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Abstract: A novel medium manganese (MMn) steel with additions of Cr (18%), Ni (5%), V (1%),
and N (0.3%) was developed in order to provide an enhanced corrosion resistance along with a
superior strength–ductility balance. The laboratory melted ingots were hot rolled, cold rolled, and
finally annealed at 1000 ◦C for 3 min. The recrystallized single-phase austenitic microstructure
consisted of ultrafine grains (~1.3 µm) with a substantial amount of Cr- and V-based precipitates in a
bimodal particle size distribution (100–400 nm and <20 nm). The properties of the newly developed
austenitic MMn steel X20CrNiMnVN18-5-10 were compared with the standard austenitic stainless
steel X5CrNi18-8 and with the austenitic twinning-induced plasticity (TWIP) steel X60MnAl17-1.
With a total elongation of 45%, the MMn steel showed an increase in yield strength by 300 MPa and
in tensile strength by 150 MPa in comparison to both benchmark steels. No deformation twins were
observed even after fracture for the MMn steel, which emphasizes the role of the grain size and
precipitation-induced change in the austenite stability in controlling the deformation mechanism.
The potentio-dynamic polarization measurements in 5% NaCl revealed a very low current density
value of 7.2 × 10−4 mA/cm2 compared to that of TWIP steel X60MnAl17-1 of 8.2 × 10−3 mA/cm2,
but it was relatively higher than that of stainless steel X5CrNi18-8 of 2.0 × 10−4 mA/cm2. This work
demonstrates that the enhanced mechanical properties of the developed MMn steel are tailored by
maintaining an ultrafine grain microstructure with a significant amount of nanoprecipitates, while
the high corrosion resistance in 5% NaCl solution is attributed to the high Cr and N contents as well
as to the ultrafine grain size.

Keywords: MMn steel X20CrNiMnVN18-5-10; V alloying; corrosion resistance; precipitations;
ultrafine grains

1. Introduction

High manganese steels (HMnSs) with the twinning-induced plasticity (TWIP) effect exhibit an
excellent combination of high ultimate tensile strength, large uniform elongation, and high work
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hardening capacity, which makes them a competitive candidate for a wide range of uses in automotive
industry, liquefied natural gas (LNG)-shipbuilding, and the oil and gas industry [1,2]. However, some
related material and technological limitations restrict their industrial applications. A processing route
consisting of cold rolling followed by a recovery-annealing heat treatment, during which the dislocation
density is reduced while previously introduced deformation twins are thermally stable, has been
proposed as a solution for the low yield strength of TWIP steels [3,4]. Moreover, the use of microalloying
elements has been approached under consideration of the stacking fault energy (SFE), which determines
the austenite stability and controls the activation of the secondary deformation mechanism, such
as the TWIP effect or deformation induced phase transformation (TRIP—transformation-induced
plasticity) in addition to dislocation slip [5]. Due to the high dissolution rate of Mn, TWIP steels exhibit
a relatively poor wet corrosion resistance [6,7]. In this regard, different single or combined additions of
Cr, Cu, Si, and Al were investigated to enhance the corrosion behavior [8–10]. In a different way to
enhance the corrosion resistance and maintain the attractive mechanical properties of TWIP steels,
the so-called Fe-Mn-Cr-N TWIP steels have been proposed [11] as a cost-effective substitute for both
conventional stainless steel X5CrNi18-8 and HMnS [12]. In that respect, the change in the austenite
stability due to N- and Cr- addition has been investigated to design an Fe-Cr-Mn-N system with a
stable austenitic microstructure before and after deformation, which can satisfy the corrosion and
mechanical requirements of industrial applications [13]. Another barrier to the use of HMnS in different
applications is their susceptibility to delayed fracture due to hydrogen embrittlement (HE). Among
the various methodologies that have been suggested to alleviate HE in HMnS are Al-addition [14–16],
grain refinement [17,18], or the introduction of hydrogen traps, e.g., k-carbides [19]. However, the role
of precipitates in improving hydrogen embrittlement is still a matter of discussion [20–22]. Recently,
medium manganese steels (MMnSs) with a duplex microstructure have received significant attention
due to their excellent mechanical properties and reduced production costs compared to HMnS [23–27].

In light of progress made towards attaining enhanced mechanical and corrosion behavior for
TWIP steels and avoiding their material and technological limitations, we designed a new alloying
concept with a medium Mn content. This concept is based on the demonstrated excellent corrosion
resistance of conventional Fe-Cr-Ni stainless steels and the unique mechanical behavior of TWIP steels,
taking into account the austenite stability by adjusting SFE within the TWIP range [28]. In addition, a
high V content (1 wt.%) was considered to introduce a significant amount of precipitates to control the
grain size. In addition, the impacts of precipitation-strengthening on corrosion resistance, austenite
stability, and the activation of additional deformation mechanisms were investigated.

2. Materials and Methods

The alloying concept was designed to develop an austenitic-microstructure MMn steel that can
exhibit a high corrosion resistance and a superior strength–ductility balance. Accordingly, C, Mn, Ni,
and N were optimized to stabilize the austenite. Cr was added to achieve the envisaged high corrosion
resistance, besides the role of N in increasing the pitting resistance. V alloying is considered to increase
the mechanical properties by precipitation strengthening and grain refining mechanisms. The chemical
composition of the developed MMn steel X20CrNiMnVN18-5-10 is listed in Table 1. A 50 kg heat
was ingot-casted and homogenized at 1200 ◦C for 4 h. Subsequently, the homogenized block was
subjected to hot and cold rolling processes to a final thickness of 1.5 mm with a 62.5% cold reduction.
The specimens required for different investigations were manufactured before the microstructure was
adjusted in a recrystallization annealing treatment at 1000 ◦C for 3 min in a salt bath. The annealing
treatment was designed based on the thermodynamic calculations and precipitation kinetics using
Thermo-Calc Software TCFE Steels/Fe-alloys version 9 and MatCalc version 6.02, respectively.
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Table 1. Chemical composition in wt.% of the developed medium manganese (MMn) steel as well as
the applied benchmark steels.

Elements C Si Mn Al Cr Ni V N

MMn
X20CrNiMnVN18-5-10 0.17 0.43 10.4 - 17.7 4.7 0.9 0.26

BenchmarkX5CrNi18-8 0.04 0.49 1.2 - 18.0 8.3 - 0.060
Benchmark

X60MnAl17-1 0.60 0.06 16.8 1.1 0.6 0.2 0.049 0.008

The developed microstructure was investigated by means of a Zeiss Gemini scanning electron
microscopy (SEM) (Carl Zeiss Microscopy GmbH, Jena, Germany) equipped with an energy dispersive
X-ray spectrometer (EDS) (Oxford X-Max50, Oxford Instruments, Abingdon, UK) at acceleration
voltages of 15 kV and working distances within 10 to 20 mm. The metallographic samples were
prepared through the standard preparation route, including cutting and mechanical grinding up
to grit 1200 followed by mechanical polishing using 3 µm and 1 µm diamond suspension on a
Struers Abrapol-2 (Struers GmbH, Willich, Germany). V2A etching solution was applied to reveal the
developed microstructure. The samples used for electron backscatter diffraction (EBSD) measurements
were additionally electro-polished at room temperature for 20 s at 22 V using an electrolyte consisting
of 700 mL ethanol, 100 mL butyl glycol, and 78 mL 60%-perchloric acid. The EBSD mappings were
captured by the EDAX-TSL Hikari detector and analyzed by the OIM-Data Collection-V7.3 software
(AMETEK-EDAX Inc., USA). EBSD scans were recorded with a step size of 150 nm applying an
acceleration voltage of 15 to 20 kV and a probe current of approximately 30 nA. Evolution of the
deformation mechanism was investigated using ex-situ EBSD measurements at the center of the parallel
gauge length of tensile samples, which were pulled to different elongation strains. Post-processing
of the EBSD measurements was conducted using the HKL Channel 5 software (version 5.12j, Oxford
Instruments, Abingdon, UK) and the MATLAB-based MTEX toolbox [29,30] and included the removal
of wild spikes and a careful noise reduction, which took at least 5 neighboring data points into
account. The precipitation state after recrystallization was identified on electron transparent specimens
prepared with the carbon extraction replica method. Conventional bright field imaging of the extracted
precipitates was performed using the FEI Tecnai F20 transmission electron microscope (TEM) [31]
operated at 200 kV. For detailed characterization of the size distribution and chemical composition of
the precipitates, a high angle annular dark field (HAADF) and energy dispersive X-ray (EDX) spectral
imaging in a high-resolution Cs probe corrected scanning transmission electron microscope (STEM)
FEI Titan G2 80–200 STEM [32] operated at 200 kV was applied. The size of the precipitates was
determined from HAADF STEM micrographs of an arbitrarily selected areas of extraction replicas
(each 6 µm × 6 µm in size), analyzed with the aid of image processing software, Image J®.

The mechanical properties, namely yield strength (YS), ultimate tensile strength (UTS), and
total elongation (El), were evaluated by means of quasi-static tensile testing. The tensile tests were
conducted at room temperature with a strain rate of 10−3 s−1 using a universal tensile testing machine
of type Z100 (Zwick/Roell GmbH & Co. KG, Germany) on the recrystallized annealed A30-specimens
of 6 mm width and 30 mm parallel gauge length. The strain and force were measured by a videoXtens
extensometer attached to the specimen and an Xforce load cell, respectively. Corrosion properties of
the MMn steel were evaluated by dynamic polarization measurement in 5% NaCl with a controlled
scanning rate of 0.2 mV/s. The corrosion potential, Ecorr, and corrosion rate, icorr, at the open current
potential were determined on the polarization curves by extrapolating the Tafel plots. Mechanical
and corrosion values of the developed austenitic MMn steel were compared with two benchmarks,
i.e., austenitic stainless steel X5CrNi18-8 and austenitic TWIP steel X60MnAl17-1 (listed in Table 1).
The benchmark steels were tested by the same methods used for testing the developed MMn steel in
this study.
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3. Results

3.1. Thermodynamic and Kinetics Calculations

The recrystallization annealing treatment of the developed MMn steel was designed based on
both the thermodynamic calculations of equilibrium phases and the precipitation kinetics. Figure 1a
shows the fraction of equilibrium phases based on the actual chemical composition of the MMn steel.
It is clear that the austenite phase (FCC_A1) along with carbides (M23C6-type) and nitrides (MN-type)
are the expected equilibrium phases by applying an annealing treatment at a temperature of 1000 ◦C.
Figure 1b shows the kinetic of the possible precipitates formed due to annealing at 1000 ◦C. The kinetics
results indicate the formation of the HCP_A3#2 phase (M2N-type) that starts to saturate within 3 min,
while the carbides (M23C6-type) do not tend to form at this temperature.
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Figure 1. Thermodynamic calculations and precipitation kinetics. (a) Mass fraction of equilibrium
phases diagram vs. temperature showing that austenite (FCC_A1), carbides (M23C6-type), and nitrides
FCC_A1#2 (MN-type) are the equilibrium phases at 1000 ◦C (Thermo-Calc TCFE 9, MOBFE4). (b)
Precipitation kinetics at 1000 ◦C showing the formation of HCP_A3#2 (M2N-type) which comes up to
saturation within 3 min (MatCalc version 6.02).

3.2. Microstructure

The thermomechanical processing of the MMn steel resulted in a fine-grained and recrystallized
austenitic microstructure containing a considerable amount of precipitates as observed from the SEM
image shown in Figure 2a. For the relatively large particles (<150 nm), the EDX-point analysis was
applied to reveal their approximate alloying contents. The EDX-spectra represented in Figure 2b shows
that the relatively large particles resemble Cr,Fe-rich carbides. The SEM observations and particle
analyses are in accordance with the Thermo-Calc equilibrium calculations (Figure 1a). However, the
expected precipitation kinetics conducted by MatCalc (Figure 1b) contradicts the formation of Cr-rich
carbides during annealing at 1000 ◦C for 3 min. Instead, it supports the formation of V-rich nitrides.
TEM and STEM/EDX investigations confirmed the presence of Cr,Fe-rich carbides (Cr:Fe atomic ratio
of 4:1) and Cr,V-rich nitro-carbides (V:Cr atomic ratio of 1:2) as well as V,Cr-rich nitro-carbides (V:Cr
atomic ratio of 5:1) with particle sizes of 100 to 150 nm, as indicated in the STEM HAADF image in
Figure 2c. Moreover, V,Cr-rich nitro-carbides (V:Cr atomic ratio 5:1) were identified with a relatively
larger particle size of ~200 to 400 nm. Additionally, very fine V,Cr-rich nitrides (V:Cr atomic ratio
5:1) with a particle size of <20 nm were observed (in accordance with Thermo-Calc calculations) as
depicted in the inset of Figure 2c.
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Figure 2. (a) SEM micrograph showing the adjusted microstructure after annealing of cold-rolled
specimens at 1000 ◦C for 3 min. In a), the grain boundaries of recrystallized austenitic microstructure
are not visible, however, a considerable amount of precipitates can be observed. (b) Representative
EDX-point analyses for some visible coarse particles. (c) STEM HAADF images representing different
precipitates with different sizes in the nano-scale. The precipitates were identified with high resolution
STEM EDX spectra imaging.

Figure 3 represents the analyses of the EBSD measurements for the MMn steel with and without
deformation. The orientation and phase maps in the as-annealed state (in Figure 3a) show that the
applied annealing treatment at 1000 ◦C for 3 minutes resulted in an ultrafine recrystallized austenitic
microstructure without a pronounced texture. The average grain size of the adjusted microstructure is
around 1.3 µm according to the grain size distribution shown in Figure 3b. The developed austenite
microstructure remains mechanically stable after straining to 20% elongation in a tensile irrupted test
without any indication for either transformation-induced plasticity (TRIP) nor TWIP effects. However,
the specimen pulled until the fracture (with a total elongation of ~48%) showed low amounts of less
than 1% ε-martensite (in red) and approximately 2% α’-martensite (in green) at dispersed regions.
Deformation twins were not observed at any deformation stage under the applied resolution during
EBSD measurements. The corresponding phase maps recorded in the direction of tensile axis for both
deformed states, i.e., at 20% elongation and at fracture strain, are shown Figure 3c,d, respectively.
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Figure 3. Electron backscatter mappings of the MMn steel annealed at 1000 ◦C for 3 min. (a) The
orientation map and the spatial distributions of phases for the developed microstructure without
deformation. RD and TA denote the rolling direction and tensile axis, respectively. (b) Grain size
distribution and average grain size determined by the line-intercept method considering the annealing
twins. (c) and (d) The spatial distribution of phases (austenite in blue, ε-martensite in red, α´-martensite
in green, and black not indexed) formed at 20% elongation and at fracture strain, respectively.

3.3. Mechanical Properties

Quasi-static tensile properties, namely YS, UTS, and total El, for the MMn steel were compared to
benchmark stainless steel X5CrNi18-8 and TWIP steel X60MnAl17-1 as depicted in Figure 4. According
to the engineering stress–strain curves and the corresponding inset bar-chart in Figure 4a, the MMn
steel shows higher YS and UTS values and a relatively lower total El that is still reasonably high for
cold formability applications. The applied annealing treatment led to YS and UTS values of ~600 and
975 MPa, respectively, along with a total El of more than 45%. This demonstrates a jump in YS and
UTS of approximately 300 and more than 150 MPa, respectively, compared to their counterparts of
benchmark steels. Figure 4b represents the corresponding work hardening rate (WHR) calculated
from the tensile test data. It is worthy to note that besides the higher YS and UTS values of the MMn
steel, the WHR is also higher than both benchmark steels up to true strain values of ~0.16 and 0.25,
respectively. The MMn steel exhibits an initial WHR (measured at 0.02) of ~3.4 GPa, which is higher
than those of other benchmark steels. This initial high WHR decreases gradually and reached the same
WHR of X5CrNi18-8 and X60MnAl17-1 benchmark steels at true stress values of ~1.1 and 1.2 GPa,
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respectively. Moreover, the WHR decreases at a slightly lower rate after around >0.18 true strain (>20%
elongation) as can be realized from its slope illustrated by black dotted lines.

 

Figure 4 
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Figure 4. Tensile properties of the MMn steel X20CrNiMnVN18-5-10 in comparison to the benchmark
stainless steel X5CrNi18-8 and TWIP steel X60MnAl17-1. (a) Engineering stress–strain curves with a bar
chart showing the achievable strength and ductility levels. (b) The work hardening rate (WHR) curves.

3.4. Corrosion Properties

The corrosion properties of MMn steel were evaluated and compared to the benchmark steels.
Figure 5a displays the results of the dynamic polarization measurements, which were carried out to
evaluate the corrosion properties in terms of the open current potential (Ecorr) and corrosion current
density (icorr) of the MMn steel compared to the benchmark steels. Obviously, the MMn steel exhibits a
distinctively higher positive Ecorr value of −299 mVSCE than that observed for TWIP steel X60MnAl17-1
of −658 mVSCE, while stainless steel X5CrNi18-8 shows the highest positive Ecorr value of −144 mVSC.
Moreover, the icorr (determined by Tafel lines calculations) shows a very low value of 7.2× 10−4 mA/cm2

compared to TWIP steel X60MnAl17-1 with a value of 8.2 × 10−3 mA/cm2, but it is slightly higher than
that of stainless steel X5CrNi18-8 with a value of 2.0 × 10−4 mA/cm2. The bar chart in Figure 5b points
out the corrosion current ratio (CCR) of each tested grade with respect to the benchmark stainless
steel X5CrNi18-8. The calculated CCR values demonstrate that the corrosion behavior of MMn steel is
superior to the TWIP steel X60MnAl17-1, while it is lower but still could be compared to the stainless
steel X5CrNi18-8.
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Figure 5. Dynamic polarization measurements in 5% NaCl showing the corrosion properties of the
MMn steel compared to the benchmark steels. (a) Recorded polarization curves. (b) The corrosion
current ratio with respect to the benchmark stainless steel X5CrNi18-8.
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4. Discussion

4.1. Interplay among Different Strengthening Effects Induced by V Alloying

The developed ultrafine grain microstructure containing large Cr,Fe-rich carbides, Cr,V-rich
nitro-carbides, V,Cr-rich nitro-carbides, and very fine V,Cr-rich nitrides shows superior
strength–ductility balance, which emphasizes the synergetic effect of the nanoprecipitates and the
ultrafine grains on controlling the strength level and hardening mechanism. The substantial increase
in YS of MMn steel compared to the benchmark steels is attributed to the Ashby–Orowan effect
for precipitation-strengthening, Hall–Petch effect for grain-size strengthening, solid–solution, and
dislocation strengthening induced by V alloying. Since the formed precipitates are of different sizes,
they will contribute differently to the increment in yield strength. According to the Ashby–Orowan
relationship [33], the increment in yield strength increases as the size of particles decreases. Based on
the size distribution analysis of the formed precipitates, >80% of the whole particles are smaller than
50 nm, which emphasizes the major role of the precipitation-strengthening mechanism.

There are additional effects caused by V alloying that act in a close interplay with nanoprecipitates
on improving the YS of the MMn steel. As observed from the grain size distribution in Figure 3b, the
annealing treatment at 1000 ◦C for 3 min resulted in a recrystallized and ultrafine grained microstructure
that contributes to the increase in yield strength, which is commonly referred to as the Hall–Petch
effect [34,35]. In addition to Ashby–Orowan and Hall–Petch effects, solid–solution strengthening
due to the dissolved V and N solutes contributes to the YS value of the MMn steel. As can be
noted from Figure 6, the thermodynamic equilibrium austenite at the applied annealing temperature
still contains around 0.2 and 0.1 wt.% of dissolved V and N solutes, respectively. Norström [36]
demonstrated a significant increase in yield strength of N-alloyed stainless steel due to the solid
solution-hardening effect. Moreover, Werner [37] established that the increment in yield strength due
to solid–solution strengthening of N-alloyed stainless steel was considerably higher than that achieved
by grain refinement at the same amount of N.
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Furthermore, the formation of precipitates is considered to be responsible for the suppression of
the complete dislocation annihilation during annealing and hence increasing the yield strength via
the dislocation hardening effect. In the same context for V-alloyed MMn steel, Hu et al. [38] reported
a small increment in yield strength due to grain refinement, however, they emphasized the role of
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VC precipitates and dislocation hardening in increasing the yield strength. The observed increase in
yield strength due to V alloying is in agreement with several studies [39–42] that reported solely the
pronounced effect of V precipitates; however, the current study emphasizes additional effects, such as
grain–boundary, solid–solution, and dislocation strengthening.

4.2. Strain Hardening Behavior

Although the SFE for the MMn steel was adjusted in the TWIP range, it shows a high WHR at early
deformation stages with a gradual decrease until fracture, which is quite different from the common
WHR of conventional TWIP steels. Despite the gradual decrease in its WHR, the MMn steel maintains
higher values of WHR than those of benchmark steels until around 20% elongation, thus allowing for a
superior UTS value as observed in Figure 4. However, the gradual decrease in its WHR facilitates the
early strain localization and results in a relatively lower but still comparable total elongation to the
benchmark steels.

The high WHR at early deformation stages can be attributed to the grain refinement effect.
However, the suppression of deformation twin formation results in a continuous drop in WHR. The
austenite to martensite transformation is considered the reason for the slight decrease in the drop rate
of WHR at later deformation stages (higher than 20% elongation) as observed from the EBSD maps in
Figure 3d. Several studies emphasized the profound effect of grain refinement on the restriction of
deformation twins. Ueji et al. [43] studied the twinning behavior of different high Mn austenitic steels
with various mean grain sizes (1.8, 7.2, and 49.6 µm) and reported that the deformation twinning is
strongly inhibited by grain refinement. Rahman et al. [44] reported the increase in twin nucleation stress
with decreasing grain size. Lee et al. [45] attributed the increase in twinning stress to the suppression
of dislocation activity and movement of partial dislocations by interaction with a high dislocation
density in fine grain sized specimens. In the same regard, Gutierrez-Urrutia et al. [46,47] ascribed
the increase in twinning stress resistance to the activation of multiple slip propagation, which is a
perquisite to deformation twin formation. In general, the work hardening rate is related to the grain
size, dislocation density, and the active deformation mechanism defined mostly by SFE [48–51]. Since
the microstructure of the MMn steel contains a considerable amount of precipitates, the local chemical
changes in the precipitates surroundings, especially C and N, will lead eventually to a decrease in the
SFE and hence the possibility of austenite to martensite transformation as observed in Figure 3d. This
has also been reported by Yen et al. [42].

4.3. Enhanced Corrosion Resistance

The potentiodynamic polarization measurements of the MMn steel demonstrate an enhanced
corrosion resistance, which is superior to that of TWIP steel X60MnAl17-1 but still lower than that of
stainless steel X5CrNi18-8. This enhanced corrosion resistance over the TWIP steel can be ascribed
to the high Cr content. The thermodynamic equilibrium Cr content in austenite does not decrease
significantly by the formation of precipitates at 1000 ◦C as shown in Figure 6. Nevertheless, the formed
precipitates allow for the creation of corrosion cells that contribute detrimentally to corrosion resistance
and passivation behavior of the MMn steel. Therefore, the lower corrosion resistance and the apparent
increase in icorr compared to stainless steel X5CrNi18-8 can be accounted for the formed precipitates.
Although the corrosion current ratio of the MMn steel with respect to X5CrNi18-8 is 3.6, it was expected
to be higher than this ratio due to precipitation, since Yan et al. [52] found that the precipitates of
chromium-rich carbides in 316 L stainless steel resulted in severe pitting corrosion. However, in
the current study, it seems that the grain refinement plays a significant role in enhancing the pitting
resistance, in addition to the role of N. The pitting resistance equivalent number (PREN), which is a
predictive measurement for the resistance of stainless steels to localized pitting corrosion based on
their chemical composition [53], increases with N addition as indicated in Equation (1). The PREN
number is 21.4 for the MMn steel, while 19.8 for the stainless steel X5CrNi18-8. Moreover, Hamada et
al. [54] reported a significant improvement in the corrosion resistance of 301 LN as a result of grain
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refinement. It is well established that the segregation of impurities or the formation of chromium
nitrides on the grain boundaries of stainless steel is more severe in a coarse-grained structure than in an
ultrafine-grained structure, which is more homogeneous and has a smoother structure. Furthermore,
the compactness and stability of the passive film formed on nano/submicron-grained structure is
significantly increased [55,56]:

PREN = 1 × %Cr + 3.3× %Mo + 16 × %N. (1)

The current study demonstrates that V alloying resulted in a synergetic effect of precipitates and
ultrafine grain size on both mechanical properties and corrosion behavior for the MMn steel. Indeed,
the designed alloy concept provides the possibility to overcome some HMnS limitations, such as
low yield strength values, poor corrosion resistance, and processing problems due to the high Mn
content. Furthermore, the preliminary investigations on its hydrogen embrittlement behavior showed
a significant improvement compared to conventional TWIP steels, even those Al-alloyed. However, a
proper adjustment of the type and amount of precipitates could further enhance the corrosion resistance
mechanical behavior of the MMn. This requires deeper understanding for the nature of the interaction
between precipitates and other micro- and nanostructure defects.

5. Conclusions

The main aim of the present study was to develop a novel austenitic MMn steel
X20CrNiMnVN18-5-10 that exhibits an enhanced corrosion resistance and a superior strength–ductility
balance. The alloying additions were optimized to attain an ultrafine austenitic microstructure with a
significant amount of nanoprecipitates. Alloying with V (1 wt.%) and N (0.3 wt.%) has been considered
for precipitation and grain size control. The corrosion resistance and mechanical properties of the MMn
steel were investigated and compared to their counterparts of two benchmark steels, i.e., austenitic
stainless steel X5CrNi18-8 and austenitic TWIP steel X60MnAl17-1. Based on the findings, the following
conclusions can be drawn:

1. Recrystallization annealing treatment at 1000 ◦C for 3 min resulted in an ultrafine austenitic
microstructure with an average grain size of ~1.3 µm containing a considerable amount of V- and
Cr-based precipitates in a bimodal particle size distribution (100–400 nm and <20 nm). More than
80% of the precipitates are smaller than 50 nm.

2. The alloying concept (especially the high V and N contents) results in a high yield strength
of ~600 MPa via an interplay among different mechanisms, namely the Ashby–Orowan effect,
Hall–Petch effect, solid–solution, and dislocation strengthening.

3. Although the work hardening rate (WHR) at early deformation stages is very high (3.4 GPa),
the suppression of deformation twin formation by ultrafine grains until fracture resulted in a
continuous drop in WHR. The slope of the WHR decreases at high strains (>20%) due to the
austenite to martensite transformation.

4. The enhanced corrosion resistance of the newly developed MMn steel is attributed to the high Cr
and N contents even after precipitation. It seems that the ultrafine grain microstructure plays an
important role in improving the corrosion resistance despite the detrimental effect of precipitates.
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