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Abstract: The super-hydrophobic copper surface was obtained by using a nanosecond pulsed laser.
Different micro- and nano-structures were fabricated by changing the laser scanning interval and
scanning speed, before heating in an electric heater at 150 ◦C for two hours to explore the effect
of laser parameters and heat treatment on the wettability of the copper surface. It was found that
the laser-treated copper surface is super-hydrophilic, and then, after the heat treatment, the surface
switches to hydrophobic or even super-hydrophobic. The best super-hydrophobic surface’s apparent
contact angle (APCA) was 155.6◦, and the water sliding angle (WSA) was 4◦. Super-hydrophobic
copper is corrosion-resistant, self-cleaning, and dust-proof, and can be widely used in various
mechanical devices.

Keywords: nanosecond laser; super-hydrophobic copper surface; micro- and nano-structures;
apparent contact angle; sliding angle

1. Introduction

Bionics is the application of biological methods found in nature to the study and design of industry
materials and advanced technologies. There are many animals and plants in nature that have this kind
of function, such as the lotus leaf, bird feathers, butterfly wings, and so on. This paper focuses on
the super-hydrophobic phenomenon (wettability). Wettability can be measured by apparent contact
angle (APCA), which is the angle between the outline of the liquid (water in this case) surface and
the contact material surface (solid surface typically) [1,2]. A super-hydrophobic surface refers to an
APCA greater than 150◦, and a water sliding angle (WSA) less than 10◦ (low contact-angle hysteresis).
It is waterproof and self-cleaning; thus, it is not only an interesting phenomenon in nature, but also
of great scientific interest. In recent years, the super-hydrophobic phenomenon was widely used in
environmental purification, food packaging, medical devices, etc. [2–7].

Many studies showed that there are many factors affecting the material surface’s
super-hydrophobicity, including surface energy and roughness; in particular, rough nano-structures
highly influence the wettability of the material surface. Therefore, the present preparation methods of
super-hydrophobic materials mainly focus on the material surface roughness and surface modification.
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In order to find the best super-hydrophobic metal surface, we should know the reasons behind certain
materials being super-hydrophobic.

A dense column micro- or nano-structure is the key factor causing a super-hydrophobic surface.
Thus, when we look for a super-hydrophobic surface, micro- and nano-scale dense column structures,
such as the microstructures of lotus leaves, bird feathers, and butterfly wings, are considered. Although
there are many ways to fabricate the hybrid micro/nano-structure on the material surface, such as
chemical vapor deposition, chemical etching, nano-imprint lithography, electrode position, etc., there
are various problems in their application [8–17]. For example, the size of the micro/nano-structure
formed by the chemical etching method is very sensitive to external conditions such as temperature and
concentration of chemical solution. In addition, etching reagents are mostly corrosive reagents with
safety and environmental issues. Unlike the above methods, lasers can fabricate and precisely control
the size of micro/nano-structures [18–23]. Therefore, laser processing can be used to quickly obtain
micro/nano-structures. Recent studies found that the surfaces of metal oxides and nanostructures
formed by laser ablation are initially hydrophilic or even super-hydrophilic; however, over time,
they become hydrophobic, and sometimes even super-hydrophobic in air after two weeks to two
months [24]. Several mechanisms were proposed to explain this phenomenon. Chang et al. proposed
that the deoxidation of copper oxide could effectively promote the development from a hydrophilic to
a super-hydrophobic surface [25,26]. Boinovich et al. believed that metal oxides adsorbed organics in
the air, resulting in the transition from a super-hydrophilic to super-hydrophobic surface [27,28]. It can
be seen that, although most researchers extensively studied this topic, there is obvious controversy
regarding the mechanism of the wettability transition behavior.

In this paper, a rapid method of fabricating a super-hydrophobic surface on a copper plate was
studied. Micro/nano-structures were fabricated on copper surfaces by laser ablation, which then
became super-hydrophobic after heat treatment. The mechanism of wettability transformation was
investigated, and a fast method to prepare super-hydrophobic surfaces was studied. In addition, the
effect of the laser parameters on the surface wettability of copper plate was investigated. The results
indicate that the laser scanning interval and scanning speed are the key factors for producing the
copper super-hydrophobic surface.

2. Materials and Methods

2.1. Materials

Copper samples (purity 99.9%—supplied by the Beijing nonferrous metal research institute) were
cut into 10 × 10 × 0.5 mm3 pieces, followed by ultrasonic cleaning in acetone and deionized water for
10 min to remove impurities and any oil remaining on the surface.

2.2. Laser Ablation Treatment

The copper samples were ablated by nanosecond laser (HANS laser EP-20-SHG, Han’s Laser,
Shenzhen, China) with a wavelength of 532 nm and a spot size of 20 µm. In the experiment, the
laser processing was carried out by scanning with a grid pattern (line-by-line in both horizontal and
vertical directions with varying distances between adjacent scanning lines), as shown in Figure 1.
In the process, different micro/nano-structures were formed on the machining surface by changing the
scanning speed V (100, 500, 900, 1300, 1700 mm/s) and scanning interval h (0.005, 0.01, 0.015, 0.02 mm),
as shown in Table 1.
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Table 1. Laser processing parameters.

Laser Parameter Value

Power (W) 8
Pulse frequency (kHz) 20
Scanning speed (mm/s) 100, 500, 900, 1300, 1700
Scanning interval (mm) 0.005, 0.01, 0.015, 0.02
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Figure 1. Grid pattern scanning.

2.3. Heat Treatment

The laser-treated sample was placed in a heater with a temperature of 150 ◦C for 2 h (tempering)
as post-treatment to change its wettability. Vacuum or non-vacuum tempering environments were set
to investigate the effects of oxidation and organic matter in the air on the surface wettability of samples.

2.4. Characterizations and Tests

The morphology of the sample was observed by field-emission scanning electron microscopy
(FE-SEM, FEI, Hillsboro, OR, U.S.A.), and the crystal structure of the sample was analyzed by X-ray
diffraction (XRD D8 Advance, Bruker, Karlsruhe, Germany). The surface chemical composition was
analyzed by energy-dispersive X-ray spectroscopy (EDS, FEI, Hillsboro, OR, U.S.A.). The wettability of
the sample was evaluated by measuring APCA and WSA with an automatic contact-angle measuring
instrument (Zhongchen JC2000DM, Beijing Zhongyi, Beijing, China). The values of APCA and WSA
on the surface of each sample were measured five times at random locations, and all measurements
were made when the droplets reached a stable state.

3. Results and Discussions

3.1. Morphology

FE-SEM images of the laser- and heat-treated copper surfaces are plotted in Figure 2. As can be
seen from Figure 2a,c,e, the laser grid scanning formed regular grid micro/nano-structures. The periodic
square formed on the surface of the copper plate was distributed along the horizontal and vertical
directions by laser scanning. This is because the laser irradiation caused the temperature of the copper
surface to rise to its melting point, whereby the surface material melted and evaporated. In the
laser processing process, the nanoparticles still remained on the surface after laser irradiation, thus
forming the nanostructure (shown in Figure 2b, numbered 2). The size, shape, and distributions of
nanoparticles largely depend on the laser fluence and the scanning interval. As shown in Figure 2a,b,
when the scanning speed and scanning interval were small (more laser energy absorbed by surface),
a large number of slender columnar structures appeared on the surface of the copper plate, with
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some gully structures among them. As shown in Figure 2b, it can be observed that the size of these
slender columnar structures ranged between 8 and 20 µm, and they were uniformly distributed
on the surface. Figure 2c,d show that, when the scanning interval was constant, with the increase
of scanning speed, the array of obvious columnar structures was distributed to form micro-square
elements, and micro-grooves with nano-particle deposition were formed at the boundary of the slender
columnar structures, resulting in the adjacent gully structures becoming more obvious. In a further
magnification, it can be observed that the columnar structure was about 30 µm in size, the gully
spacing became larger, and the period was about 50 µm, as shown in Figure 2d. In addition, a large
number of micro/nano-particles aggregated, which can be observed to be randomly attached on the
micro-columnar surface. Therefore, with the increase of the laser scanning speed, the micro-columnar
structure became larger, and the distribution changed from irregular to regular, whereas the columnar
structure and gully became relatively flat. A similar structure appeared as the scanning interval
increased. Compared with Figure 2c,d, when the scanning speed was constant and the scanning interval
increased, it can be observed in Figure 2e,f that micro-columnar structures and grooves gradually
disappeared and some flat corrugated structures appeared. As shown in Figure 2b,d, in the larger
magnification image, there were fine nano-scale particles randomly distributed on the surface, which
increased the surface roughness of the material. By changing the laser processing parameters, various
surface morphologies can be realized, which is essential to controlling the material surface wettability.
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Figure 2. SEM image of copper plate surface after laser ablation and heat treatment: (a,b) scanning
speed: 100 mm/s, scanning interval: 0.005 mm; (c,d) scanning speed: 1300 mm/s, scanning interval:
0.005 mm; (e,f) scanning speed: 1300 mm/s, scanning interval: 0.02 mm. 1—nanostructures; 2—slender
columnar structures.

In order to illustrate the relationship between the laser parameters and the surface microstructure,
the three-dimensional (3D) contour map of the surface structure was tested. Figure 3a shows the 3D
profile of a typical surface when the laser scanning speed was 100 mm/s and the scanning interval
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was 0.005 mm. The surface roughness (Ra) value of this structure was 15.7 µm, which is higher than
other samples with different scanning speeds. As the scanning speed increased, the roughness value
gradually decreased. As shown in Figure 2b, the surface Ra value was 4.9 µm, which is dramatically
lower compared with Figure 3a. This reduction in roughness is consistent with the SEM observation
that the surface topography became flatter and shallower as the scanning speed increased. In addition,
Figure 3a,c show the relationship between surface roughness and scan interval. As shown in Figure 3c,
when the scanning speed was 100 mm/s, and the scanning interval was 0.02 mm, the surface Ra value
was 4.7 µm. The surface roughness slightly decreased with the increase of scanning interval. This is
because reducing the scanning interval also resulted in more complex and coarser structures. Therefore,
the morphology of the surface can be tuned by simply adjusting the scanning speed.
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Figure 3. Three-dimensional (3D) profile of laser-ablated and heat-treated copper surfaces: (a) scanning
speed: 100 mm/s, scanning interval: 0.005 mm; (b) scanning speed: 1300 mm/s, scanning interval:
0.005 mm; (c) scanning speed: 100 mm/s, scanning interval: 0.02 mm.

3.2. Wettability

Compared with untreated copper surfaces (APCA of about 80–85◦), the laser-treated copper
surfaces were hydrophilic or even super-hydrophilic, with an APCA range of 5 ± 1.2◦ to 45 ± 1.6◦.
Following the laser treatment and material tempering in the heater, all materials with the different
tempering processes appeared to transition from super-hydrophilic to super-hydrophobic. As shown
in Figure 4a, the surface APCA after heat treatment was measured. It can be observed that the APCA
on the surface of the sample was in the vicinity of 150◦. When the scanning interval was constant, the
surface APCA decreased with the increase of scanning speed. When the scanning speed was constant,
the surface APCA decreased with the increase of scanning interval. However, the APCA change
was not obvious, as the maximum difference was only 8.8◦. Therefore, it is difficult to measure the
surface wettability from APCA only. Thus, WSA was introduced to estimate the wettability (Figure 4b).
In order to study the influence of scanning speed on the wettability of samples, it can be observed
from Figure 4b that, when the scanning interval was constant, the WSA value of the surface increased
with the increase of scanning speed. When the scanning interval was no more than 0.005 mm, the
maximum WSA on the surface of the sample was 6◦, which means that the surface adhesion was
very low, characterized as being super-hydrophobic. In addition, when the scanning speed was
constant, the WSA of the sample surface increased with the increase of the scanning interval. When
the scanning speed was less than 100 mm/s, the surface WSA was less than 10◦, with a minimum
value of 4 ± 1.2◦. With the increase of scanning speed and scanning interval, although the surface
APCA change was not obvious, (maximum of 153.5 ± 3.8◦, minimum of 144.7 ± 1.2 ◦; only an 8.8◦

difference), the surface WSA changed a lot, with a maximum value of 68.6 ± 0.6◦ and a minimum value
of 4 ± 1.2◦, equating to a difference of 64.6◦. This indicates that, with the change of laser parameters,
the WSA of the laser- and heat-treated sample surface was mainly affected in terms of the change of
surface adhesion. These results further indicate that the water adhesion on the sample surface can be
significantly changed by adjusting the scanning speed and the scanning interval. In order to analyze
the stability of laser-treated copper surface super-hydrophobicity, a storage time versus WSA and
APCA test was conducted. Table 2 summarizes the evolution of APCA and WSA with storage time of
samples after laser and heat treatment. It can be seen that, after the samples were placed in air for a
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period of time, the APCA showed a certain growth trend, whereas WSA decreased, and both tended to
be stable when they reached the level of super-hydrophobicity. Some researchers found that the reason
for this phenomenon is the influence of organic matter in the air [28]. Therefore, when the samples that
reached super-hydrophobicity were placed in the air, their values of APCA and WSA tended to be
stable, and their surface wettability did not change significantly.
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Figure 4. (a) Apparent contact angle (APCA) of laser ablation surface; (b) water sliding angle (WSA) of
laser ablation surface.

Table 2. Evolution of apparent contact angle (APCA) and water sliding angle (WSA) measurements (◦)
with storage time.

Store Time 1 h 1 day 10 days 20 days 30 days

APCA (◦) 146.2 ± 1.9 147.2 ± 0.9 150.3 ± 2.5 154.3 ± 2.1 153.6 ± 3.5
WSA (◦) 19.6 ± 0.8 14.5 ± 1.9 11.4 ± 1.1 8.2 ± 0.9 7.5 ± 1.3

3.3. Evaluation of Surface Composition

To measure the chemical composition of the sample surface at each reaction stage and to determine
the influence of the chemical composition on the surface wettability, the XRD test was conducted,
and the results are shown in Figure 5 (the scanning interval was 0.005 mm and the scanning speed
was 100 mm/s). It can be observed that the laser-ablated samples without heat treatment appeared
as copper oxide (2θ angle of 35.9◦), which was not shown in the untreated copper plate. The sample
processed by both laser and heat treatment exhibited a new wave peak at 36.74◦ (2θ angle), indicating
the formation of cuprous oxide. To further confirm the element composition of the sample surface,
EDS (only qualitative analysis was carried out here to observe the change trend of some elements in
different treatment stages of the samples) tests were conducted on the sample. As shown in Table 3,
there was a small amount of carbon on the laser-treated surface. The carbon came from the organic
matter adsorbed from the air during the laser ablation and tempering processes. The carbon content of
the laser-ablated sample did not change significantly after it was placed in air for a period of time (24 h).
However, the carbon content and oxygen content on the sample surface increased obviously after
tempering. This result indicates that the adsorption rate of organic compounds in the air was relatively
low when the samples were placed in air after laser ablation. The surface carbon content of samples
increased obviously after heat treatment, indicating that heat treatment accelerated the adsorption of
organic compounds in the air. Some researchers believe that the wettability of the laser-treated copper
plate changed when it was placed in air for a period of time, caused by the adsorption of organic
matters in the air by oxides on the surface of the copper plate [27,28]. Therefore, the C/Cu value can be
used to measure the amount of adsorbed organic compounds. As shown in Figure 6a,b, the variation
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trend of C/Cu value of different samples was consistent with that of the APCA. Note that the C/Cu ratio
of samples with a large APCA was often larger. The increase in surface carbon content of metal oxides
in ambient air was also reported in several published papers [28]. Therefore, it could be concluded that
the increase of surface APCA of copper after heat treatment was caused by the adsorption of organic
compounds, and the heat treatment process accelerated the adsorption of organic compounds.
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Table 3. Energy-dispersive X-ray spectroscopy (EDS) results.

Post-Processing
EDS (%)

Cu O C

Laser-ablated only (A) 72.78–84.46 10.96–16.02 4.59–11.21
Laser-ablated and then placed in air for 24 h (B) 71.34–83.36 11.43–17.26 5.09–12.21

Laser-ablated plus heat-treated (C) 57.57–72.5 18.55–26.44 8.9–15.99

3.4. Discussion

The laser-ablated copper plate was hydrophilic, and the Wenzal model was introduced to explain
the behavior of water droplets on the rough surface [29]. The Wenzel model indicates that the surface
roughness has a positive effect on material surface wettability for both hydrophilic and hydrophobic
surfaces. The sample surface forms micro/nano-structures when laser-ablated, and this rough laser
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texture surface shows hydrophilicity or even super-hydrophilicity. Moreover, for solid surfaces, an
important characteristic that determines a material’s affinity for water molecules is surface polarity;
an increase in polarity usually leads to an increase of surface hydrophilicity. It is well known that
most metal oxides are polar, and copper oxide has a large number of polar sites on its surface, thus
forming a hydrophilic surface. For example, previous studies showed that hydroxyl groups on oxide
surfaces reduce wettability by reducing the polar component of surface free energy. Therefore, after
laser ablation, the generation of copper oxide further increases the surface wettability.

After heat treatment, the laser-ablated samples changed from hydrophilic to super-hydrophobic.
According to the chemical composition test results, the carbon content increased on the laser- and
heat-treated surfaces. This was caused by the adsorption of organic matter in the air by oxides on the
surface of the copper plate. Since the main component of most organic molecules, alkyl, is nonpolar,
adsorbing organic matter from the air is a more efficient way of reducing the surface polarity of copper
oxide [30–32]. Various organic substances are adsorbed on the surface, thereby reducing the surface
polarization, resulting in surface wettability transformation. In addition, cuprous oxide was formed
after heat treatment. Cuprous oxide is insoluble in water and is a hydrophobic substance, which
also affects the surface wettability to a certain extent [33]. Some researchers studied the relationship
between material surface wettability and material surface microstructure [34]. In this study, the effect
of laser parameters on the surface microstructure was investigated. According to Section 3.1, the
best super-hydrophobic copper surface appeared with the lower laser scanning speed and smaller
scanning interval. It is coincident with the Cassie state, where the rougher surface appears hydrophobic.
The wettability of copper plates could be explained in three states: the Cassie state [35], the mixed
wetting state [36–39], and the Wenzel state [29]. Firstly, when the laser energy is high or the scanning
speed and the scanning interval are low, the surface shows super-hydrophobicity and low adhesion,
which can be explained by the Cassie state, where θr is the Cu surface APCA after laser treatment,
θ is the contact angle,and f is the fractional interface area of the Cu surface, while (1−f ) stands for
the drop–air contact area. Considering a contact angle of 180◦, the calculation expression is shown in
Equation (1) [40–43].

Cosθr = f cosθ + (1 − f ) cos180◦ = f cosθ + f − 1 (1)

As shown in Figure 7, there is air remaining in the rough groove when water drops onto the surface.
The trapped air in the groove prevents the water droplets from flowing into the groove. The material
surface consists of two parts: the material solid slender bar and the trapped air. In this case, the
actual contact area of the droplet includes both droplet–air contact and droplet–material solid slender
bar contact. As can be seen from Equation (1), with the increase of roughness coefficient or surface
hydrophobicity, the droplets become more stable on the rough surface; that is, the APCA becomes larger.
When the scanning interval and scanning speed are small, the formed micro/nano-structure is dense
and the surface roughness is large; thus, some of the water droplets contact the air, resulting in very low
adhesion [40]. Then, as the scanning speed and the scanning interval increase, the micro/nano-structure
becomes flat and shallow. At the same time, the rough nanostructures that form at the top of the
microstructure gradually disappear and ripple, allowing water to partially enter the structure. This
state is known as the mixed wetting state. In this state, the APCA changes relatively slightly; however,
the WSA increases markedly. As the scanning speed and spacing increase further, the surface only
produces some ripples and water fills the entire structure—a state known as the Wenzel state. Due to
the large contact area between water droplets and the surface, there is increased adhesion. In this
state, the APCA is relatively small, while the WSA is large. Therefore, the laser parameters have
great influence on the WSA of the copper plate. Different surface wettability states can be obtained by
adjusting laser parameters.
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4. Conclusions

A super-hydrophilic surface was fabricated on a copper plate using a nanosecond laser, and
then transformed into a super-hydrophobic surface using a simple heat treatment. By controlling the
scanning interval and scanning speed, different micro/nano-structures were fabricated on the copper
surface. The wettability of different micro/nano-structures are varied when placing the sample in a
heater at 150 ◦C for 2 h, before slowly cooling to room temperature. The dense micro/nano-structure
formed with the small scanning interval and scanning speed exhibited a large contact angle and a
small sliding angle, characterizing it as super-hydrophobic. With the increase of scanning interval and
scanning speed, the micro/nano-structure became flat, the APCA became smaller, and the WSA became
larger. Obviously, different morphologies have significant effects on the wettability of the surface. The
fine uniform ripples produced by the tiny redeposited nanoparticles have a strong adhesion to water.
Through this work, the effects of laser processing parameters on the wettability of copper plates, as
well as the influence of atmospheric storage temperature on the change of surface APCA with time,
were clarified.
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