
metals

Article

From High-Manganese Steels to Advanced
High-Entropy Alloys

Christian Haase 1,* and Luis Antonio Barrales-Mora 2

1 Steel Institute, RWTH Aachen University, Intzestraße 1, 52072 Aachen, Germany
2 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 2 Rue Marconi,

57070 Metz, France
* Correspondence: christian.haase@iehk.rwth-aachen.de; Tel.: +49-241-80-95821

Received: 7 June 2019; Accepted: 25 June 2019; Published: 27 June 2019
����������
�������

Abstract: Arguably, steels are the most important structural material, even to this day. Numerous
design concepts have been developed to create and/or tailor new steels suited to the most varied
applications. High-manganese steels (HMnS) stand out for their excellent mechanical properties and
their capacity to make use of a variety of physical mechanisms to tailor their microstructure, and
thus their properties. With this in mind, in this contribution, we explore the possibility of extending
the alloy design concepts that haven been used successfully in HMnS to the recently introduced
high-entropy alloys (HEA). To this aim, one HMnS steel and the classical HEA Cantor alloy were
subjected to cold rolling and heat treatment. The evolution of the microstructure and texture during
the processing of the alloys and the resulting properties were characterized and studied. Based on
these results, the physical mechanisms active in the investigated HMnS and HEA were identified
and discussed. The results evidenced a substantial transferability of the design concepts and more
importantly, they hint at a larger potential for microstructure and property tailoring in the HEA.

Keywords: high-manganese steels; high-entropy alloys; alloy design; plastic deformation; annealing;
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1. Introduction

One of the most important objectives of materials scientists is the improvement of the mechanical
properties of materials. For this purpose, it is possible to make use of diverse physical phenomena that
essentially modify the microstructure to either facilitate or complicate the motion and generation of
dislocations depending on the requirements of the final component. In the same way as alloys
aim to be more than the sum of their parts, modern strengthening concepts aim to combine
and—perhaps more important—trigger strengthening mechanisms at the right times. This is the
idea behind the high-manganese steels (HMnS), whose mechanical properties are improved by
activating either martensitic transformations (transformation-induced plasticity, TRIP) or mechanical
twinning (twinning-induced plasticity, TWIP) to achieve higher strength and larger elongation [1]. The
combination of these mechanisms with strong planar dislocation glide makes these materials possess
outstanding strain-hardening potential attributable to an observed dynamic Hall–Petch effect [2].

Another recently developed class of alloys are the so-called high-entropy alloys (HEA). HEAs
are alloys with more than four elements in usually equiatomic or near-equiatomic compositions. The
idea behind these alloys is that their high entropy stabilizes the solid solution against the formation of
intermetallic phases. HEAs are less well studied than HMnS, but since their discovery by Cantor et al. [3]
and Yeh et al. [4], HEAs have attracted much fascination within the research community due to the
vast space of possible alloys and thus, potential microstructures and property combinations. Although
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several core effects (high-entropy effect, sever lattice distortion effect, sluggish diffusion effect, cocktail
effect) of HEAs have been proposed [5], a clear design strategy is still missing.

The underlying physical mechanisms active in HMnS have already been studied for several
decades [1,2,6], and therefore are comparatively well understood. One of the most important
parameters when designing HMnS is the tailoring of their stacking fault energy (SFE). This property
controls the dissociation distance of partial dislocations and determines whether TRIP and/or TWIP is
activated/suppressed during plastic deformation. The role of the SFE during plastic deformation and
subsequent heat treatment in metals has been studied for decades, and its effect is relatively well-known
for face-centered cubic (fcc) metals [7]. In fcc HEAs, the mechanisms of microstructure formation
have been found to occur in a similar way to the same class of alloys with comparable SFE [8]. For
instance, the Cantor alloy (CoCrFeMnNi) with an estimated SFE between 18.3–27.3 mJ/m2 [9,10] has
been shown to develop the TWIP effect, depending on the processing conditions [11]. Evidently, the
determination of the SFE in HEAs is fundamental, because this property indicates the possible acting
mechanisms for microstructure development. However, as with steels, the complex chemistry of HEAs
leads to almost unlimited combinations that make a systematic determination of this property difficult.
Nevertheless, to accelerate the development of these alloys, several research groups have made use of
ab initio calculations, e.g., [12]. The advantage of this method is that it is possible to calculate several
alloy compositions with less effort than the one required for an experimental determination of the same
alloys. So far, the systems CoCrFeMnNi [9,10,13,14], AlCoCrCuFeNi, and AlCoCrFeNi [15] have been
investigated regarding their SFE. A comprehensive list can be found in Reference [12]. First-principle
methods have even allowed the constructions of property maps, where the SFE can be read as a
function of the chemical composition [14], which can be used to predict the expected physical acting
mechanisms. The experimental determination of the SFE, although it is arguably more laborious, is as
important as its computational calculation because, as accurate as they are, ab initio calculations still
rely on a model, which may not be accurate for some conditions. Thus, experimentation provides the
necessary validation of the models. For the experimental determination of the SFE, two methods have
been used before: namely, the measurement of the dissociation width of partial dislocations [16] and a
combination of X-ray diffraction analysis and first-principle calculations of elastic constants [9]. The
strategy of obtaining similar microstructures as those in advanced steels has been successfully utilized
in some HEAs. For instance, dual-phase fcc-hcp (hexagonal closest packed) HEAs have substantiated
increased ductility and strength [17], owing to the activation of the TWIP and TRIP effects [18]. With
this in mind, in the present contribution, the mechanisms active during deformation and annealing in
low-SFE single-phase HMnS and HEAs will be compared and discussed in order to put forward an
SFE-oriented design of fcc-based HEAs.

2. Materials and Methods

Two alloys were investigated: one HMnS and one HEA. The chemical composition and their
SFEs are shown in Table 1. The chemical compositions were determined by inductively coupled
plasma-optical emission spectrometry (ICP-OES) and combustion analysis. The SFE values of the
HMnS were calculated using a subregular thermodynamic solution model [19], whereas the SFE of the
HEA was taken from the literature [9,10].

Table 1. Chemical composition (in wt%) and stacking fault energy (SFE) values of the investigated
alloys. The weight fractions of Al, Si, N, and P were not measured in the high-entropy alloys (HEA).

Alloy Fe Mn Al Co Cr Ni Si C N P SFE (mJ/m2)

HMnS Bal. 22.46 1.21 - - - 0.04 0.325 0.0150 0.01 25
HEA 20.3 18.8 - 21.8 17.9 21.0 - 0.038 - - 18–27

Both alloys were melted in an air conduction furnace followed by ingot casting, and were
subsequently homogenized at 1150 ◦C for 5 h under protective Ar atmosphere. Then, the ingots were
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forged and subsequently homogenized at 1150 ◦C. After hot rolling, the alloys were cold rolled at room
temperature to achieve up to 50% thickness reduction. To investigate the influence of additional heat
treatment on the material behavior, the HMnS was subjected to annealing treatments at 550 ◦C for
different times. In turn, the HEA was produced using induction melting in Ar atmosphere followed
by hot rolling at 1000 ◦C and homogenization at 1000 ◦C for 1 h. The hot-rolled sheet was further
cold rolled up to 50% thickness reduction. Finally, the cold-rolled sheets were annealed in the range
between 500–900 ◦C for 1 h in an air furnace. The specific parameters used for processing the HMnS
and HEA in different conditions are given in Table A1.

For characterization of the HMnS and HEA, specimens with the dimensions 12 mm × 10 mm
in the rolling direction (RD) and transverse direction (TD) were fabricated using electrical discharge
machining. The samples were mechanically ground up to 4000 SiC grit paper followed by mechanical
polishing using diamond suspensions of 3 µm and 1 µm. For X-ray diffraction (XRD) pole figure
measurements, the middle layer of the RD–TD section was polished electrolytically at room temperature
for 2 min at 22 V, whereas the RD–ND (ND—normal direction) section was electropolished for scanning
electron backscatter diffraction (EBSD) using the same parameters as before. The electrolyte used
for XRD and EBSD sample preparation consisted of 700 mL of ethanol (C2H5OH), 100 mL of butyl
glycol (C6H14O2), and 78 mL of perchloric acid (60%) (ClO4). Transmission electron microscopy (TEM)
samples (~100 µm thick, 3 mm in diameter) were prepared using the same electrolyte as for XRD and
EBSD samples in a double jet Tenupol-5 electrolytic polisher with a voltage of 22–29 V and a flow rate
of 10 at 15 ◦C (HMnS) and 4–6 ◦C (HEA).

EBSD analyses were performed in an LEO 1530 field emission gun scanning electron microscope
(FEG-SEM) (Carl Zeiss AG, Oberkochen, Germany) operated at 20-kV accelerating voltage and
a working distance of 10 mm. The HKL Channel 5 software and the MATLAB®-based toolbox
MTEX [20–22] were utilized to post-process and visualize the ESBD data. The subdivision of EBSD
mappings into subsets containing only non-recrystallized (non-RX) or recrystallized (RX) grains was
realized, as described in [23]. TEM analyses were performed in a FEI Tecnai F20 TEM (FEI Company,
Hillsboro, OR, USA) operated at 200 kV.

X-ray pole figures were acquired utilizing a Bruker D8 Advance diffractometer (Bruker Corporation,
Billerica, MA, USA), equipped with a HI-STAR area detector, operating at 30 kV and 25 mA, using
filtered iron radiation and polycapillary focusing optics. In order to characterize the crystallographic
texture, three incomplete (0–85◦) pole figures {111}, {200}, and {220} were measured. The macrotexture
orientation distribution functions (ODFs) were also calculated and visualized using MTEX. The volume
fractions of the corresponding texture components were calculated using a spread of 15◦ from their
ideal orientation.

Mechanical properties were evaluated by uniaxial tensile tests at room temperature and a constant
strain rate of 2.5 × 10−3 s−1 along the previous rolling direction on a screw-driven Zwick Z100
mechanical testing device (Zwick/Roell, Ulm, Germany). Flat bar tension specimens were used with a
gauge length of 13 mm, gauge width of 2 mm, fillet radius of 1 mm, and a total length of 33 mm.

3. Results and Discussion

3.1. Behavior during Plastic Deformation

An excellent tool for identifying the mechanisms acting during plastic deformation is the analysis
of the crystallographic texture. To exemplify, Figure 1 shows the development of the texture of the
HMnS and HEA during cold rolling with thickness reductions from 10% to 50%. Both alloys evinced
the evolution of the main rolling texture components of fcc alloys, namely the Cu, S, Goss, and Brass
texture components, whereas the Cube component disappeared. The position and definition of the ideal
texture components is given in Figure A1 and Table A2 in Appendix A. With increasing deformation,
the orientations tended to cluster at positions between the Brass and Goss texture components. This
effect intensified at larger strains. In addition, the Goss component spread toward the CuT texture
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component. Nevertheless, one major difference between the texture of the HMnS and HEA after 50%
cold rolling can be recognized. The α-fiber texture components, Brass and Goss, were stronger than
the Cu one in the HMnS, whereas, in the HEA, the Brass component was less pronounced, while
the Cu component was stronger (Figure 1). Therefore, after 50% cold rolling, the HMnS had already
developed a Brass-type texture, while the HEA was characterized by a mixture of Brass-type and
Cu-type textures.
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Figure 1. Texture evolution during cold rolling at room temperature of the investigated high-manganese
steels (HMnS) and high-entropy alloy (HEA) illustrated by ϕ2 = 45◦ section of the ODF.

As shown in Figure 2, the microstructure of both alloys after 50% cold rolling consisted of grains
elongated in RD and contained longitudinal features, such as slip bands. Deformation twins and
microshear bands developed equally. Nevertheless, it has been proven that at low rolling degrees,
deformation twinning in HEAs is less pronounced, and thus contributes to plastic deformation to a
lesser extent, as compared to HMnS [8,24]. At high rolling degrees (80–90%), pronounced Brass-type
textures have been observed in HMnS and HEAs [24,25]. Therefore, it can be concluded that the
transition from Cu-type to Brass-type texture evolves in low-SFE HEAs in a comparable manner as
to that in low-SFE HMnS, but it is shifted to higher degrees of plastic deformation. In terms of the
activation of deformation twinning, the presence of C in the HMnS, and correspondingly the absence
of C in the HEA, is presumably the main influential factor. On the one hand, C causes an increase of
the flow stress, and therefore facilitates achieving the critical resolved shear stress for the activation of
twinning. On the other hand, C-Mn short range ordered clusters contribute to the splitting of partial
dislocations and ease the onset of deformation twinning [26]. In turn, in the C-free HEA, a more
prolonged stage of deformation by dislocation slip retards the initiation of deformation twinning and
delays the formation sequence of twin-matrix lamellae, their rotation into the rolling plane, and the
subsequent onset of shear banding [27–33], which are thus shifted to higher strains. Hence, the related
formation of a pronounced Brass-type texture with the typical texture components—Brass, Goss, CuT
and γ-fiber—is shifted to higher degrees of thickness reduction during rolling of the HEA.
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Figure 2. (a) Electron backscatter diffraction (EBSD) band contrast maps (top) and (b) TEM micrographs
(bottom) of the HMnS and HEA after 50% cold rolling.

3.2. Behavior during Heat Treatment

The texture evolution during the heat treatment of the 50% cold-rolled HMnS and HEA is
shown in Figures 3 and 4. Both alloy systems revealed a slight texture strengthening during static
recovery, as substantiated by the increased volume fraction of the main texture components and a
decreased fraction of randomly oriented grains (Figure 4). It has been shown before that the texture
strengthening is caused by a reduced dislocation density due to recovery processes, which results
in less scattering of radiation during XRD measurements [23]. During the recovery stage, the twins
induced by cold rolling are thermally stable, and will not collapse upon annealing, but they can be
consumed by newly formed grains during primary recrystallization (Figure 5). With the onset of
recrystallization, the volume fraction of randomly oriented grains increased, whereas the fraction of
the main rolling texture components decreased (Figure 4). This trend was further intensified with
increasing recrystallized volume fraction. Nevertheless, the main rolling texture components were
retained during recrystallization, although with lower intensity. In addition, a weak complete α-fiber
was formed.
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Figure 5. TEM bright-field images of the HMnS and HEA after 50% cold rolling and subsequent
recovery annealing (top) and partial recrystallization (bottom).

In both alloys, the nucleation sites were found to be distributed heterogeneously at grain
boundaries and triple junctions (Figure 6). New grains formed and grew primarily by strain-induced
grain boundary migration. In this case, the orientations of nuclei were defined by the orientation
of subgrains/dislocation cells in the deformed matrix. Additionally, extensive annealing twinning
contributed to the formation of new texture components, and thus texture randomization [34]. As has
been shown before, first-order twinning within Goss-oriented, Goss/Brass-oriented, and Brass-oriented
nuclei resulted in the formation of a complete α-fiber due to the development of the A and rotated
Goss (RtG) texture components [8,35,36]. Therefore, the evolution of the recyrstallization texture of
the HMnS and HEA is a result of texture retention due to grain boundary nucleation and texture
randomization due to annealing twinning [8,37].
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3.3. Mechanical Properties

The results of uniaxial tensile tests of the HMnS and HEA after cold rolling and recrystallization
are shown in Figure 7. In both cases, the cold-rolled conditions (CR) were characterized by a very high
yield and ultimate tensile strength, but a strongly reduced total elongation. During subsequent recovery
annealing (RC), the high yield strength was retained due to the thermal stability of deformation twins,
whereas the total elongation was enhanced due to dislocations’ annihilation [38,39]. After partial
recrystallization (PRX) and complete recrystallization (RX), the soft recrystallized grains promoted
increased total elongation at the expense of strength. In contrast to the deformed grains subjected to
cold rolling, the soft RX grains facilitated regained formability due to the capability of accumulating
new dislocations and undergoing deformation twinning [40,41].
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4. Mechanism-Oriented Alloy Design

It has been shown and discussed in Sections 3.1–3.3 that the investigated HMnS and HEA
behave very similarly. Based on the correlation between microstructure and texture evolution during
deformation and heat treatment, it was demonstrated that the influence of the SFE on the material
behavior of HMnS also holds true for fcc C-free HEA. The low SFE of both alloys facilitated the
activation of twinning during deformation, albeit at different strains, as well as softening by static
recovery and recrystallization during annealing. As a consequence, thermomechanical treatment
resulted in comparable property profiles of the HMnS and HEA with minor differences due to the
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presence of C in the HMnS, which enabled higher strength and more pronounced twinning. Therefore,
it can be asserted that SFE-based, mechanism-oriented alloy design, as has been used for tailoring
the properties of HMnS for more than two decades, is a promising methodology to develop new
advanced HEAs.

As shown in Figure 8, the activation/suppression of specific deformation mechanisms can be used
to tailor the deformation behavior and mechanical properties of HMnS in a wide range. With an SFE
≤ 20 mJ/m2, the TRIP effect promotes strong work hardening, whereas the TWIP (20 mJ/m2

≤ SFE
≤ 50 mJ/m2) and slip-band refinement-induced plasticity (SRIP) (SFE ≥ 50 mJ/m2) effects result in a
lower work-hardening potential. Strength and work-hardening capability can be further modified by
combining the aforementioned mechanisms with multi-phase (medium-manganese steels (MMnS))
and precipitation (κ-carbides) strengthening (Figure 8). Furthermore, the activation/suppression of
specific mechanisms can also be adjusted by precise process design. These approaches include using the
higher thermal stability of deformation twins over dislocations during recovery annealing, suppression
and activation of twinning during, respectively, warm deformation, e.g., ECAP, and further room
temperature deformation or tailoring the work-hardening behavior by using the strong orientation
dependence of twinning in anisotropic additively manufactured specimens (Figure 8).
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Figure 8. Engineering stress–strain curves of HMnS with various SFE/activated deformation mechanisms
and the X30MnAl23-1 HMnS subjected to different processing techniques. MMnS—medium-manganese
steel [42], SRIP—slip-band refinement-induced plasticity [43], TRIP—transformation-induced plasticity,
TWIP—twinning-induced plasticity [44], ECAP—equal-channel angular pressing [45], SLM—selective
laser melting [46].
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Indeed, several of the approaches presented in Figure 8 have already been transferred to HEAs,
such as TRIP and TWIP effects [17,47], precipitation hardening in compositionally complex alloys
(CCAs) [48], recovery annealing [8], severe plastic deformation [49], additive manufacturing [50], etc.
However, the further maturity of thermodynamics-based [51,52] and ab initio methods are required to
explore the wide composition space of HEAs and CCAs. The mechanism-oriented design will certainly
enable unveiling the full potential of these alloys.

5. Conclusions

A high-manganese steel and a high-entropy alloy with similar SFE were investigated regarding
their microstructure, texture, and mechanical properties after cold rolling and heat treatment. The
mechanisms for microstructure modification in both alloys were found to be similar due to the
activation of the same physical mechanisms. During plastic deformation at low temperatures, the
alloys substantiated initially deformation by dislocation slip and subsequently twinning. However,
the onset of twinning in the HEA occurs at higher strains. This effect was attributed to the presence of
carbon atoms in solid solution in the steel, whose hardening effect allows reaching the critical stress for
twin formation earlier. Consequently, both alloys developed similar textures, but equivalent texture
components developed at higher strains in the HEA. Upon annealing, the alloys substantiated the
thermal stability of the twins formed during deformation in the recovery range. This effect permits
the utilization of recovery annealing treatments in HEA for pronounced ductility and strength. In
turn, during recrystallization, a retention of the texture due to grain boundary nucleation and texture
randomization as a result of the formation and growth of annealing twins was exhibited. Finally, the
mechanical characterization of the alloys evidenced the substantial range of variability of the properties
that can be obtained from these alloys.

This suggests that fcc-HEAs can be almost arbitrarily tailored by a combination of the diverse
physical mechanisms of microstructure modification that can be triggered in these alloys. The
applicability and the potential of mechanisms-oriented alloys design have been already proven by the
Collaborative Research Center (SFB) 761 ‘’Steel—ab initio” [6], whose strategy can be used to design
new HEAs and CCAs.
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Appendix A

Table A1. Processing parameters used for the HMnS and HEA in different conditions. CR, RC,
PRX, and RX denote cold rolled, recovered, partially recrystallized with recrystallized fraction X and
recrystallized, respectively.

Alloy Condition Rolling
Degree (%)

Annealing
Temperature (◦C)

Annealing
Time (h)

HMnS CR10 10 - -
HMnS CR25 25 - -
HMnS CR50 50 - -
HMnS CR50 + RC 50 500 1
HMnS CR50 + PRX (X < 10%) 50 600 1
HMnS CR50 + PRX (X > 50%) 50 650 1
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Table A1. Cont.

Alloy Condition Rolling
Degree (%)

Annealing
Temperature (◦C)

Annealing
Time (h)

HMnS CR50 + RX 50 700 1
HEA 20.3 10 - -
HEA CR25 25 - -
HEA CR50 50 - -
HEA CR50 + RC 50 550 0.5
HEA CR50 + PRX (X < 10%) 50 550 1
HEA CR50 + PRX (X > 50%) 50 550 2
HEA CR50 + RX 50 700 8
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