherical spherical edged

Density 7.3–7.8 g/cm3 2.6 g/cm3 3.9 g/cm3

Hardness 400–520 HV 500–530 HV 1 8–9 1 (Mohs hardness)
1 Hardness taken from the literature [3].
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Table 3. Almen strips used.

Almen Strip N A C

Thickness 0.79 ± 0.02 mm 1.29 ± 0.02 mm 2.39 ± 0.02 mm

2.1. Specimen Preparation and Characterization

The specimens used for fatigue testing were prepared as DV-butt welds (60◦ opening angle). The
power source was elmatech DV36 L(W) by elmatech, Germany. Plates of approximately 400 mm length
were attached to each other by means of a robot-guided standard impulse MAG (metal active gas
welding) or MIG (metal inert gas welding) process. The nominal welding energy per unit length of the
MAG process was 10.2 kJ/cm (travel speed 35 cm/min, voltage 27.8 V, current 215 A). The energy per
unit length of the MIG process was 4.6 kJ/cm (travel speed 52 cm/min, voltage 24 V, current 175 A). The
shielding gases used were 82% Ar/18% CO2 for steel and 100% Ar for aluminum. The filler metals
were EN ISO 14341-A-G4Si1 (S355N), G 89 4 M21 Mn4Ni2CrMo (S960QL), and EN ISO 18273:S Al 5356
(Al-6082 T6). Welding was conducted in a flat position, while the specimens were held in position by
toggle clamps. Sheets of S960QL were welded at a pre-heating temperature of 100 ◦C. Representing
macrographs and the hardness distribution (HV1) are shown in Figure 1.
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Figure 1. Macrographs of DV-butt welds. (a) S355N, (b) S960QL, (c) Al-6082 T6.

The hardness was measured with the ultrasonic compact impedance method (UCI), according to
ASTM A1038. The equipment used was made by a BAQ UT200 hardness scanner (BAQ, Braunschweig,
Germany). Typically, steels show heat affected zones with fine- and coarse-grained zones. The
aluminum shows some pores and some small hot cracks in the vicinity of the fusion zone. However,
the inner irregularities did not affect the fatigue failure, which occurred at the geometric notches at
the weld toes. The weld quality was “B” according to ISO 5817 and ISO 10024. The welded steels
showed an increase in hardness in the heat affected zone to approximately 300 HV1 (S355N) and
400 HV1 (S960QL). S960QL further showed an area of slight softening from approximately 320 HV1
(base metal) to 280 HV1 in the recrystallized zone. Al-6082 showed a softening of the base metal due to
the dissolution of the precipitations. The hardness in these zones decreased to 60 HV1 compared to
85 HV in the base metal.

The 400 mm long welded plates were used to produce fatigue specimens by cutting and milling.
The samples are shown in Figure 2. As the picture shows, the samples had different lengths, between
280 mm and 370 mm. However, this did not affect the fatigue test results, as the welding distortion
was removed by means of a three-point bending device, resulting in nearly parallel surfaces in the
area used for clamping. The plastic zones of the straightening process were located outside the fatigue
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critical zone. Near-weld residual stresses were controlled before and after straightening to ensure that
this had no effect on fatigue test results. For a more detailed explanation of the removal of distortion,
see [18]. Furthermore, all samples were shot peened or clean blasted as a last preparation step before
testing. All peening processes (test series 1 to 20) were performed air pressure-controlled, according
to industrial standards at the facilities of OSK Kiefer GmbH in Oppurg, Germany. The peening of
the samples led to a local increase in hardness. The near surface hardness of Al-6082 was increased
to >125 HV0.03 by shot peening at coverage rates above 50%. In the case of S355N and S960QL,
no significant increase in hardness was observed.
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Figure 2. Fatigue test samples (DV-weld) shown in as-welded condition.

2.2. Residual Stress Measurements

Residual stress measurements were carried out at the residual stress laboratories at the Institute of
Joining and Welding at TU Braunschweig. The methods used were X-ray diffraction (XRD), according
to the sin2-Ψ method [19], and incremental hole drilling (HD) [20]. Residual stress was determined from
{211}-patterns of ferrite/martensite with the help of Cr-Kα-radiation at eleven Ψ-angles. Near-surface
residual stresses were determined through incremental surface removal by means of electrolytic
polishing and the hole drilling method. The collimator size was 2 mm for both steel and aluminum.

2.3. Fatigue Testing

Fatigue testing was conducted on servo-hydraulic test rigs (Schenck S400, Schenck, Germany;
w + b250, Walter + Bai AG, Löhningen, Switzerland) at the Institute of Joining and Welding at TU
Braunschweig. The test load was applied force-controlled uniaxial perpendicular to the weld. The
stress ratio applied was R = σmin/σmax = 0.1. All tests were stopped at specimen fracture. An overview
of all test series is given in Table 4. The fatigue strength of untreated specimens was used as reference
to quantify the effect of peening. Reference fatigue strength is available for all three base metals used,
S355N, S960QL, and Al-6082. Within the 20 test series, the peening media, the intensity, and the
coverage were varied. The peening conditions were controlled according to state-of-the-art shot
peening processes. It should be noted that a coverage below 98% is normally not used in shot peening
(test series 14–16 and 18 and 19). These test series were included in the test matrix to investigate
unfavorable peening conditions, e.g., during clean blasting.

Table 4 further shows the surface roughness of peened samples (MarSurf M 400 surface measuring
instrument, Mahr GmbH, Göttingen, Germany). Glass beads generally create a lower roughness than
steel shots. The highest roughness is generated by corundum due to its edged form. The high-strength
steel S960QL shows lower roughness than S355N and Al-6082 due to its higher hardness.
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Table 4. Overview about fatigue test series of peened DV-butt welds.

Test Series Base Metal Peening Media Intensity Coverage Surface
Roughness Rz

Reference S355N - (as welded) - -
Reference S960QL - (as welded) - -
Reference Al-6082 - (as welded) - -

1 S355N Steel shots 0.3–0.4 mmA 1 × 98% 56.7 µm
2 S355N Glass beads 0.3–0.4 mmA 1 × 98% 38.4 µm
3 S355N Corundum 0.3–0.4 mmA 1 × 98% 71.9 µm
4 S960QL Steel shots 0.3–0.4 mmA 1 × 98% 25.8 µm
5 S960QL Glass beads 0.3–0.4 mmA 1 × 98% 30.1 µm
6 S960QL Corundum 0.3–0.4 mmA 1 × 98% 80.2 µm
7 Al-6082 Steel shots 0.3–0.4 mmA 1 × 98% 99.9 µm
8 Al-6082 Glass beads 0.3–0.4 mmA 1 × 98% 63.9 µm
9 Al-6082 Corundum 0.3–0.4 mmA 1 × 98% 107.5 µm

10 S355N Steel shots 0.3–0.4 mmN 1 × 98% 57.3 µm
11 S355N Steel shots 0.3–0.4 mmC 1 × 98% 61.3 µm
12 Al-6082 Steel shots 0.3–0.4 mmN 1 × 98% 83.3 µm
13 Al-6082 Steel shots 0.3–0.4 mmC 1 × 98% 96.5 µm
14 S355N Steel shots 0.3–0.4 mmA 0.25 × 98% 35.8 µm
15 S355N Steel shots 0.3–0.4 mmA 0.50 × 98% 37.1 µm
16 S355N Steel shots 0.3–0.4 mmA 0.75 × 98% 30.7 µm
17 S355N Steel shots 0.3–0.4 mmA 2 × 98% 63.8 µm
18 Al-6082 Steel shots 0.3–0.4 mmA 0.50 × 98% 91.9 µm
19 Al-6082 Steel shots 0.3–0.4 mmA 0.75 × 98% 88.2 µm
20 Al-6082 Steel shots 0.3–0.4 mmA 2 × 98% 96.5 µm

Additional test series were prepared under less controlled conditions at industry workshops in a
round-robin principle, Table 5. These samples, made from S355N, were provided to these companies
for conduction of a “regular” cleaning process. The test series consisted of twelve specimens. The
fatigue data was evaluated by linear regression without consideration of run-outs.

Table 5. Additional test series of industrially clean blasted specimen (round robin principle).

Test Series Base Metal Peening Media Shape Participant

21 S355N Steel shots Edged 1
22 S355N Cast steel shots Edged 2
23 S355N Cast steel shots Edged 3

3. Results

3.1. Residual Stresses in Conventional and Peened Specimens

The initial residual stresses were determined for all test series. The surface residual stresses in
the as-welded condition (reference) are shown in Figure 3. The stresses were determined by means
of XRD. Shown here are the mean values, as well as the absolute minimum and maximum values.
The weld seam width is indicated by the hachured area. Note that diffraction patterns could not be
obtained within the weld of S960QL and Al-6082 due to coarse grains. Residual stresses varied between
50 MPa and −150 MPa in specimens made from S355N and between 10 MPa and −200 MPa in S960QL.
Aluminum welds show significantly lower residual stress with a mean close to zero, ranging from
70 MPa to −50 MPa. Low residual stresses can be explained by the low restraint condition transverse
to the weld. This results in (relatively) free shrinkage and thus low residual stress. Compressive
residual stress in the heat affected zones of the steels results from hindered volume increase due to
phase transformation (austenite to ferrit/bainite/martensite) [21,22].
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The residual stresses of the as-welded condition, shown in Figure 3, can normally be used as an
indicator for residual stress effects on fatigue. However, this is not true for shot peened specimens.
The reason for this is that the as-welded specimens show only a small residual stress gradient from
surface into depth, while shot peening results in a relatively thin layer with distinctive residual stress
gradients. The absolute value of the surface residual stress of shot peened samples at the surface is not
a good measure for the beneficial compressive residual stress effect. It is recommended to determine
the residual stress field within the first 1000 µm.

Figure 4 shows the residual stress conditions in all three investigated materials after clean blasting
using different media: steel shots, glass beads, and corundum. The coverage and intensity were kept
constant at 98% and 0.3–0.4 mmA. The results were obtained from the hole drilling method in the
vicinity of the weld toe. It must be noted that a direct measurement at the weld toe by means of the
hole drilling method is generally not possible due to geometric restraints (attachment of strain gauges).
Glass beads and corundum generated comparable residual stress fields in S355N, with a minimum of
approximately −440 MPa. The use of steel shots led to slightly higher compressive residual stresses and
deeper penetration of the residual stress field. Not shown here is the influence of coverage. Its influence
was investigated using S280 steel shots at a constant intensity of 0.3–0.4 mmA. The effect of coverage
on the residual stress field in S355N was found to be low. The residual stress fields were comparable to
the one shown in Figure 4a. Generally, the compressive residual stress magnitudes in S960QL were
found to be higher than in S355N due to its higher yield strength. The peening media had a significant
effect on the residual stress fields. The use of corundum led to the smallest penetration depth of the
compressive residual stress field, with −550 MPa at a 120 µm depth. Glass beads and steel shots led to
higher compressive residual stresses, −600 MPa at deeper layers (180 µm and 300 µm, respectively).
The effects of coverage and intensity on the residual stress fields were also investigated here, with
similar results to S355N (low effect).

Al-6082 showed generally lower compressive residual stresses due its lower yield strength. The
influence of the shot media used was found to be relatively low. The highest compressive residual
stresses were determined 200 µm below the surface. The magnitude was −200 MPa for all three
media used. Not shown here is the influence of shot peening intensity. A higher intensity (0.3 mmA
and 0.3 mmC) resulted in a deeper penetration of the compressive residual stress field than a low
intensity (0.3 mmN). Furthermore, it was found that a low coverage of 75% and below resulted in
lower compressive residual stresses than 98%, at less penetration of the residual stress field. However,
98% coverage and more (here up to 2 × 98%) did not further enhance the results.
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3.2. Cyclic Stability of Shot Peening Residual Stress

Residual stress stability under cyclic loading was investigated using S355N samples. These were
peened using steel shots at a normal intensity of 0.3–0.4 mmA, while the coverage was varied at 98%
and 25%, Figure 5. Residual stresses were determined at the surface by means of X-ray diffraction.
After assessing the initial residual stresses, the measurements were repeated after N = 1, 10, . . . 10,000
load cycles. The fatigue loading was applied at a stress ratio of R = 0.1, with a maximum stress of
360 MPa. This was chosen to test the stability of the residual stresses under worst case conditions.
It can be seen from the diagram that a coverage of 98% led to considerably more stable residual stress
than a coverage of 25%. Although the initial conditions were comparable, stresses in the less covered
sample were already relaxed at the first load cycle.
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In the following, the in-depth residual stress of a pre-loaded S355N specimen were determined,
as seen in Figure 6. The coverage was 98% using steel shots at 0.3–0.4 mmA. This test was conducted
under the same loading conditions as described above. The stabilized residual stress was measured
here using the hole drilling method and X-ray diffraction. It can be seen from the diagram that the
entire compressive residual stress field is partly relaxed. However, the compressive residual stress of
approximately −300 MPa remained effective.
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3.3. Fatigue Test Results

During fatigue testing, it was noted that the different shot peening parameters had only very
little effect on the resulting fatigue strength enhancement of S355N DV-butt welds. Because of this,
all results from test series 1–3, 10, 11, and 14–17 (all test series using S355N) were treated as the
same population and analyzed together, as seen in Figure 7. All these test results are summarized
here under the simplified term “clean blasted”, as no further distinction between the test series was
made. The nominal fatigue strength range at 2 million load cycles was determined to ∆σ = 254 MPa
(50% POS—probability of survival). Additionally, shown here are the test series peened by industry
partners, according to a round robin principle (participants 1 to 3). These results show similar fatigue
strength to the “clean blasted” condition. Overall, the test data covers the finite life region between 105
and 106 well. The regression line was determined to k ≈ 10. Run-outs (specimen without failure) were
stopped at 5 million load cycles.

The fatigue strength results from as-welded samples were determined in the IBESS-project and are
given as a reference here [23]. Without going into details, the IBESS specimens were produced using
the same welding parameters at the same facility. However, it must be pointed out that these tests were
conducted at R = 0 and are not corrected to R = 0.1 due to its uncertain sensitivity to mean stress. The
diagram further contains IIW FAT 90 (weld toe failure of untreated DV-butt welds) as a design fatigue
strength. The as-welded fatigue strength was calculated to ∆σ = 162 MPa at 2 million load cycles with
k ≈ 4. The benefit of clean blasting (respectively shot peening) is most prominent at higher numbers
of load cycles. The fatigue strength increase was determined to ∆σ = 254 MPa/162 MPa = 156% at
2 million load cycles. Both peened and un-peened test series show comparable fatigue strengths below
approximately 200,000 load cycles.

Figure 8 shows the test data from peened and un-peened specimens made from S960QL. Here,
the peened test series are distinguished according to the peening media used (test series 4–6). Again,
all results of peened specimens show similar fatigue strength between 260 MPa and 290 MPa at
2 million load cycles. Peening by means of steel shots and glass beads led to slightly better results,
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which may be a consequence of the beneficial surface roughness. The inclination in the finite life region
was determined to values between approximately k = 6 to 8. This can be explained by the higher yield
strength of the base metal in comparison to S355N. The reference fatigue test data was taken from the
IBESS-project as well. The fatigue strength as-welded was determined to ∆σ = 146 MPa at 2 million
load cycles with k ≈ 4. In a direct comparison, shot peening led to an increase in the fatigue strength
of approximately 180% to 200%. The fatigue strength increase is most prominent at high numbers
of load cycles but also provable at higher stress amplitudes. This is explained by the high material
strength and, thus, a higher residual stress stability. The differences in fatigue strength results between
the three peened test series is most likely a result of the surface roughness. High strength materials
usually show higher sensitivity to notch effects.
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Figure 9 shows the results from tested Al-6082 specimens. Like results from S355N, the fatigue
data of all aluminum test series was very similar and, hence, was analyzed as one group, without
further distinction of the individual peening parameters. The group is therefore referred as “clean
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blasted” (no peening parameters given). Here, run-outs were tested to 10 million load cycles. The
determined fatigue strength at 2 million load cycles of clean blasted specimens was ∆σ = 94 MPa.
The regression line was determined to k ≈ 9. Hence, the fatigue strength benefit due to post weld
treatment is mostly effective at high numbers of load cycles. This is also explained by the relatively
low yield strength of the material. The reference fatigue data (as-welded) were taken from a previous
project [24]. These specimens were tested at R = 0.1, too. The fatigue strength at 2 million load cycles
was determined to ∆σ = 58 MPa (k ≈ 3) and can be described by IIW’s FAT 50 quite well. The increase
in fatigue strength through clean blasting was determined to 162% at 2 million load cycles. However,
the increase is limited again by the inclination of the finite life regression line.
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4. Discussion

Shot peening generates compressive residual stresses in all three materials. The surface residual
stresses vary from test series to test series. Due to distinctive stress gradients, these values are not a good
indicator for fatigue benefits through peening. The in-depth compressive residual stress field varies
slightly in some of the test series. Steel shots with a coverage of at least 98% led to good penetration
depth. However, the fatigue data did not reflect these differences of penetration depth. The peening
process appears to be robust in terms of fatigue strength benefits. Nevertheless, the determination of
cyclic residual stress relaxation indicates that a full coverage is beneficial for residual stress stability.
This in good agreement with the literature [3]. Transferring these results to a possible utilization of
clean blasting as a fatigue-enhancing post weld treatment method, full coverage should be always
achieved. An explanation for the higher residual stress stability with increasing coverage is the more
pronounced cold work hardening.

The fatigue data evaluated here (Figures 7–9) cannot directly be compared to IIW FAT-values
because the data was not corrected for the stress ratio of R = 0.5 (IIW). Furthermore, the data was
analyzed based on a 50% probability of survival. This study clearly shows the beneficial effect of shot
peening on the fatigue strength of DV-butt welds made from a wide range of construction metals
in direct comparison to as-welded butt welds. The fatigue strength enhancement was proven for
industrially clean blasted specimens as well. Furthermore, the beneficial effect of peening on fatigue
was proven, especially in the high cycle region of S-N curves, see Table 6. Tests using high strength
steel S960QL additionally proved a fatigue strength enhancement at lower load cycles. The reason
for this is the high yield strength of this material. Furthermore, the high strength of the base metal
allows greater fatigue strength improvement, which may be explained by a combination of higher
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compressive residual stress and high hardness. The high yield strength leads to a higher sensitivity to
residual stress, resulting in a higher fatigue strength.

Table 6. Fatigue strength enhancement of the S-N curve in dependence of the base metal after
shot peening.

Base Metal Fatigue Strength Enhancement at
N = 100,000 at N = 2,000,000

S355N - ≈ 156%
S960QL 125–140% 180–200%
Al-6082 ≈ 110% ≈ 162%

The peening process generated compressive residual stress in all test series. The fatigue data
obtained does not indicate any advantage of peening media and/or parameters used for the soft metals
S355N and Al-6082. The high strength steel showed some sensitivity to surface roughness induced by
peening. The smallest fatigue strength improvement of S960QL was determined after the use of sharp
edged corundum with a corresponding high roughness. This effect was not observed in the results
from S355N or Al-6082, although the roughness was considerably higher after the use of corundum.

All results shown here were determined using butt welds with a relatively low stress concentration.
General recommendations for bonus factors cannot be made yet as the data base, especially using weld
joint types with higher stress concentration, such as cruciform joints, is missing. However, in a previous
study, shot peening effects on the fatigue strength of longitudinal stiffeners made from S355N was
investigated [25]. In contrast to the butt welds investigated here, the fatigue strength of longitudinal
stiffeners was not also enhanced. The reason for this was found in the relaxation of compressive
residual stresses at certain load amplitudes. As a result, the fatigue strength of as-welded and shot
peened samples was comparable at 1 million load cycles and below. A benefit was proven only at
load stress amplitudes of 60 MPa and less (R = −1), due to a higher residual stress stability. These
results show the effect of stress concentration at the weld on the success of shot peening as a post-weld
treatment method. This should be studied further in future.

5. Conclusions

Fatigue strength can be significantly improved by shot peening. Round robin tests with S355N
specimens have further proven the high potential of regular industrial clean blasting processes to
achieve similar results. The effect of shot peening on fatigue strength increases with increasing yield
strength of the base metal. Coverage should be controlled and chosen to be at least 98% to improve
residual stress stability under mechanical loading. The peening media affects the surface roughness.
In the case of high strength steels, roughness becomes important, as an increase in roughness lowers
the fatigue strength. Stress concentration may influence the residual stress stability and thus the fatigue
strength. This should be further investigated.

It is recommended to qualify industrial clean blasting processes with the help of the Almen test,
roughness measurements and, as far as possible, residual stress measurements and component fatigue
tests. By such a qualification of the clean blasting, designers may use bonus factors for the fatigue
design of welded components.
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