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Abstract: A constitutive law was developed based on the evolutionary yield function to account
for the evolution of anisotropy induced by the plastic deformation. For the effective description
of anisotropy, the yield stress function and plastic potential were separately defined based on the
non-associated flow rule. In particular, for the description of the equivalent status, the accumulated
plastic work was employed as an alternative to the accumulated plastic strain. Numerical formulations
based on the plastic work were also derived in case the hardening rule, as well as the evolution of the
plastic potential and yield stress function, were defined in terms of the plastic work. The developed
constitutive law was characterized using the mechanical properties of the multi-phase BAO QP980
steel and niobium sheets at room temperature. From the uniaxial tension tests and the balanced
biaxial tension test, separate sets of anisotropic coefficients for each of the plastic potential and yield
stress functions were obtained as a function of the plastic work. By comparing with non-evolving
yield functions, the importance of the developed constitutive law to properly describe the evolution
of the plastic potential and yield function were validated.

Keywords: anisotropic hardening; evolutionary yield function; non-associated flow rule; multi-phase
Q&P 980 steel; niobium sheet; earing profile; cylindrical cup drawing; earing

1. Introduction

New sheet metal alloys are continuously being developed to meet the mechanical properties
required for various industries. In particular, in the automotive industry, the demand for lightweight
alloys and advanced high strength steels is gradually increasing, due to these metals’ improved
formability and specific strength, which are necessary for better crashworthiness as well as the
reduction in the vehicle weight. In response to the introduction of the new metal alloys, advanced
constitutive laws have been developed to improve the numerical prediction capability of finite element
models for such parameters as formability and spring-back of stamped sheet metals.

In classical plasticity, the constitutive laws mainly consist of the yield stress function to describe
the boundary between elastic and elasto-plastic regions, the plastic potential to define the plastic
strain increment based on the normality rule, and hardening rules to describe the evolution of the
yield function. In particular, for the description of planar anisotropy of sheet materials, various yield
functions and their evolution laws have been proposed. Hill [1] proposed a quadratic yield function,
while non-quadratic yield functions [2–8] have been developed over the years based on Karafillis and
Boyce [9] type yield function.
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In the associated flow rule, the plastic potential is assumed to be identical with the yield stress
function. This simple hypothesis has a significance in the numerical analysis and also satisfies the
Drucker [10] stability postulate for stable materials. However, as Stoughton [11] pointed out, the
fact that fundamental theorems are rigorously proven based on the associated flow rule, does not
imply that the associated flow rule is always true. If a precise description of anisotropy is desired,
complicated functions with a large number of parameters must be used in the associated flow rule to
simultaneously account for the anisotropy of both the yield stress function and the plastic potential.
Alternatively, separate functions can be defined to represent the anisotropy of the plastic potential and
the yield stress function. Compared with the associated flow rule, less complex functions could be
used in the non-associated flow rule to define the plastic potential and the yield stress function [11–19].
The constraints to ensure stability in the non-associated flow rule were derived by [13,15]. Also,
Spitzig [20] reported violation of the associated flow rule during the plastic deformation under the
hydrostatic pressure.

For a demonstration, isotropic yield surfaces and their conjugate strain-rate potentials were
generated based on crystal plasticity [21] and Yld2000-2d function [3]. In order to have the initial
isotropy in the crystal plasticity simulations, initial crystal orientations were randomly generated and
assigned to 8000 grains. Considering face centered cubic (FCC) crystals with 12 slip systems (<110>

slip directions on ({111} slip planes), the crystal plasticity simulations were performed for a total of
360 stress ratios between x- and y- directions under the plane stress condition. As for the Yld2000-2d
function, all the anisotropy coefficients were set to 1.0 to generate isotropic yield surface and three
yield exponents (m = 4, 6, and 8) were considered to generate non-quadratic yield surfaces. As shown
in Figure 1, the isotropic yield surface based on the Yld2000-2d function with a yield exponent of 4 is in
good agreement with the yield surface generated by the crystal plasticity simulations. However, in the
case of the strain-rate potential shown in Figure 2, the prediction based on the Yld2000-2d function
with a yield exponent of 6 shows the most similar results to the case of the crystal plasticity simulations.
These results imply that, not only it is not necessary but that it is also insufficient, to use the same
function to represent the anisotropy of the plastic potential and the yield stress function.
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Figure 1. Comparison of the calculated yield surfaces based on crystal plasticity simulations and
isotropic version of the Yld2000-2D function.



Metals 2019, 9, 611 3 of 30

Metals 2019, 9, x FOR PEER REVIEW 3 of 30 

 

 
Figure 2. Comparison of the calculated strain-rate potentials based on crystal plasticity simulations 
and isotropic version of the Yld2000-2D function. 

In the meantime, various attempts have been made to account for the anisotropic evolution of 
the yield surface. Hill and Hutchinson [22] proposed a theoretical framework, which is relevant to 
the differential hardening of a sheet material subjected to the arbitrary biaxial tensions. Abedrabbo 
et al. [23,24] used polynomial functions to fit the anisotropic coefficients of Barlat Yld96 anisotropic 
yield function [2] for different temperatures and strain rates. Plunkett et al. [25] developed an elastic-
viscoplastic model to describe the anisotropic/asymmetric evolution of the yield surface as a function 
of the accumulated plastic strain based on CPB06 yield function [6]. Zamiri and Pourboghrat [26] 
developed an evolutionary yield function, which describes the evolution of the anisotropic 
coefficients of Hill’s quadratic yield function [1] during the plastic deformation as a function of the 
plastic strain. Aretz [27] described the impact of distortional hardening on the prediction of forming 
limit curves. Stoughton and Yoon [16] also utilized Hill’s model [1] to provide a framework for the 
non-associated flow rule accounting for the anisotropic hardening in proportional loading. Although 
the evolution of the yield stress function was defined using a less complicated model and 
independent of the plastic potential, improved accuracy in the prediction of the uniaxial tension 
stress–strain curves was observed compared with the associated flow rule models. 

Further efforts were made to account for the Bauschinger effect in the non-monotonous loading 
conditions. Chung and Park [28] proposed a consistency condition for the combined type isotropic-
kinematic hardening law, in which the combined type hardening law is expected to behave the same 
as the full isotropic hardening for monotonously proportional loading. By partially releasing the 
consistency condition with an introduction of a homogeneous function to control the anisotropic back 
stress evolution, anisotropic hardening behavior was accurately described preserving the 
proportionality between global stress and back stress. Yoshida et al. [29] also proposed a material 
model to consider the anisotropic and nonlinear kinematic hardening as well as the cyclic hardening 
phenomena with the non-associated flow rule. 

In this work, a constitutive law to describe the evolution of anisotropy induced by the plastic 
deformation was developed based on the evolutionary yield function. For effective description, the 
yield stress function and the plastic potential as well as their evolutions were separately defined 
based on the non-associated flow rule. An asymptotic evolution equation was employed for the 
general description of the separate sets of the anisotropic coefficients for each of the plastic potential 
and yield stress function. As an alternative to using the accumulated equivalent plastic strain, the 
authors decided to employ a more general term such as the accumulated plastic work in order to 
impose the equivalency between various experimental data. 

As will be discussed in this paper, the evolution of the yield function and the plastic potential 
can be explicitly characterized by using the accumulated plastic work. The reason for this is that the 
plastic work increment can be directly calculated from the plastic strain increment and stress 
components regardless of the definition of the yield function and the plastic potential. It is important 

Normalized plastic strain rate dεxx

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

N
or

m
al

iz
ed

 p
la

st
ic

 s
tra

in
 ra

te
 d

ε y
y

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
CPFEM
Yld2000-2D (M=8)
Yld2000-2D (M=6)
Yld2000-2D (M=4)

UT

Figure 2. Comparison of the calculated strain-rate potentials based on crystal plasticity simulations
and isotropic version of the Yld2000-2D function.

In the meantime, various attempts have been made to account for the anisotropic evolution
of the yield surface. Hill and Hutchinson [22] proposed a theoretical framework, which is
relevant to the differential hardening of a sheet material subjected to the arbitrary biaxial tensions.
Abedrabbo et al. [23,24] used polynomial functions to fit the anisotropic coefficients of Barlat Yld96
anisotropic yield function [2] for different temperatures and strain rates. Plunkett et al. [25] developed
an elastic-viscoplastic model to describe the anisotropic/asymmetric evolution of the yield surface
as a function of the accumulated plastic strain based on CPB06 yield function [6]. Zamiri and
Pourboghrat [26] developed an evolutionary yield function, which describes the evolution of the
anisotropic coefficients of Hill’s quadratic yield function [1] during the plastic deformation as a function
of the plastic strain. Aretz [27] described the impact of distortional hardening on the prediction of
forming limit curves. Stoughton and Yoon [16] also utilized Hill’s model [1] to provide a framework
for the non-associated flow rule accounting for the anisotropic hardening in proportional loading.
Although the evolution of the yield stress function was defined using a less complicated model and
independent of the plastic potential, improved accuracy in the prediction of the uniaxial tension
stress–strain curves was observed compared with the associated flow rule models.

Further efforts were made to account for the Bauschinger effect in the non-monotonous
loading conditions. Chung and Park [28] proposed a consistency condition for the combined type
isotropic-kinematic hardening law, in which the combined type hardening law is expected to behave
the same as the full isotropic hardening for monotonously proportional loading. By partially releasing
the consistency condition with an introduction of a homogeneous function to control the anisotropic
back stress evolution, anisotropic hardening behavior was accurately described preserving the
proportionality between global stress and back stress. Yoshida et al. [29] also proposed a material
model to consider the anisotropic and nonlinear kinematic hardening as well as the cyclic hardening
phenomena with the non-associated flow rule.

In this work, a constitutive law to describe the evolution of anisotropy induced by the plastic
deformation was developed based on the evolutionary yield function. For effective description, the
yield stress function and the plastic potential as well as their evolutions were separately defined based
on the non-associated flow rule. An asymptotic evolution equation was employed for the general
description of the separate sets of the anisotropic coefficients for each of the plastic potential and
yield stress function. As an alternative to using the accumulated equivalent plastic strain, the authors
decided to employ a more general term such as the accumulated plastic work in order to impose the
equivalency between various experimental data.

As will be discussed in this paper, the evolution of the yield function and the plastic potential
can be explicitly characterized by using the accumulated plastic work. The reason for this is that
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the plastic work increment can be directly calculated from the plastic strain increment and stress
components regardless of the definition of the yield function and the plastic potential. It is important
to note that unlike the plastic work increment, the equivalent plastic strain increments are dependent
on the definition of the yield function and the plastic potential. This makes it difficult to impose the
equivalency between various experimental data especially when the yield stress and plastic potential
functions evolve during the plastic deformation.

As a demonstration of the developed evolutionary constitutive law, mechanical properties of
BAO Q&P 980 multi-phase steel and niobium sheets at room temperature were characterized for
the developed evolutionary model. The experimental data obtained from the uniaxial tension test
is summarized in Section 2. The general framework for the development of the constitutive law
is described in Section 3. Details of the material characterization methodology for the developed
constitutive law are described in Section 4. A comparison of the evolutionary non-associated yield
function with non-evolutionary yield function is discussed in Section 5 by performing simulations of
uniaxial tension and biaxial cup drawing tests. Section 6 provides the concluding remarks.

2. Experiments

In this work, mechanical properties of BAO Q&P 980 steel and niobium sheets at room temperature
were characterized for the developed evolutionary model. Further details on the heat treatment of the
Q&P 980 (Fe-0.2C-1.8Mn-1.5Si) steel and the chemical composition of the high purity superconducting
niobium sheet can be found in the former publications [26,30,31]. Overall, the Q&P 980 steel shows mild
anisotropy, while the niobium sheet exhibits highly anisotropic behavior. These two extreme behaviors
were chosen to showcase the importance of applying an evolutionary yield function compared with
non-evolving yield functions.

For the Q&P 980 steel, the tensile tests were carried out based on ASTM E8M standard procedures
using an Instron universal material testing machine. The tensile grip speed was maintained at
10 mm/min, which corresponds to approximately 0.0024/s in engineering strain rate. In order to
measure the anisotropy, specimens were prepared along 0, 15, 30, 45, 60, 75 and 90 degrees off to the
rolling direction. The strain histories were measured by an ARAMIS 5M digital image correlation
(DIC) system manufactured by GOM GmbH, Braunschweig, Germany.

As for the niobium sheet, tensile tests were performed according to ASTM E517 [32]. The tensile
grip speed was set to 0.25 mm/s, which is corresponding to 0.01/s in engineering strain rate considering
the 25 mm gauge length. For the anisotropic evolution, the tensile tests were performed along 0, 22.5,
45, 67.5 and 90 degrees off the rolling direction.

For each direction, the tensile tests were repeated 3 and 5 times for the Q&P 980 steel and niobium
sheet, respectively, and averaged mechanical properties were obtained. The averaged Young’s moduli
(E), 0.2% offset true yield strengths (YS), uniform elongations (UE), engineering ultimate tensile
strength (UTS), and total elongations (TE) for the Q&P 980 steel and niobium sheets are summarized in
Tables 1 and 2, respectively.

Table 1. Measured elastic and plastic properties of the Q&P980 steel.

Degree E (GPa) YS (MPa) UE (true) UE (eng) UTS (MPa) TE (eng)

0 212.72 814.29 ± 14.58 0.1015 ± 0.0050 10.68% 1019.3 ± 13.85 15.49%
15 212.12 809.03 ± 9.94 0.0984 ± 0.0036 10.34% 1012.4 ± 13.92 14.67%
30 201.53 809.38 ± 19.74 0.0989 ± 0.0089 10.39% 1008.5 ± 9.40 14.85%
45 211.57 783.78 ± 22.71 0.1004 ± 0.0043 10.56% 1001.6 ± 14.41 14.49%
60 210.20 776.23 ± 13.88 0.0925 ± 0.0059 9.69% 993.48 ± 12.07 13.69%
75 211.89 753.75 ± 15.83 0.0972 ± 0.0029 10.20% 985.20 ± 2.92 14.41%
90 214.40 783.82 ± 18.94 0.0904 ± 0.0042 9.46% 1006.4 ± 15.69 13.14%
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Table 2. Measured elastic and plastic properties of the niobium sheet.

Degree E (GPa) YS (MPa) UE (true) UE (eng) UTS (MPa) TE (eng)

0 109.178 86.12 ± 0.46 0.2871 ± 0.0233 32.07% 181.20 ± 1.01 50.55%
22.5 104.075 89.96 ± 0.43 0.2536 ± 0.0149 28.88% 185.71 ± 0.61 48.54%
45 106.635 91.55 ± 0.20 0.2551 ± 0.0225 29.05% 189.11 ± 1.20 49.91%

67.5 108.396 90.92 ± 0.49 0.2577 ± 0.0133 29.40% 186.32 ± 0.30 50.08%
90 109.475 91.12 ± 0.34 0.2485 ± 0.0127 28.21% 187.54 ± 0.46 50.06%

Based on the measured strain histories, r-values (dεp
width/dεp

thickness: width-to-thickness plastic
strain increment ratio in the uniaxial tensile test) could be calculated by eliminating the elastic strain
increments from the measured strain increments. The elastic strain increments were calculated from the
stress increments assuming Hooke’s law and the corresponding plastic work increment was calculated
from the obtained plastic strain increments.

In this work, instead of the (accumulated) equivalent plastic strain, the accumulated plastic work
was used for the description of the evolution of r-values and yield stresses. It is noteworthy that the
accumulated plastic work is independent of the definition of the yield function and plastic potential
function. If the yield and plastic potential functions are stationary during the plastic deformation, then
the plastic strain increment can be directly converted into the accumulated equivalent plastic strain,
εy (≡

∫
d εy), by using the following plastic work equivalence principle [18,33]:

dω = σ : dεp = σyd εy (1)

Here, the equivalent plastic strain increment, d εy, is conjugated quantity to the effective yield
stress, σy, which is defined by the yield function.

However, direct conversion of the plastic strain increment into the equivalent quantity is no
longer available when the plastic potential function or the yield function is evolving during the plastic
deformation. For the non-reference state, the plastic potential function and yield function are needed
to be defined prior to the conversion into the equivalent plastic strain, which leads to inaccuracy and
complexity in the material characterization.

The evolutions of r-values for the Q&P 980 steel and niobium with respect to the plastic work are
shown in Figures 3a and 4, respectively.
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As seen in Figure 3a, the measured r-values for the Q&P 980 steel stay almost constant for all
directions as a function of the plastic work. The averaged r-values for the Q&P 980 steel are summarized
in Table 1 and the directional distributions are shown in Figure 3b. Meanwhile, the measured r-values
for the niobium sheet shows evidence of evolution during the plastic work as shown in Figure 4.

The evolution of yield stress with respect to plastic work for each tensile direction was also
characterized from the uniaxial tension test data as shown in Figures 5 and 6, for the Q&P 980 steel
and niobium sheet, respectively. In Figures 5b and 6b, the yield stress evolution for each direction was
normalized by the yield stress along the rolling direction in order to clearly compare the directional
difference. For the niobium sheet, the hydraulic bulge test was conducted at constant true thickness
strain rate of 0.005/s. The true thickness strain was converted into the plastic thickness strain by
eliminating the elastic thickness strain and the yield stress evolution was calibrated based on the plastic
work shown in Figure 6.
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Figure 5. Measured (a) yield stress and (b) normalized yield stress evolutions for the Q&P 980 steel
with respect to the plastic work.
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3. Non-Associated Flow Rule Based on Plastic Work

Based on the normality rule, the plastic strain increment is obtained by:

dεp =
∂g
∂σ

dλ (2)

where g(σ) is the n-th order homogeneous plastic potential function and dλ is the Lagrangian multiplier.
The yield criterion to define the anisotropic yield stress is:

f (σ) − σm
y (ω) = 0 (3)

where f is the m-th order homogeneous yield stress function and σy is the effective yield stress to
describe the hardening evolution. In this work, the hardening evolution of the effective yield stress is
defined based on the plastic work,ω (≡

∫
dω), instead of the accumulated equivalent plastic strain,

εy (≡
∫

d εy). The equivalent plastic strain increment, d εy, is conjugated quantity to the effective yield
stress, σy, and defined from the following plastic work equivalence principle [18,33]:

dω = σ : dεp = σyd εy = σpotd εpot (4)

Here, d εpot is the equivalent plastic strain increment conjugated to the effective stress, σpot, which
determines the normalized size of the n-th order homogeneous plastic potential function, g(σ); i.e.,

g(σ) − σn
pot = 0 (5)

The following relationships between the effective quantities can be derived from Equation (4):

d εy

d εpot
=
σpot

σy
(6)

and
∂ω

∂εpot
= σpot (7)



Metals 2019, 9, 611 9 of 30

Since g(σ) is the n-th order homogeneous function, Equation (4) becomes by substituting Equation (2):

dω = σ : dεp = σ :
∂g
∂σ

dλ = nσn
potdλ = σpotdεpot (8)

Therefore,
dεpot = nσn−1

pot dλ (9)

The co-rotational objective stress rate of the Cauchy stress from the linear elastic constitutive
law is:

dσ = Ce
·dεe = Ce

·(dε− dεp) (10)

where Ce is the fourth order elastic stiffness tensor, dε is the total strain increment, dεe is the elastic

strain increment, and dεp is the plastic strain increment. From Equations (2) and (9), the stress
increment becomes,

dσ = Ce
·dεe = Ce

·(dε−
∂g
∂σ

dλ) = Ce
·(dε−

∂σpot

∂σ
dεpot) (11)

From Equation (3), the following relationship is obtained:

∂ f
∂σ

: dσ−
∂(σm

y )

∂ω
dω = mσm−1

y
∂σy

∂σ
: dσ−mσm−1

y
∂σy

∂ω
∂ω

∂εpot
d εpot = 0 (12)

By substituting Equation (11) into Equation (12),

∂σy

∂σ
: Ce
·(dε−

∂σpot

∂σ
d εpot) −

∂σy

∂ω
dω =

∂σy

∂σ
: Ce
·(dε−

∂σpot

∂σ
dεpot) −

∂σy

∂ω
σpotdεpot = 0 (13)

Therefore,

dεpot =

∂σy
∂σ : Ce

·dε

∂σy
∂σ : Ce

·
∂σpot
∂σ +

∂σy
∂ω σpot

(14)

and

dεy =
σpot

σy
dεpot =

∂σy
∂σ : Ce

·dε

σy
σpot

∂σy
∂σ : Ce

·
∂σpot
∂σ +

∂σy
∂ω σy

(15)

The elasto-plastic tangent modulus is obtained by substituting Equation (14) or (15) into
Equation (11):

∂σ
∂ε

= Ce
−

Ce :
∂σpot
∂σ ⊗

∂σy
∂σ : Ce

∂σy
∂σ : Ce

·
∂σpot
∂σ +

∂σy
∂ω σpot

(16)

Note that the elasto-plastic tangent modulus in Equation (16) is asymmetric when the plastic
potential function is different from the yield function. In order to make symmetric tangent modulus,
the equivalent plastic strain increments dεpot and dεy need to be obtained, similar to the derivations in
Equations (12) and (13), by manipulating the relationship in Equation (5):

dεpot =

∂σpot
∂σ : Ce

·dε

∂σpot
∂σ : Ce

·
∂σpot
∂σ +

∂σpot
∂ω σpot

(17)
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and

dεy =
σpot

σy
dεpot =

∂σpot
∂σ : Ce

·dε

σy
σpot

∂σpot
∂σ : Ce

·
∂σpot
∂σ +

∂σpot
∂ω σy

(18)

Then, the following symmetric elasto-plastic stiffness modulus [18] can be obtained by substituting
Equation (17) or (18) into Equation (11):

∂σ
∂ε

= Ce
−

Ce :
∂σpot
∂σ ⊗

∂σpot
∂σ : Ce

∂σpot
∂σ : Ce

·
∂σpot
∂σ +

∂σpot
∂ω σpot

(19)

Here,
∂σpot
∂ω can be determined from the rate of the prescribed hardening evolution,

∂σy
∂ω ,

by manipulating Equations (16) and (19):

∂σpot

∂ω
=

∂σpot
∂σ : Ce

·dε

∂σy
∂σ : Ce

·dε

(
1
σpot

∂σy

∂σ
: Ce
·
∂σpot

∂σ
+
∂σy

∂ω

)
−

1
σpot

∂σpot

∂σ
: Ce
·
∂σpot

∂σ
(20)

The numerical implementation of the plastic work based developed evolutionary yield function is
described in Appendix A.

4. Assumed Anisotropic Yield and Potential Functions and Hardening Evolution Model

4.1. Evolutionary Yld2000-2d Function

In this work, the plane stress yield stress function Yld2000-2d proposed by Barlat et al. [3] was
utilized for the description of the plastic potential function and the yield function. In the Yld2000-2d
function, the yield function is defined as:

f =
φ′ + φ′′

2
= σm

y (21)

where
φ′ =

∣∣∣∣S̃′I − S̃′II
∣∣∣∣m (22)

and
φ′′ =

∣∣∣∣2S̃′′II + S̃′′I

∣∣∣∣m +
∣∣∣∣2S̃′′I + S̃′′II

∣∣∣∣m (23)

Here, S̃′k and S̃′′k (k = I, II) are the principal values of the deviatoric stress tensor s̃ (̃s′ or s̃′′ ), which
is obtained by the linear transformation of the Cauchy stress tensor, σ:

s̃′ = L′·σ
s̃′′ = L′′ ·σ

(24)

Here, the eight independent anisotropic coefficients of L′ and L” are expressed as:

L′ =


L′11
L′12
L′21
L′22
L′66


=


2/3 0 0
−1/3 0 0

0 −1/3 0
0 2/3 0
0 0 1



α1

α2

α7

 (25)



Metals 2019, 9, 611 11 of 30

and

L′′ =


L′′11
L′′12
L′′21
L′′22
L′′66


=

1
9


−2 2 8 −2 0
1 −4 −4 4 0
4 −4 −4 1 0
−2 8 2 −2 0
0 0 0 0 9




α3

α4

α5

α6

α8


(26)

4.2. Calibration of the Evolutionary Yld2000-2d Functions

In the non-associated flow rule, the plastic potential and yield stress functions can either be
selectively evolved or left as constants, depending upon the experimental data and the desired accuracy.
For example, as shown in Figure 3a, the measured r-values for the Q&P 980 steel remain almost constant
for all directions as a function of plastic work. Therefore, the measured r-value for each direction
was assumed to be constant (e.g., non-evolving) for the Q&P 980 steel; i.e., we only considered the
stationary plastic potential. Specifically, the averaged r-value for each tensile direction was utilized for
the characterization of the plastic potential function, σpot. In addition to the seven averaged r-values
obtained from the uniaxial tension test data, the uniaxial tensile yield stress (YS in Table 1) along
the rolling direction was used for the characterization of the eight coefficients of the plastic potential
function. The calibrated parameters for the plastic potential are summarized in Table 3. Based on
the calibrated plastic potential function, r-value distributions were calculated and compared with the
measured r-values in Figure 7.

Table 3. Calibrated parameters for the plastic potential of the Q&P 980 steel (m = 6) based on the
averaged r-values.

α1 α2 α3 α4 α5 α6 α7 α8

1.0206 0.9604 1.0120 0.9991 1.0104 0.9284 1.0088 1.0689

Metals 2019, 9, x FOR PEER REVIEW 11 of 30 

 

11

112

221

722

66

2 / 3 0 0
α1 / 3 0 0
α0 1 / 3 0
α0 2 / 3 0

0 0 1

L
L
L
L
L

′   
   ′  −        ′ ′= = −       ′     
   ′   

L  (25)

and 

11 3

12 4

21 5

22 6

66 8

α2 2 8 2 0
α1 4 4 4 0

1 α4 4 4 1 0
9

α2 8 2 2 0
α0 0 0 0 9

L
L
L
L
L

′′    − −
    ′′ − −    
    ′′ ′′= = − −
    ′′ − −    
    ′′     

L  (26)

4.2. Calibration of the Evolutionary Yld2000-2d Functions 

In the non-associated flow rule, the plastic potential and yield stress functions can either be 
selectively evolved or left as constants, depending upon the experimental data and the desired 
accuracy. For example, as shown in Figure 3a, the measured r-values for the Q&P 980 steel remain 
almost constant for all directions as a function of plastic work. Therefore, the measured r-value for 
each direction was assumed to be constant (e.g., non-evolving) for the Q&P 980 steel; i.e., we only 
considered the stationary plastic potential. Specifically, the averaged r-value for each tensile direction 
was utilized for the characterization of the plastic potential function, potσ . In addition to the seven 

averaged r-values obtained from the uniaxial tension test data, the uniaxial tensile yield stress (YS in 
Table 1) along the rolling direction was used for the characterization of the eight coefficients of the 
plastic potential function. The calibrated parameters for the plastic potential are summarized in Table 
3. Based on the calibrated plastic potential function, r-value distributions were calculated and 
compared with the measured r-values in Figure 7. 

Table 3. Calibrated parameters for the plastic potential of the Q&P 980 steel (m = 6) based on the 
averaged r-values. 

α1 α2 α3 α4 α5 α6 α7 α8 
1.0206 0.9604 1.0120 0.9991 1.0104 0.9284 1.0088 1.0689 

 
Figure 7. Comparison of the averaged r-values for the Q&P 980 steel and the calculated distribution 
based on the plastic potential function. 

Angles to RD (degree)

0 15 30 45 60 75 90

r-v
al

ue

0.80

0.85

0.90

0.95

1.00

Measured r-values
Plastic potential (Yld2000-2d)

Figure 7. Comparison of the averaged r-values for the Q&P 980 steel and the calculated distribution
based on the plastic potential function.

As seen in Figure 5b, the flow stress for the Q&P 980 steel varies as a function of plastic work.
Therefore, to capture the evolution of the anisotropy, the parameters of the yield function were
calibrated for every 5 MPa increment of the plastic work. Specifically, for the calibration of the eight
coefficients of the Yld2000-2d function, we used seven yield stresses from the uniaxial tension data and
the yield stress for the balanced biaxial tension, which was assumed to have the same value as the
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uniaxial tensile yield stress along the rolling direction. The calibrated parameters are summarized
in Table 4.

Table 4. Calibrated parameters for the yield function of the Q&P 980 steel (m = 6).

Plastic Work α1 α2 α3 α4 α5 α6 α7 α8

0 MPa 1.4953 0.2830 0.1191 0.8849 0.9671 1.4143 0.9344 1.2582
10 MPa 1.6297 0.0653 0.0105 0.8574 0.9093 1.5329 0.9581 1.2221
15 MPa 1.6430 0.0434 0.0100 0.8530 0.8997 1.5515 0.9629 1.1979
20 MPa 1.6632 0.0103 0.0100 0.8520 0.8848 1.5801 0.9696 1.1785
25 MPa 1.6578 0.0177 0.0101 0.8512 0.8922 1.5657 0.9667 1.1777
30 MPa 1.6632 0.0101 0.0100 0.8504 0.8841 1.5814 0.9721 1.1668
35 MPa 1.6634 0.0101 0.0101 0.8503 0.8842 1.5813 0.9719 1.1671
40 MPa 1.6648 0.0100 0.0100 0.8503 0.8770 1.5956 0.9771 1.1566
45 MPa 1.6633 0.0101 0.0101 0.8496 0.8843 1.5812 0.9711 1.1620
50 MPa 1.6626 0.0101 0.0101 0.8502 0.8874 1.5749 0.9707 1.1623
55 MPa 1.6634 0.0100 0.0101 0.8506 0.8833 1.5830 0.9757 1.1561
60 MPa 1.6636 0.0100 0.0101 0.8502 0.8826 1.5845 0.9755 1.1549
65 MPa 1.6650 0.0100 0.0101 0.8495 0.8748 1.6001 0.9783 1.1452
70 MPa 1.6652 0.0100 0.0101 0.8498 0.8738 1.6021 0.9802 1.1426
75 MPa 1.6650 0.0101 0.0113 0.8503 0.8758 1.5980 0.9787 1.1447
80 MPa 1.6658 0.0103 0.0125 0.8509 0.8702 1.6091 0.9831 1.1354

The following asymptotic equation was used to evolve the yield function parameters, αj (j = 1~8),
as a function of plastic work:

α j = α0
j + α

∆
j

1− e−(c
ω
j ω)

n$j
 (27)

Here, ω is the plastic work, α0
j and α∆

j are the initial values and changes of the yield function
parameters, respectively, while cωj and n$j are the parameters to control the evolution speed. In order
to avoid divergence of the yield function parameters beyond the characterization region, the evolution
equation was designed to have an asymptotic evolution. The evolution coefficient n$j was set to 1.0 for
the simplicity of calibration for the Q&P 980 steel in this work. For general application, the evolution
equation can be further generalized by adding exponential terms:

α j = α0
j +

m∑
k=1

α∆k
j

1− e−(c
ωk
j ω)

n$k
j
 (28)

The calibrated evolution coefficients for each yield function parameter are summarized in Table 5
for the Q&P 980 steel. As seen in Figure 8, Equation (27) accurately captures the evolution of the yield
function parameters as a function of plastic work.

Table 5. Evolution coefficients for the parameters of the yield function of the Q&P 980 steel.

Coefficients α1 α2 α3 α4 α5 α6 α7 α8

α0
j 1.4953 0.2831 0.1191 0.8849 0.9664 1.4156 0.9357 1.2585

α∆
j 0.1690 −0.2736 −0.1088 −0.0348 −0.0877 0.1764 0.0422 −0.1168

cωj 0.1548 0.1569 0.6777 0.1582 0.0991 0.1019 0.0654 0.0464
nωj 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Figure 8. Evolutions of the parameters of the yield function (Yld2000-2d function) for the Q&P 980
steel with respect to the plastic work.

As seen in Figures 4 and 6, unlike the Q&P 980 steel, the niobium sheet showed evolving anisotropy
of r-values and flow stresses as a function of plastic work. Therefore, the parameters of the plastic
potential function and yield function for the niobium sheet were calibrated for every 10 MPa increment
of the plastic work. Specifically, five r-values and the uniaxial tension yield stress in the rolling direction
were used to calibrate the potential function for niobium. As for the yield function, the five uniaxial
tension yield stresses, and the balanced biaxial yield stress obtained from the hydraulic bulge test
were used for calibration. For the niobium sheet, to utilize the six available experimental data for
the calibration of the plastic potential function and yield function, the independent parameters of the
Yld2000-2d function were reduced from eight to six by assuming α3 = α5 and α4 = α6. This simplified
the linear transformation (̃s′′ = L′′ ·σ) of the deviatoric stress in Equation (26) as following:

L′′ =


L′′11
L′′12
L′′21
L′′22
L′′66


=


2/3 0 0
−1/3 0 0

0 −1/3 0
0 2/3 0
0 0 1



α3

α4

α8

 (29)

Tables 6 and 7 summarize the calibrated parameters for the yield function and plastic potential
function, respectively.

Table 6. Calibrated parameters for the plastic potential function of the niobium sheet for every 10 MPa
increments of the plastic work (m = 6).

Plastic Work α1 α2 α3 α4 α5 α6 α7 α8

0 MPa 0.6807 1.7038 0.9417 0.8227 0.9417 0.8227 1.3780 1.8533
10 MPa 0.5951 1.8291 0.9640 0.8757 0.9640 0.8757 1.3779 2.1203
20 MPa 0.5890 1.8500 0.9695 0.8843 0.9695 0.8843 1.3977 2.3527
30 MPa 0.5728 1.8500 0.9627 0.8652 0.9627 0.8652 1.2995 2.4792
40 MPa 0.5607 1.8500 0.9531 0.8073 0.9531 0.8073 1.0729 2.5402
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Table 7. Calibrated parameters for the yield function of the niobium sheet for every 10 MPa increments
of the plastic work (m = 6).

Plastic Work α1 α2 α3 α4 α5 α6 α7 α8

0 MPa 1.3006 0.6013 0.9172 0.9921 0.9172 0.9921 0.8118 1.0749
10 MPa 1.3123 0.5903 0.9157 1.0030 0.9157 1.0030 0.8047 1.1019
20 MPa 1.3986 0.4090 0.9277 1.0297 0.9277 1.0297 0.8134 1.0825
30 MPa 1.5755 0.0302 0.9481 1.0517 0.9481 1.0517 0.7514 1.0980
40 MPa 1.5521 0.0307 0.9730 1.0626 0.9730 1.0626 0.7511 1.0953

The evolution of the parameters as a function of plastic work was captured using Equation (27)
for the niobium sheet. The evolution coefficients for the plastic potential and yield function are
summarized in Tables 8 and 9, respectively. Figures 9 and 10 show how Equation (27) accurately
captures the evolution of the plastic potential function and the yield function parameters as a function
of plastic work.

Table 8. Evolution coefficients for the parameters of the plastic potential of the niobium sheet.

Plastic Work α1 α2 α3 α4 α5 α6 α7 α8

α0
j 0.6804 1.7038 0.9417 0.8669 0.9417 0.8669 1.3741 1.8533

α∆
j −0.2266 0.2566 0.0203 −0.0596 0.0203 −0.0596 −0.3012 0.7275

cωj 0.0100 0.0100 0.9982 0.0305 0.9982 0.0305 0.0324 0.0555
nωj 0.3916 0.2100 1.8879 40.3301 1.8879 40.3301 15.3666 1.3290

Table 9. Evolution coefficients for the parameters of the yield function of the niobium sheet.

Plastic Work α1 α2 α3 α4 α5 α6 α7 α8

α0
j 1.3044 0.5965 0.9146 0.9899 0.9146 0.9899 0.8094 1.0725

α∆
j 0.2594 −0.5671 0.0905 0.0773 0.0905 0.0773 −0.0583 0.0219

cωj 0.0446 0.0434 0.0253 0.0424 0.0253 0.0424 0.0339 0.9989
nωj 6.9800 6.4951 2.7805 1.9661 2.7805 1.9661 14.4294 2.9090
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0 MPa 1.3006 0.6013 0.9172 0.9921 0.9172 0.9921 0.8118 1.0749 

10 MPa 1.3123 0.5903 0.9157 1.0030 0.9157 1.0030 0.8047 1.1019 
20 MPa 1.3986 0.4090 0.9277 1.0297 0.9277 1.0297 0.8134 1.0825 
30 MPa 1.5755 0.0302 0.9481 1.0517 0.9481 1.0517 0.7514 1.0980 
40 MPa 1.5521 0.0307 0.9730 1.0626 0.9730 1.0626 0.7511 1.0953 

The evolution of the parameters as a function of plastic work was captured using Equation (27) 
for the niobium sheet. The evolution coefficients for the plastic potential and yield function are 
summarized in Tables 8 and 9, respectively. Figures 9 and 10 show how Equation (27) accurately 
captures the evolution of the plastic potential function and the yield function parameters as a function 
of plastic work. 

Table 8. Evolution coefficients for the parameters of the plastic potential of the niobium sheet. 

Plastic Work α1 α2 α3 α4 α5 α6 α7 α8 
0α j  0.6804 1.7038 0.9417 0.8669 0.9417 0.8669 1.3741 1.8533 
α j

Δ  −0.2266 0.2566 0.0203 −0.0596 0.0203 −0.0596 −0.3012 0.7275 
ω
jc  0.0100 0.0100 0.9982 0.0305 0.9982 0.0305 0.0324 0.0555 
ω
jn  0.3916 0.2100 1.8879 40.3301 1.8879 40.3301 15.3666 1.3290 

Table 9. Evolution coefficients for the parameters of the yield function of the niobium sheet. 

Plastic Work α1 α2 α3 α4 α5 α6 α7 α8 
0α j  1.3044 0.5965 0.9146 0.9899 0.9146 0.9899 0.8094 1.0725 
α j

Δ  0.2594 −0.5671 0.0905 0.0773 0.0905 0.0773 −0.0583 0.0219 
ω
jc  0.0446 0.0434 0.0253 0.0424 0.0253 0.0424 0.0339 0.9989 
ω
jn  6.9800 6.4951 2.7805 1.9661 2.7805 1.9661 14.4294 2.9090 
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Figure 9. Evolutions of the parameters of the plastic potential function (Yld2000-2d function) for the
niobium sheet with respect to the plastic work.
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Figure 10. Evolutions of the parameters of yield function (Yld2000-2d function) for the niobium sheet
with respect to the plastic work.

4.3. Isotropic Hardening Evolution

Full isotropic hardening (expansion of the yield surface without translation) of the Q&P 980 steel
and niobium sheet was characterized based on the uniaxial tension test data. Since the evolution of
the yield function was characterized and described by the plastic work, the hardening behavior was
also described by the plastic work using the following combined Swift–Voce type hardening rule by
selecting the uniaxial tension data along the rolling direction as a reference state:

σy = Kω[kω(ω+ω0)]
nω + Aω(1− e−cωω) (30)

where Kω, ω0, nω, Aω, and cω are hardening coefficients, ω is the accumulated plastic work
(ω =

∫
dω), and kω = 1/MPa is the normalization coefficient that makes the quantity in the bracket

unit less.
The calibrated hardening coefficients for the combined Swift–Voce type hardening rule are

summarized in Table 10. The hardening evolution of the Q&P 980 steel and niobium sheet with respect
to the plastic work was calculated based on the calibrated hardening coefficients and compared with
the measured hardening curve in Figure 11.

Table 10. Calibrated combined Swift–Voce type isotropic hardening coefficients for the Q&P 980 steel
and niobium sheet.

Material Kω (MPa) ω0 (MPa) nω Aω (MPa) cω

Q&P 980 820.91 0.1690 0.0441 182.77 0.0114/MPa
Niobium 57.6062 3.8927 0.2885 56.1982 0.1365/MPa
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Figure 11. Comparison of the measured and calculated hardening behavior of (a) the QP980 steel and
(b) niobium sheet with respect to the plastic work.

4.4. Predicted Evolution of Yield and Plastic Potential Functions as a Function of Plastic Work

Based on the calibrated evolution coefficients of the yield function for the Q&P 980 steel, the initial
yield surface at 0 MPa plastic work and the final yield surface (at 80 MPa plastic work) normalized by
the yield stress along the rolling direction are compared with the contour of the plastic potential in
Figure 12. It should be noted that the potential function was assumed to not evolve since the r-values
were assumed to remain constant as a function of plastic work.
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Figure 12. Comparison of the normalized contours of the yield functions (at 0 MPa and 80 MPa of the
plastic work) and plastic potential function for the Q&P 980 steel.

The expansion of the yield surfaces at every 10 MPa increment of the plastic work was calculated
for the niobium sheet. For comparison, the contours of the normalized yield surfaces and plastic
potential surfaces at every 10 MPa increment of the plastic work were calculated. Comparison of
Figure 13 clearly shows that the yield and plastic potential functions evolve differently as a function of
plastic work.
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Figure 13. Comparison of the normalized contours of (a) the yield functions and (b) plastic potential
function for the niobium sheet.

To guarantee the uniqueness of the solution, the denominators in Equations (14) and (15) must
be positive. This satisfies the stability constraint suggested by Stoughton and Yoon [13,15]. Since the

hardening evolution term,
∂σy
∂ω , and the effective stresses, σpot and σy, are always non-negative, the

stability constraint is satisfied when
∂σy
∂σ : Ce

·
∂σpot
∂σ is positive. To demonstrate the stability of the

proposed model based on the evolutionary non-associated yield function, the evolution of
∂σy
∂σ : Ce

·
∂σpot
∂σ

was calculated for the niobium sheet. As shown in Figure 14, for both the 0 MPa plastic work and
40 MPa plastic work cases, the tensor product always remains positive for all available stress modes
under the plane stress condition.
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5. Comparison of Evolutionary and Non-Evolutionary Yield Function Models

5.1. Uniaxial Tension Test

For the verification of the effect of the evolution of yield and plastic potential functions, uniaxial
tension simulations were performed for the Q&P 980 steel and niobium sheet using the developed
evolutionary yield function model. Tensile directions considered for the simulations were 0, 45,
and 90 degrees off the rolling direction. The characterized evolutionary yield functions and plastic
potentials (summarized in Table 5, Table 8, and Table 9), as well as the isotropic hardening rule based on
the plastic work (summarized in Table 10) were employed for the tensile simulations. For comparison,
an isotropic hardening model without the evolution of the yield function and the plastic potential
(labeled as non-evolutionary yield function) was also considered for simulations. The initial yield
surface and plastic potential at 0 MPa plastic work were considered for the non-evolving yield surface
and plastic potential, respectively. The simulated true stress–strain curves for the Q&P 980 steel and
niobium sheet are compared with experiments in Figures 15 and 16, respectively. Both the evolutionary
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yield function and non-evolutionary yield function models accurately predicted the stress–strain curves
in the rolling direction as shown in Figures 15a and 16a. However, in the simulations for the directions
in 45 and 90 degrees off the rolling direction, only the evolutionary yield function model accurately
predicted stress–strain curves. Compared with the experiments, the non-evolutionary yield function
model accurately predicted the initial yield stresses but showed gradual deviations in the prediction of
the subsequent stress–strain curves.

Besides the true stress–strain curves, the simulated ultimate tensile strengths (UTS) along different
tensile directions (off the rolling direction) were compared with experiments. As shown in the
comparison of the measured and calculated ultimate tensile strengths in Figure 17a,b for the Q&P 980
steel and niobium sheet, respectively, the simulation results considering the evolution of the yield
function show much better agreement with experiments compared with those without evolving the
yield function and plastic potential.
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Figure 15. Comparison of the measured and simulated true stress–strain curves for (a) 0, (b) 45 and (c)
90 degrees off tensile directions for the Q&P 980 steel.
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Figure 16. Comparison of the measured and simulated true stress–strain curves for (a) 0, (b) 45 and (c)
90 degrees off tensile directions for the niobium sheet.
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Figure 17. Comparison of the measured and simulated ultimate tensile strength (UTS) distributions for
(a) the Q&P 980 steel and (b) niobium sheet.
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5.2. Prediction of Earing Profiles in Cup Drawing

In order to evaluate the effect of the initial anisotropy and its evolution in sheet forming simulations,
the cylindrical cup drawing test was considered. Since experimental results were not available for the
cup drawing test, the earing profiles were instead predicted using an analytical model [34]. To evaluate
the capability of the non-associated flow rule to describe anisotropy, anisotropic yield functions under
the associated flow rule were additionally considered for the description of the initial anisotropy and
the anisotropy after evolution.

The analytical model [34] to predict the earing profile assumes that the blank in the flange
area undergoes near plane strain deformation. For simplicity, simple compression mode in the
circumferential direction is assumed in the flange area. From the force equilibrium condition along the
circumferential direction, the vertical wall height, h|θ, is derived:

h|θ =

∫ Rb

Rc
∗

exp(εr|θ)dR0 = Rc

(
rπ/2−θ + 1
2rπ/2−θ + 1

)(
σθ(avg)

σπ/2−θ

) rπ/2−θ
rπ/2−θ+1


(Rb

Rc

) 2rπ/2−θ+1
rπ/2−θ+1

−

(
Rc
∗

Rc

) 2rπ/2−θ+1
rπ/2−θ+1

 (31)

Here, εr|θ is the total radial true strain, rπ/2−θ and σπ/2−θ are the r-value and yield stress along the
π/2− θ direction, respectively, while σθ(avg) is the average compressive yield stress. As schematically
shown in Figure 18, R0, Rb, and Rc are the radial distance from the center of the initial blank, initial
radius of the blank, and the radius of the cup, respectively. Detailed derivations are described in [34].

The radius to create the cup bottom and corner from the initial blank, Rc
∗, is obtained by applying

the incompressibility condition for the volume of the cup corner:

R∗c =

√
(Rp

2 + 2rp2) +
2
3

t0(3rp + t0) +
1
2
πRp(2rp + t0) (32)

where, Rp is the punch bottom radius, rp is the punch corner radius, and t0 is the initial thickness of the
blank. Then, the total cup height is obtained by:

H|θ = h|θ + rp + t0 (33)
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As for the representation of the anisotropy, non-quadratic anisotropic yield functions, Yld2000-2D
and CPB06 [6] functions under the associated flow rule were additionally considered. As proposed
by Plunkett et al. [35], the CPB06 function can be extended by incorporating multiple linear stress
transformations for better accuracy; i.e.:

f (σ) = φ(Σ(1)) + φ(Σ(2)) + · · ·+ φ(Σ(p)) + · · ·+ φ(Σ(n)) = σm
y (34)

where φ(Σ(p)) is,

φ(Σ(p)) =


∣∣∣∣∣∣∣∣
(p)∑
1

∣∣∣∣∣∣∣∣− k(p)
(p)∑
1


m

+


∣∣∣∣∣∣∣∣
(p)∑
2

∣∣∣∣∣∣∣∣− k(p)
(p)∑
2


m

+


∣∣∣∣∣∣∣∣
(p)∑
3

∣∣∣∣∣∣∣∣− k(p)
(p)∑
3


m

(35)

Here, k(p) is the asymmetry coefficient, while
∑(p)

1 ,
∑(p)

2 , and
∑(p)

3 are the principal values of the
transformed stress, Σ(p). The linear transformation is defined as:

Σ(p) = C(p) : S = L(p) : σ (36)

where C(p) and L(p) are the fourth-order orthotropic linear transformation tensor.
From the CPB06ex3 function [35], which has three linear stress transformations, 21 independent

coefficients for the plane stress condition were reduced to 12 independent coefficients by introducing
the following constraints to guarantee the deviatoric stress components in the linear transformation:

Σ(p) = L(p)
·σ =


Σ(p)

xx

Σ(p)
yy

Σ(p)
xy

 = 1
3


b(p) + c(p) −c(p) 0
−c(p) c(p) + a(p) 0

0 0 3d(p)



σxx

σyy

σxy

 (37)

Here, a(p), b(p), c(p), and d(p) are the anisotropy coefficients for (p)-th linear transformation.
Since three linear stress transformations were considered and each transformation requires four
independent coefficients, a total of twelve anisotropy coefficients exist for the description of the
anisotropy. The anisotropic/asymmetric yield function reduces to isotropic function, when the
anisotropy coefficients are equal to one and the asymmetry coefficients are zero.

As for the calibration of the anisotropy coefficients for the Yld2000-2D function and the modified
CPB06ex3 function under the associated flow rule, the niobium sheet, which shows severe anisotropy,
was considered. To evaluate the impact of anisotropic evolution, the initial anisotropy (at 0 MPa of the
accumulated plastic work) and the anisotropy after evolution (at 40 MPa of the accumulated plastic
work) were considered. Similar to the calibration of yield functions and plastic potentials for the
non-associated flow rule, the yield stresses and r-values in the uniaxial tension tests as well as the
balanced biaxial tension test were utilized to calibrate the Yld2000-2D and the CPB06ex3 functions
under the associated flow rule. To determine the eight and twelve anisotropy coefficients, three r-values
(in 45 degree increments) and five tensile stresses (in 22.5 degree increments) were considered for the
Yld2000-2D and the CPB06ex3 functions, respectively. Asymmetry was ignored for simplicity in the
CPB06ex3 function, and isotropy was assumed for the r-values in the balanced biaxial tension; i.e.,
k(1) = k(2) = k(3) = 0.0 and rb = 1.0. The calibrated anisotropy coefficients for the Yld2000-2D and the
CPB06ex3 functions are summarized in Tables 11 and 12, respectively.
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Table 11. Calibrated anisotropy coefficients for the Yld2000-2D function of the niobium sheet under the
associated flow rule (m = 6).

Plastic Work α1 α2 α3 α4 α5 α6 α7 α8

0 MPa 1.2256 0.8647 0.8873 0.8925 0.8764 1.2586 0.9963 0.7654
40 MPa 1.1606 0.9500 1.0490 0.9484 0.9391 1.2765 0.9883 0.8631

Table 12. Calibrated anisotropy coefficients for the CPB06ex3 function of the niobium sheet under the
associated flow rule (m = 6).

Plastic Work Transformation Tensor a(p) b(p) c(p) d(p)

0 MPa
L(1) 0.0329 −0.0311 0.5825 0.823
L(2) −0.1657 0.1856 1.5469 0.8169
L(3) 1.2197 −1.6697 0.4713 0.9273

40 MPa
L(1) −0.0884 0.0937 1.5509 0.5428
L(2) 0.9958 0.8517 −0.2335 0.479
L(3) 1.4769 −1.6672 0.1893 1.0092

The calculated r-values and yield stresses from the calibrated associated flow rule (Yld2000-2D
function and CPB06ex3 function as shown in Figure 19) were also used for the prediction of the cup
height profiles. As separately compared in Figure 20b,c, the predicted height profiles based on the
CPB06ex3 function under the associated flow rule show overall good agreement with the prediction
based on the experimental data. Note that twelve independent coefficients were employed to account
for the anisotropy both for the CPB06ex3 function under the associated flow rule and the Yld2000-2D
function under the non-associated flow rule (6 coefficients for each yield function and plastic potential).
The predicted profiles based on the Yld2000-2D function under the associated flow rule show some
differences from the prediction based on experimental data, since insufficient number of anisotropy
coefficients were employed to account for the severe anisotropy of the niobium sheet. As more
anisotropy coefficients were employed for the description of the anisotropy, the predicted profiles
showed better agreements with the predicted profiles directly obtained from the experimental r-values
and yield stresses.
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Figure 19. Comparison of the measured and calculated (a) r-values and (b) normalized yield stresses
based on associated flow rule (Yld2000-2D and CPB06ex3 yield functions) for the niobium sheet.
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Figure 20. Comparison of the predicted cup height profiles: (a) based on the non-associated flow rule
with Yld2000-2D functions; (b) based on the associated flow rule with Yld2000-2D and CPB06ex3
functions at 0 MPa of the accumulated plastic work; (c) based on the associated flow rule with
Yld2000-2D and CPB06ex3 functions at 40 MPa of the accumulated plastic work.

6. Conclusions

A constitutive law was developed based on the evolutionary yield function to account for the
evolution of anisotropy induced by the plastic deformation. Based on the non-associated flow rule,
the yield stress function and the plastic potential were separately defined for the effective description
of anisotropy. The anisotropic evolution of the yield stress function and the plastic potential were
described by a general asymptotic evolution equation. As for the equivalent plastic status to define
the plastic potential and yield stress function, as well as the hardening rule, the accumulated plastic
work was employed as an alternative to the accumulated plastic strain. Inaccuracy and complexity
in the material characterization can be avoided by the introduction of the plastic work, since the
measured data must be converted into the equivalent quantities prior to the characterization of the
plastic potential and yield function. Numerical formulations based on the plastic work were also
derived in case the hardening rule as well as the evolution of the plastic potential and the yield stress
function are defined in terms of the accumulated plastic work.

For the validation of the developed constitutive law, mechanical properties of the BAO Q&P
980 steel and niobium sheets at room temperature were characterized from uniaxial tensile tests as
well as the balanced biaxial tension test. From the experimental data, separate sets of the anisotropic
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coefficients for each of the plastic potential and yield stress function were obtained as a function of the
plastic work. For a general description of the evolutions of the yield function and plastic potential as
well as to reduce the number of coefficients, the measured sets of the anisotropic coefficients were fit to
a general asymptotic evolution equation. Through comparison with non-evolutionary yield functions
in the prediction of the ultimate tensile strength in different tensile directions and the earing profiles
in the cup drawing test, the importance of the developed constitutive law to properly describe the
evolution of the plastic potential and yield function was proven, particularly for the niobium sheet,
which exhibits highly anisotropic behavior.
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Appendix A

In this work, the predictor–corrector scheme [36,37] was employed for the numerical
implementation of the developed evolutionary yield function model based on the plastic work.

From a given discrete strain increment, ∆εn (≡ εn+1 − εn), the trial Cauchy stress is initially
updated by assuming purely elastic step and preserving the state variables from the previous n-th
discretized time step (∆εn = ∆εe

n and ωk=0
n+1 = ωn):

σk=0
n+1 = σn + ∆σk=0

n+1 = σn + Ce
·∆εn (A1)

Here, the superscript, k, denotes the iteration number (k = 0: trial step), while the subscripts, n
and n + 1, denote the discrete time step number.

The next (n + 1)-th step is purely elastic if the following yield condition is satisfied:

f (σk=0
n+1) − σy(ω

k=0
n ) < 0 (A2)

Otherwise, the (n + 1)-th step is elasto-plastic. Then, the plastic work, ωn+1, and the Cauchy
stress, σn+1, should be iteratively updated until the following consistency condition is satisfied:∣∣∣Φk

n+1

∣∣∣ ≤ Tol (A3)

where
Φk

n+1 = f (σk
n+1) − σ

m
y (ω

k
n) (A4)
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Here, Tol is the tolerance, which is numerically infinitesimal value to guarantee the
solution accuracy.

The equivalent plastic strain increments, plastic work, and Cauchy stress are iteratively updated
until the consistency condition in Equation (A3) is satisfied.

The increment of the equivalent plastic strain is calculated by:

δ(∆εpot)
k
n+1 ≡ (∆εpot)

k+1
n+1 − (∆εpot)

k
n+1 = −

Φk
n+1(

∂Φ
∂∆εpot

)k

n+1

(A5)

The denominator,
(

∂Φ
∂∆εpot

)k

n+1
, can be decomposed by the chain rule:

(
∂Φ

∂∆εpot

)k

n+1
=

(
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∂σ
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(
∂σ
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(
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∂Φ
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(
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+

(
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∂ω

)k

n+1

(
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(A6)

Here, (
∂Φ
∂σ

)k

n+1
=

∂ f

∂σk
n+1

(A7)

(
∂Φ
∂σy

)k

n+1
= −m

(
σm−1

y

)k

n+1
(A8)

(
∂ω

∂∆εpot

)k

n+1
=

(
σpot

)k

n+1
(A9)

From Equation (11): (
∂σ

∂∆εpot

)k

n+1
= −Ce

·

(
∂σpot

∂σ

)k

n+1
(A10)

If the elastic stiffness modulus, Ce, is evolving as a function of the plastic work, ignoring the
second order variations, Equation (A10) becomes:

(
∂σ
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)k

n+1
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(A11)

Then, the equivalent plastic strain increments are updated:(
∆εpot

)k+1

n+1
=

(
∆εpot

)k

n+1
+ δ

(
∆εpot

)k

n+1
(A12)

and (
∆εy

)k+1

n+1
=

(
∆εy

)k

n+1
+ δ

(
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)k

n+1
=

(
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)k

n+1
+

(
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σy

)k

n+1
δ
(
∆εpot

)k
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(A13)

Then, the accumulated plastic work is updated based on the plastic work equivalence principle in
Equation (4):

$k+1
n+1 = $k

n+1 + δ(∆$)
k
n+1 = $k

n+1 +
(
σpot

)k

n+1
δ
(
∆εpot

)k

n+1
(A14)
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From Equation (A11), the Cauchy stress is updated by,

σk+1
n+1 = σk

n+1 + ∆σk
n+1 = σk

n+1 +

(
∂σ

∂∆εpot

)k

n+1
δ
(
∆εpot

)k

n+1
(A15)
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