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Abstract: Laboratory heating experiments with a varied holding time of GCr15 bearing steels at
1498 K were performed to study the transformation of inclusions in solid GCr15 bearing steels during
high temperature diffusion processes. Heating experiments at 1573 and 1648 K were also carried
out to study the effect of these heating temperatures. Experimental results showed that inclusions
transformed from Al2O3-CaO-(MgO) to Al2O3-CaS-(MgO-CaO) when the heat treatment was in the
range of 1498 to 1648 K due to reactions between Al and S in the steel matrix and CaO in the inclusions.
This is in good agreement with thermodynamic calculations. Moreover, the size of the inclusions
hardly changed after heat treatment. The transformation rate of the inclusions depended strongly on
both the heating temperature and the size of the inclusions. Kinetic analyses on the transformation of
inclusions during heat treatment were performed based on a simplified analytical model. The mass
transfer coefficients of CaO and CaS in inclusions were calculated, which ranged from 0.73 × 10−10 to
4.48 × 10−10 m/s.

Keywords: heat treatment; transformation; mass transfer coefficient

1. Introduction

Bearing steels are widely applied in machinery manufacturing, railway transportation, automobile
manufacturing, national defense industries, and other fields [1]. It is well known that the mass fraction,
composition, size, morphology, and distribution of non-metallic inclusions have an important influence
on the rolling contact fatigue (RCF) life of bearing steels [2–5]. The demand for the RCF life of bearing
steels becomes more stringent, which requires a better control of steel cleanliness. The RCF life of
Al-killed bearing steels can be increased 30 times by decreasing the oxygen content from 30 ppm to
5 ppm [6]. Besides, the RCF life is also closely related to the composition of inclusions in bearing steels.
It is found that titanium nitride inclusions are more harmful than oxide inclusions with the same
size. The detrimental effect of a 7 µm TiN inclusion is equivalent to that of a 25 µm oxide inclusion.
However, large globular calcium aluminate inclusions are the most detrimental to bearing steels [2].

Extensive research on the formation, removal, and modification of non-metallic inclusions in the
molten steel at steelmaking temperatures have been conducted, such as the calcium treatment [7–15],
the rare earth element treatment [16,17], slag refining [18–22], and reoxidation [23,24]. However, less
attention has been paid to the variation of oxide inclusions in the solid steel during heat treatment. It was
reported that MnO-SiO2 oxide inclusions in Type 304 stainless steels may transform to MnO-Cr2O3

during heat treatment in the range of 1273 to 1623 K [25–27] The contents of Mn, Si, and Cr in the
steel had a strong influence on the transformation [28,29]. It was found that Al-Ca-O-S complex
inclusions were the predominating particles in EH36 shipbuilding steels, but the TiN ones were
profusely populated after being heated at 1473 K [30,31]. CaO-Al2O3 type of inclusions in pipeline
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steels transformed into Al2O3-CaS type after heat treatment in the range of 1273 to 1673 K [27,32].
Yang et al. also investigated the transformation of inclusions in pipeline steels during solidification
and cooling [33]. For a high temperature diffusion process of high carbon chromium bearing steels to
reduce the segregation of bloom and precipitation of ribbon type carbide as well as aliquation carbide,
1473 K is usually utilized [34]. However, the transformation of inclusions in Al-killed GCr15 bearing
steels during high temperature diffusion processes has rarely been studied.

Thermodynamic models [35,36] and kinetic models [37–40] have been established to predict
the compositions of steel, slag, and inclusions in the molten steel, as well as the precipitation
of sulfides [41,42] and nitrides [43,44] during cooling and solidification. In the current work, the
transformation of inclusions in a GCr15 bearing steel during high temperature diffusion processes
was investigated through laboratory experiments, thermodynamic analyses and kinetic analyses.
Isothermal heat treatment of the Al-killed GCr15 bearing steel was performed at varied temperatures
that ranged from 1498 to 1648 K under an argon atmosphere.

2. Experimental Procedure

Industrial trails for the production of a GCr15 bearing steel by a route of “EAF-LF refining-vacuum
degassing-bloom CC-hot rolling” were performed. The molten steel was casted into 320 mm × 480 mm
blooms. Before hot rolling, the bloom was heated for 3 h, 7 h, or 12 h in the range of 1493 to 1503 K as a
high temperature diffusion process. The chemical composition of the bearing steel used in this study is
listed in Table 1.

Table 1. Chemical composition of the GCr15 bearing steel used in the current study (mass %).

C Cr Si Mn P S O Mg Ca Als

1 1.563 0.3 0.39 0.0115 0.0031 0.0007 0.0003 0.0003 0.015

The cylindrical steel sample with a 34 mm diameter was taken from the tundish and quenched in
water. The quenched steel sample was machined into sectors (each measuring approximately 17 mm ×
10 mm with an angle of 60◦), as shown in Figure 1. Next, the machined samples were heated under
an argon atmosphere at 1498, 1573, or 1648 K for various periods from 5 min to 12 h, respectively,
in a Si-Mo resistance furnace (SHIMADEN FP21, Tokyo, Japan), followed by water quenching. The
schematic of experimental procedures is shown in Figure 2.
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Figure 2. Heating experiments of steel under three temperature conditions. 

Quenched steel samples were mounted in epoxy resin, ground and polished. The size, 
composition, morphology and amount of inclusions in steel samples were analyzed by an automatic 
SEM-EDS equipment (FEI, Pittsburgh, PA, USA). The scanned area was over 60 mm2 for each sample. 
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MgO·Al2O3 and Al2O3-CaO-(MgO) which represents Al2O3-CaO with limited MgO content, before 
heat treatment. A typical inclusion with mapping and line scanning is shown in Figure 4. The average 
composition of inclusions was 15.42 wt % MgO-63.76 wt % Al2O3-17.18 wt % CaO-3.64 wt % CaS. 
According to Figure 3b, after being annealed at 1498 K for 5 min, the average content of CaO in the 
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1498 K for 1 hour, which was the MgO-Al2O3 core enveloped by CaS. The average composition of 
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12 h was 13.20 wt % MgO-69.94 wt % Al2O3-4.12 wt % CaO-12.73 wt % CaS. An irregular shaped 
MgO-Al2O3-CaS inclusion was observed after the steel was held at 1498 K for 12 h, as shown Figure 
6, which was MgO-Al2O3 in the core and CaS in the periphery. Wang et al. investigated the effect of 
CaS on the evolution of CaO-Al2O3 inclusions in low-carbon Al-killed and Ca-treated steels during 
the solidification process [7]. It was found that the inclusions were originally liquid and spherical, 
and transformed to an irregular state during solidification due to the reaction between CaO-Al2O3 
inclusions with the dissolved sulfur and aluminum in the steel, resulting in the formation of dense 
CaS shells around the inclusions. The effect of the holding time on the average composition of 
inclusions at 1498 K is shown in Figure 7. It indicates that inclusions are transformed from Al2O3-
CaO-(MgO) to Al2O3-CaS-(MgO-CaO). Error bars represented the 95% confidence interval of the 
mean composition. 

Figure 2. Heating experiments of steel under three temperature conditions.

Quenched steel samples were mounted in epoxy resin, ground and polished. The size, composition,
morphology and amount of inclusions in steel samples were analyzed by an automatic SEM-EDS
equipment (FEI, Pittsburgh, PA, USA). The scanned area was over 60 mm2 for each sample.

3. Change of Inclusion Composition During Heating Treatment

3.1. Effect of Holding Time on the Transformation of Inclusions in the Steel During Heating

The composition and size of the inclusions in the steel before and after the heat treatment at 1498 K
with varied holding time are shown in Figure 3. As shown in Figure 3a, the inclusions were mainly
MgO·Al2O3 and Al2O3-CaO-(MgO) which represents Al2O3-CaO with limited MgO content, before
heat treatment. A typical inclusion with mapping and line scanning is shown in Figure 4. The average
composition of inclusions was 15.42 wt % MgO-63.76 wt % Al2O3-17.18 wt % CaO-3.64 wt % CaS.
According to Figure 3b, after being annealed at 1498 K for 5 min, the average content of CaO in the
inclusions decreased while the CaS content slightly increased. After 20 min, the average content of
CaO in the inclusions decreased from 17.18 to 9.36 wt % while the CaS content increased from 3.64
to 13.06 wt %, as shown in Figure 3c. Figure 5 shows a typical inclusion in the steel after being held
at 1498 K for 1 h, which was the MgO-Al2O3 core enveloped by CaS. The average composition of
inclusions in the steel had no obvious change when the holding time was longer than 3 h, according
to Figure 3e–g. The average composition of the inclusions in the steel after being held at 1498 K for
12 h was 13.20 wt % MgO-69.94 wt % Al2O3-4.12 wt % CaO-12.73 wt % CaS. An irregular shaped
MgO-Al2O3-CaS inclusion was observed after the steel was held at 1498 K for 12 h, as shown Figure 6,
which was MgO-Al2O3 in the core and CaS in the periphery. Wang et al. investigated the effect of
CaS on the evolution of CaO-Al2O3 inclusions in low-carbon Al-killed and Ca-treated steels during
the solidification process [7]. It was found that the inclusions were originally liquid and spherical,
and transformed to an irregular state during solidification due to the reaction between CaO-Al2O3

inclusions with the dissolved sulfur and aluminum in the steel, resulting in the formation of dense CaS
shells around the inclusions. The effect of the holding time on the average composition of inclusions at
1498 K is shown in Figure 7. It indicates that inclusions are transformed from Al2O3-CaO-(MgO) to
Al2O3-CaS-(MgO-CaO). Error bars represented the 95% confidence interval of the mean composition.
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Figure 7. Effect of holding time on the average composition of inclusions at 1498 K.

The evolution of the average content of each component in the inclusions as a function of the
inclusion diameter is shown in Figure 8. According to Figure 8a, before heat treatment, inclusions
larger than 3 µm were mainly calcium aluminate. As for inclusions smaller than 3 µm, the CaO content
increased with the increase of the diameter, and the contents of Al2O3 and MgO decreased.
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As shown in Figure 8b, after being held at 1498 K for 1 h, the CaO content in inclusions with the size
of 1–4 µm decreased while the CaS content increased. As for the inclusions less than 3 µm, the average
composition of the inclusions is almost the same regardless of the size. The CaO content of the
inclusions decreased to 6 wt % after the steel was heated for 3 h, as shown in Figure 8c. The composition
of inclusions with different sizes varied slightly with a longer holding time, as shown in Figure 8d.
All the above experimental results indicated that the composition of small inclusions varied more
severely than large ones. According to Figure 8, the CaS and Al2O3 content of the inclusions increased,
and the CaO content decreased with the increase of the holding time, especially for large inclusions.
The main reaction that occurred in the steel during heat treatment at 1498 K is as follows:

3(CaO)+3[S]+2[Al]→ 3(CaS)+(Al 2O3) (1)

The variation in the number density and average diameter of the inclusions in the steel are shown
in Figures 9 and 10, respectively. The number density of inclusions varied slightly with time when the
steel was held at 1498 K. The average diameter of the inclusions in the steel decreased after heating,
especially after 12 h heat treatment at 1498 K.
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Figure 9. Variation in the number density of inclusions in the steel during heat treatment at 1498 K.

The variation in the size distribution of the inclusions in the steel against the holding time is
shown in Figure 11. The number of small inclusions increased after heat treatment at 1498 K, especially
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heat treatment of 7 and 12 h. Less variation in the area fraction of the inclusions in the steel with
holding time was observed. The results are shown in Figure 12.
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3.2. Effect of Temperature on the Transformation of Inclusions in the Steel During Heating

The effect of holding time on the average composition of the inclusions in the steel during heat
treatment at 1573 K is shown in Figure 13. After heating for 5 min at 1573 K, the average content of
CaS in inclusions increased while the CaO content slightly decreased. The average content of CaO in
inclusions decreased from 17.18 wt % to 5.33 wt % and the CaS content increased from 3.64 wt % to
19.41 wt % after heating for 20 min at 1573 K. The average composition of inclusions slightly varied
after heating for 1 h or longer at 1573 K. The average composition of inclusions in the steel after heating
for 7 h at 1573 K was 17.10 wt % MgO-58.77 wt % Al2O3-2.60 wt % CaO-21.53 wt % CaS. The CaS
content of inclusions increased and the CaO content decreased with time at 1573 K.
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Figure 13. Effect of holding time of heating on the average composition of inclusions in the steel heated
at 1573 K.

The effect of holding time on the average composition of inclusions in the steel heated at 1648 K is
shown in Figure 14. After heating for 20 min at 1648 K, the content of CaS in inclusions increased from
3.64 wt % to 7.59 wt %, while the CaO content decreased from 17.18 wt % to 11.95 wt %. The content of
CaO in inclusions slightly decreased and that of CaS further increased after the steel was heated for 1 h
at 1648 K. After heating for 3 h at 1648 K, the CaO content decreased to 7.28 wt % and the CaS content
increased to 18.13 wt %. The average composition of inclusions varied little after the steel was heated
for 7 h. The CaS content in the inclusions increased and the CaO content decreased with time at 1648 K.

Figure 15 shows the composition of inclusions against the annealing temperature at a fixed holding
time of 7 h. With the increase of temperature, the CaS content in inclusions increased, while the CaO
content decreased significantly, and the Al2O3 and MgO contents slightly varied. According to the
above results, the main reaction that occurred in the steel during heat treatment at 1573 and 1648 K is:

(CaO)+[S] =(CaS)+[O] (2)
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Figure 16 shows the effect of the holding time and temperature on the size of the inclusions in the
steel. The average size of inclusions decreased slightly with the increase of temperature and holding
time, implying that small inclusions were generated, especially CaS inclusions.



Metals 2019, 9, 642 12 of 21

Metals 2019, 9, x FOR PEER REVIEW 12 of 21 

 

Figure 16 shows the effect of the holding time and temperature on the size of the inclusions in 
the steel. The average size of inclusions decreased slightly with the increase of temperature and 
holding time, implying that small inclusions were generated, especially CaS inclusions. 

1.0

1.2

1.4

1.6

1.8
 1498 K
 1573 K
 1648 K

Av
er

ag
e 

di
am

et
er

 o
f i

nc
lu

si
on

s 
(μ

m
)

 

0               1/3               1                3                7 
Heating time (h)  

Figure 16. Effect of holding time and temperature on the size of inclusions in the steel during heat 
treatment. 

4. Thermodynamic Considerations on the Transformation of Inclusions in the Steel During Heat 
Treatment 

The comprehensive transformation of inclusions in the bearing steel consisted of three parts: 
Self-precipitation of inclusions, new precipitates from the steel, and the transformation of the 
inclusions from the reaction between steel and inclusions. In order to understand the transformation 
of the inclusions in the steel during heat treatment, thermodynamic calculations were carried out. 

4.1. Self-Precipitation of Inclusions with the Decrease of Temperature only Considering Inclusions 

The precipitation of phases in the inclusions with the decrease of temperature only considering 
the inclusions was calculated using FactSage 7.0 (Thermfact/CRCT & GTT-Technologies, Aachen, 
Germany) with the Ftoxid database. The result is shown in Figure 17. The initial composition of 
inclusions was 15.42 wt % MgO-63.76 wt % Al2O3-17.18 wt % CaO-3.64 wt % CaS, which was the 
average composition of inclusions in the bearing steel before heat treatment. According to Figure 17, 
at 1773 K, the liquid and solid phase of MgO·Al2O3 exist in inclusions. As the temperature decreases, 
solid CaO·Al2O3 precipitates accompanied with the decrease in the liquid phase, and the MgO·Al2O3 
ones slightly increase. The liquid phase disappears at 1611 K, along with the precipitation of solid 
3CaO·2MgO·Al2O3. The calculated results show that the precipitation of phases in the inclusions at 
heat treatment temperature did not result from the formation of CaS inclusions, and the CaO content 
in the inclusions hardly decreased, indicating that the variation of the composition of inclusions in 
the bearing steel was not caused by self-precipitation of inclusions during heat treatment. 

Figure 16. Effect of holding time and temperature on the size of inclusions in the steel during
heat treatment.

4. Thermodynamic Considerations on the Transformation of Inclusions in the Steel During Heat
Treatment

The comprehensive transformation of inclusions in the bearing steel consisted of three parts:
Self-precipitation of inclusions, new precipitates from the steel, and the transformation of the inclusions
from the reaction between steel and inclusions. In order to understand the transformation of the
inclusions in the steel during heat treatment, thermodynamic calculations were carried out.

4.1. Self-Precipitation of Inclusions with the Decrease of Temperature only Considering Inclusions

The precipitation of phases in the inclusions with the decrease of temperature only considering
the inclusions was calculated using FactSage 7.0 (Thermfact/CRCT & GTT-Technologies, Aachen,
Germany) with the Ftoxid database. The result is shown in Figure 17. The initial composition of
inclusions was 15.42 wt % MgO-63.76 wt % Al2O3-17.18 wt % CaO-3.64 wt % CaS, which was the
average composition of inclusions in the bearing steel before heat treatment. According to Figure 17,
at 1773 K, the liquid and solid phase of MgO·Al2O3 exist in inclusions. As the temperature decreases,
solid CaO·Al2O3 precipitates accompanied with the decrease in the liquid phase, and the MgO·Al2O3

ones slightly increase. The liquid phase disappears at 1611 K, along with the precipitation of solid
3CaO·2MgO·Al2O3. The calculated results show that the precipitation of phases in the inclusions at
heat treatment temperature did not result from the formation of CaS inclusions, and the CaO content
in the inclusions hardly decreased, indicating that the variation of the composition of inclusions in the
bearing steel was not caused by self-precipitation of inclusions during heat treatment.
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4.2. Precipitation of Inclusions in the Bearing Steel at Various Temperature with Consideration of Steel

For the steel with 7 ppm T.O. (total oxygen content), which was used in the current experiments,
the precipitation of inclusions in the bearing steel at various temperatures with consideration of
steel was calculated using FactSage 7.0 with the FactPS, FToxid, and Fsstel databases. The result is
shown in Figure 18. Due to the similarity of transformations under different conditions according
to Figure 18, only the comprehensive transformation of inclusions in the bearing steel is illustrated
in detail. As shown in Figure 18a, at the initial decreasing of temperature, inclusions in the bearing
steel are liquid oxides and solid MgO·Al2O3 ones. As the temperature decreases, the amount of spinel
phase increases and a small amount of solid MgO inclusions forms. At 1737 K, solid CaS inclusions
start to precipitate and the content of solid MgO·Al2O3 further increases with the decrease of liquid
phase. The liquid phase disappears at 1719 K. Trace amount of solid MgO and MgS precipitates in
bearing steels with the further decrease of temperature.

During heat treatment in the temperature range of 1498 to 1648 K, the main equilibrium inclusion
phases are solid CaS and MgO·Al2O3. By combining the content of each phase, the average composition
of inclusions during heat treatment can be obtained, as shown in Figure 19. The CaO content of
inclusions decreases to zero when the temperature decreases to 1719 K, and the CaS content in inclusions
increases significantly. Moreover, the Al2O3 and MgO contents of inclusions vary slightly, indicating
that the transformation from CaO into CaS in inclusions mainly occurs during heat treatment.
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Figure 18. Precipitation of inclusions in the bearing steel at various temperature with 7 ppm T.O.: (a) 
Comprehensive transformation, (b) new precipitates from the steel, (c) transformation of inclusions 
from the reaction between steel and inclusions. 

Figure 18. Precipitation of inclusions in the bearing steel at various temperature with 7 ppm T.O.:
(a) Comprehensive transformation, (b) new precipitates from the steel, (c) transformation of inclusions
from the reaction between steel and inclusions.
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Figure 19. Evolution of the composition of inclusions in bearing steels at various temperature
considering the steel with 7 ppm T.O.

The comprehensive transformation of inclusions in the bearing steel at various temperatures
considering the steel with 10 ppm T.O is quite different. Liquid oxides and solid MgO·Al2O3 form
between 1717 K and 1773 K during the solidification of the steel when T.O content is 10 ppm, as shown
in Figure 20. The amount of MgO·Al2O3 inclusions increases with the decrease of temperature. Solid
CaS inclusions begin to precipitate at 1717 K. Solid CaO·Al2O3 inclusions generate and liquid phase
disappears at 1698 K. As the temperature further decreases, solid CaO·2Al2O3 and CaO·2MgO·8Al2O3

precipitate successively, along with the disappearance of CaO·Al2O3 and CaO·2Al2O3 in succession.
According to the calculated results above, it can be concluded that the steel composition has an
important influence on the transformation of inclusions in the bearing steel during heat treatment.
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Figure 21 shows the comparison of the experimental results and thermodynamic calculation
results with the decrease of temperature. In the temperature range of 1498 to 1648 K, according to
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the comprehensive calculation result, the composition of the inclusions hardly varies and consists of
20.95 wt % MgO-53.03 wt % Al2O3 -26.02 wt % CaS. The average composition of inclusions measured
in the bearing steel after heat treatment at different temperature was almost the same and comprised
of 17.10 wt % MgO-58.77 wt % Al2O3-2.60 wt % CaO-21.53 wt % CaS after heat treatment at 1573 K.
The calculated and measured results are in good agreement with each other and show that the
transformation of inclusions happens during heat treatment. However, minor deviations between
experimental and calculated values were also observed. Thermodynamic calculation results were
obtained based on the equilibrium state, which means a sufficient reaction time and no consideration
of the reaction between the slag and refractories. However, in heat treatment experiments in the
current work, the reaction time is insufficient to reach the equilibrium, resulting in the minor deviation
between the experimental and calculated results.
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Figure 21. Comparison of experimental results and thermodynamic calculation results with the 
decrease of temperature. 

5. Kinetic Analyses on the Transformation of Inclusions During Heat Treatment 
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5. Kinetic Analyses on the Transformation of Inclusions During Heat Treatment

As shown in Figure 22, the initial inclusions in the steel were mainly Al2O3-CaO-(MgO) and
MgO·Al2O3 before heat treatment. During heat treatment, the high temperature accelerated the
diffusion of elements in the steel matrix such as [Al] and [S]. Reactions between [Al] and [S] in the steel
matrix and [Ca] and [O] in Al2O3-CaO-(MgO) inclusions were promoted, which were expressed by
Equations (3)–(5). Besides, MgO·Al2O3 phases were formed by the reaction between Al2O3 and MgO
inside inclusions, as shown in Equation (6). The initial MgO·Al2O3 inclusions in the steel before heat
treatment did not transform during heat treatment. After the steel was heated at a high temperature
for a long time, the inclusions in the steel were mainly MgO·Al2O3 and MgO·Al2O3 enveloped by CaS.
It should be pointed out that Equations (3)–(6) appeared to dominate during heat treatment at 1498 K,
resulting in the increase of Al2O3 and CaS, as well as the decrease of CaO. However, Equations (3), (4),
and (6) seemed to dominate during heat treatment at 1573 and 1648 K, only leading to the increase of
CaS and the decrease of CaO.

(CaO)= [Ca] + [O] (3)

[Ca]+[S] =(CaS) (4)
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2[Al] + 3[O] =(Al2O3) (5)

x(MgO) + y(Al2O3) = xMgO · yAl2O3 (6)
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According to thermodynamic calculation results in Section 4, the CaS content, as well as the
CaO content, in the inclusions at the equilibrium state was a little distinct at different temperatures.
Thus, the transformation of the inclusions could be treated as the same from the thermodynamic
perspective. However, under the experimental conditions, according to Figure 7, Figure 13, and
Figure 14, the evolution of the composition of inclusions as a function of holding time at different
temperatures was diverse, which should be attributed to the transformation kinetics. It is assumed
that the transfer process during heat treatment is a stationary diffusion process and the equilibrium
state of reactions are held at a steel-inclusions interface, indicating that the concentration of substances
at the interface are the equilibrium concentration. Therefore, Fick’s first law, as shown Equation (7),
can be used to describe the transformation.

JX,r = −DX ·A ·
dcX

dr
= −DX ·A ·

cb
X − c∗X
δ

(7)

where JX,r is the mass flux of X, kg/s; DX is the diffusion coefficient of X, m2/s; A is the area of the
interface, m2; cX is the concentration of X, kg/m3; r is the distance from the interface, m; δ is the
boundary layer thickness, m. In this paper, superscript * represents the interface between the steel
matrix and the inclusions, and b denotes the steel matrix.

JX,r =
dmX

dt
= V ·

dcX

dt
(8)

where mX is the mass of X, kg; V is the volume of the inclusion or steel matrix, m3; t is the diffusion
time, s. Equation (7) is equal to Equations (8) and (9) can be obtained.

dcX

dt
= −

DX

δ
·

A
V

(
cb

X − c∗X
)

(9)

Equation (10) derived from Equation (9) is usually utilized to describe the kinetic reaction of the
steel matrix.

d[%M]

dt
= −

n ·Asteel−inc · km_inc

Vsteel

(
[%M]b − [%M]∗

)
(10)
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where [%M] is the mass percentage of M element; n is the number of inclusions; Asteel−inc is the contact
area between the steel matrix and inclusions, m2; Vsteel is the volume of the steel matrix, m3; km_inc,
defined as DM

δ , is the mass transfer coefficient of M element in the boundary layer, m/s.
However, the variation of the element content in the steel matrix, such as the dissolved oxygen,

sulfur, and calcium cannot be measured during heat treatment due to the limitation of current detection
methods. Besides, it is difficult to determine the contact area between the steel matrix and inclusions.
The situation could be simplified when kinetic calculations were performed assuming that mass
transfer takes place as the molecules of inclusion components between the steel matrix and inclusions,
because the composition of inclusions can be obtained after heat treatment. Moreover, the inclusion
diffusion was assumed as a rate-limiting step of reactions in current work. Consequently, Equation (11)
can be applied to describe the kinetic reaction of inclusions. Equations (12) and (13) are derived from
Equation (11).

d(%MOn)inc
dt

= −
6 · kinc

dp

[
(%MOn)

b
inc − (%MOn)

∗

inc

]
(11)

ln[(%MOn)inc − (%MOn)
∗

inc] = −
6kinc

dp
t + C (12)

ln[(%MOn)
∗

inc − (%MOn)inc] = −
6kinc

dp
t + C (13)

where (%MOn)inc is the mass percentage of MOn in inclusions; kinc, defined as DMOn
δ , is the mass transfer

coefficient of MOn in the boundary layer, m/s; dp is the diameter of the inclusions; C is the constant.
The mass percentage of MOn in inclusions after a certain time of heat treatment and that at

equilibrium state (%MOn)
∗

inc can be acquired from Figure 7, Figure 13, and Figure 14. As stated
previously, the diameter of the inclusions dp can be regarded as the constant value, according to
Figure 16. Thus, kCaS and kCaO at different temperatures are obtained as empirical parameters shown
in Figure 23. At 1498 K and 1573 K, the mass transfer coefficient of CaS in inclusions is larger than that
of CaO, and they are almost the same at 1648 K. In addition, the mass transfer coefficient of CaS (or
CaO) in inclusions at 1573 K is larger than that of CaS (or CaO) at 1498 and 1648 K.Metals 2019, 9, x FOR PEER REVIEW 19 of 21 
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6. Conclusions 

In the current study, laboratory experiments and thermodynamic and kinetic analyses were 
performed to investigate the transformation of inclusions in GCr15 bearing steels during heat 
treatment. The following conclusions were obtained: 
1. Heat treatment of GCr15 bearing steels in the range of 1498 to 1648 K can transform Al2O3-CaO-
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CaO in the inclusions predominated at 1573 and 1648 K. The calculated and measured results 
are in good agreement. 

2. The transformation rate of the inclusions depends strongly on both the temperature (in the range 
of 1498 K–1648 K) and the inclusion size. Small Al2O3-CaO-(MgO) inclusions transformed more 
severely than large ones. At the temperature for high temperature diffusion, 1498 K, the 
transformation reaction can reach an equilibrium state in 3 h, while at 1573 K, the time is only 
about 20 min. Although increasing the temperature from 1498 to 1573 K can accelerate the 
transformation of the inclusions, the effect of the temperature on the microstructure and 
segregation must be taken into consideration at the same time. 
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m/s at 1498 K, respectively. At 1573 K, the mass transfer coefficient of CaO is 3.43×10−10 m/s and 
that of CaS is 4.48 × 10−10 m/s. However, at 1648 K, the mass transfer coefficient of CaO is only 
0.85 × 10−10 m/s and that of CaS is 0.73 × 10−10 m/s. 
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Figure 23. Effect of temperature on the mass transfer coefficient of inclusion components

Although Al2O3-CaO-(MgO) inclusions can transform to Al2O3-CaS-(MgO-CaO) during a high
temperature diffusion process at 1498 K, it does not mean that inclusions in blooms should be
controlled as calcium aluminate. The transformation of large calcium aluminate inclusions which are
the most detrimental to bearing steels need longer time to complete, resulting in the increase of the
production cost.
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6. Conclusions

In the current study, laboratory experiments and thermodynamic and kinetic analyses were
performed to investigate the transformation of inclusions in GCr15 bearing steels during heat treatment.
The following conclusions were obtained:

1. Heat treatment of GCr15 bearing steels in the range of 1498 to 1648 K can transform
Al2O3-CaO-(MgO) inclusions to Al2O3-CaS-(MgO-CaO) inclusions, mainly in the form of
Al2O3-MgO enveloped by CaS. The reaction between Al and S in the steel matrix and CaO in
the inclusions dominated the transformation at 1498 K, while the reaction between S in the steel
matrix and CaO in the inclusions predominated at 1573 and 1648 K. The calculated and measured
results are in good agreement.

2. The transformation rate of the inclusions depends strongly on both the temperature (in the
range of 1498 K–1648 K) and the inclusion size. Small Al2O3-CaO-(MgO) inclusions transformed
more severely than large ones. At the temperature for high temperature diffusion, 1498 K,
the transformation reaction can reach an equilibrium state in 3 h, while at 1573 K, the time is
only about 20 min. Although increasing the temperature from 1498 to 1573 K can accelerate
the transformation of the inclusions, the effect of the temperature on the microstructure and
segregation must be taken into consideration at the same time.

3. The mass transfer coefficients of CaO and CaS in inclusions are 2.08 × 10−10 m/s and 3.10 × 10−10

m/s at 1498 K, respectively. At 1573 K, the mass transfer coefficient of CaO is 3.43×10−10 m/s and
that of CaS is 4.48 × 10−10 m/s. However, at 1648 K, the mass transfer coefficient of CaO is only
0.85 × 10−10 m/s and that of CaS is 0.73 × 10−10 m/s.
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