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Abstract: The ability to accurately predict the mechanical properties of metals is essential for their
correct use in the design of structures and components. This is even more important in the presence
of materials, such as metal cast alloys, whose properties can vary significantly in relation to their
constituent elements, microstructures, process parameters or treatments. This study shows how a
machine learning approach, based on pattern recognition analysis on experimental data, is able to
offer acceptable precision predictions with respect to the main mechanical properties of metals, as in
the case of ductile cast iron and compact graphite cast iron. The metallographic properties, such
as graphite, ferrite and perlite content, extrapolated through macro indicators from micrographs
by image analysis, are used as inputs for the machine learning algorithms, while the mechanical
properties, such as yield strength, ultimate strength, ultimate strain and Young’s modulus, are derived
as output. In particular, 3 different machine learning algorithms are trained starting from a dataset of
20–30 data for each material and the results offer high accuracy, often better than other predictive
techniques. Concerns regarding the applicability of these predictive techniques in material design
and product/process quality control are also discussed.

Keywords: material properties prediction; experimental data analysis; ductile/spheroidal cast iron
(SGI); compact graphite cast iron (CGI); Machine Learning (RF); pattern recognition; Random Forest
(RF); Artificial Neural Network (NN); k-nearest neighbours (kNN)

1. Introduction

An accurate knowledge of the mechanical properties of materials represents the first step towards
their correct use in any field of engineering and in everyday life. Thanks to this information, for instance,
it is possible to design structures and components in order to optimize their functionality according to
technical parameters of specific interest such as strength, weight, safety, costs and so forth [1–4].

In the case of metals and, especially, of rather common cast irons [5–7], the shared opinion is that
their properties are quite predictable (e.g., fatigue [8], abrasion [9], fracture [10], strength [11]).

This is certainly the case when compared to other families, such as organic or composite materials.
It is also possible to say that everything depends on the perspective. Since metals are widely known
and used, low unpredictability in their properties is expected but actually quite common metal alloys,
such as cast irons, can be affected by a not negligible variability in their essential properties [12,13].

From the constituent elements to the process parameters, a large list of factors can interfere with
the microstructures of an alloy and, as a consequence, on its properties [14,15].
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Although some uncertainties could be easily eliminated (e.g., better control on stoichiometry), it
is not so simple in reality. In a traditional foundry, for instance, up to 30% of the metal originates from
reused materials, with great advantages in terms of costs and environmental protection [16] but risks
in controlling the chemical composition and a certain variability in the cast alloy properties [17].

This variety is the reason for the prevalence of cast iron throughout history and in the present [18].
Grey, white, malleable or ductile—cast alloys can provide largely different properties, offering a valid
choice of materials in dissimilar situations. With minimal changes to the composition (e.g., from 3% to
4% in the carbon content) or the use of additives in marginal quantities (<1%), properties such as tensile
strength move from 170 to 930 MPa, elongation from 0.5 to 18% and hardness from 130 to 450 HB [19].

This versatility is a weakness when constancy in the material’s property is necessary. In Reference [20]
it is reported, for instance, that a relevant change in the microstructure and in the mechanical properties
of a grey cast iron extracted from identical sand-cast parts produced by different foundries.

In this study, which starts from an extensive experimental test session (with data published in
References [21–23]), it can be observed that two successive metal fusions, carried out a few hours later
and without voluntary changes in the process parameters, lead to slightly different metallographic
profiles between them. Furthermore, specimens extracted from the same casting, although they come
from almost identical metal casting conditions, then take on a slight difference in metallographic terms,
probably linked to different cooling conditions. These are all rather common knowledge in foundries
that, however, lead to an intrinsic variability in the properties of the materials to be considered in the
product design and, even, in the process designs.

This study intends to take a further step. Given that it is not possible to reduce the variability in
mechanical properties as much as desired, a valid way of predicting them is sought.

Commonly, the mechanical properties of cast irons are related to their metallurgical ones,
as reported in the case of Reference [24], which is especially focused on the latest research in
solidification and melt treatments. It means, in practice, that micrographs are analysed with the scope
to develop models and predictive formulae. A valid example of the current situation is represented by
Reference [25], research concerned with the ability of the main theories to predict the fatigue limit of
nodular cast iron. It reintroduces several previous studies dealing with the effect of small defects, such
as micro-shrinkage cavities or pores and graphite nodules (shape and size) and with the characteristic
of a microstructure. At the same time, it also highlights scarce applicability of the existing models and
proposes a new correlation in the prediction of the fatigue limit, which involves additional parameters.

Other investigations proposed passing by the overall aspects, and representing the materials that
are detectable from micrographs, such as content of graphite, ferrite, perlite, the grade of nodularity,
vermicularity and so on (e.g., Reference [26]). Unfortunately, there is no direct connection between
one of those characteristics and its mechanical properties and their relationship is hidden behind
mutual interactions.

For this reason, recently studies have been successfully proposed to predict the mechanical
characteristics of cast alloys by exploiting artificial intelligence approaches (as in References [27–29]).

The list of methods and tools to make concrete a general concept for Artificial Intelligence (AI)
is enormous, rapidly evolving and cannot be disclosed in a few words [30]. However, one of the
fundamental principles underlying the application of AI to material engineering, including prediction,
is to use its ability for ‘pattern recognition’ [31].

An AI algorithm can be built to recognize patterns (such as recurrences, schemes, similarities) that
the human mind cannot. This happens when, as in our case, the patterns are hidden on multiple levels.
For instance, the ductility of cast iron—able to double the yield strength in the alloy, an interesting
property for its real uses—can be provided by graphite in the form of very tiny nodules [32], together
with a specific range of ferrite and pearlite content [33]. This metallurgical situation is obtained only
by merging different conditions as (between the others) a specific range in magnesium content and a
restricted addition of cerium and different temperatures [34].
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While it is objectively complex to develop mathematical models to predict the properties of
materials taking into account the combination of several factors, it is relatively simple to use one of the
many AI algorithms, accepting a given approximation in its predictions [35].

This is certainly determined by the fact that AI algorithms, even rather complex ones, are now
available to everyone and, at the same time, they offer high quality results. It depends on the
positive combination of the mentioned pattern recognition with the concept of ‘machine learning’
(ML), an application of AI that provides systems the ability to automatically learn and improve from
experience without being explicitly programmed [36].

The process of learning begins with observations or data, such as examples, direct experience or
instruction, in order to look for patterns in data and make better decisions in the future based on this
information [37].

This process can be implemented according to one of several different AI strategies, commonly
categorized as “supervised,” “semi-supervised,” “unsupervised” or “reinforcement” machine learning.

In the first case, the dataset of information (input) is provided together with the results (output).
The algorithm uses these data to learn the relations existing between inputs and outputs. When
finished, it is ready to propose an output per each new set of input values [38].

In the second category—“unsupervised”—the ML process means that there is no distinction
between input and output: each set of values is considered as an input and the algorithm is forced to
find patterns without a specific external base of information [38].

Semi-supervised learning methods are something in between the other two categories: there is
some form of feedback available for each step or action but there is no label or error message [38].

Finally, the reinforcement learning method interacts with its environment by producing actions
and discovers errors or rewards [38]. Trial and error search and delayed reward are the most relevant
characteristics of reinforcement learning.

Since ML enables the analysis of massive quantities of data, these learning methods often benefit
from a data analysis process called “clustering,” introduced with the scope of grouping similar entities.
It helps to profile the attributes of different groups, giving insight into their different underlying
patterns [39,40]. The clustering analysis is also used to reduce the dimensionality of information
with respect to the data characterized by a large number of variables. Between other algorithms for
clustering, probably the most popular in ML are K-mean Clustering and Hierarchical Clustering.

Even if the unsupervised algorithms are quite uncommon in general and even less common in
the fields of mechanical and material engineering, they are presented here since they seem ready to
revolutionise investigations of the real world [36–40]. These advanced methods, in fact, can learn
without passing for a conventional procedure of ML, based on specific datasets. They simply apply
rules and learn by mistakes, following a system of evaluation of potential solutions based on scores [41].

Regardless of the ML technique, the success in prediction depends on the capability of each
method to structure information acting on different levels. Supervised learning is useful in cases
where a property (label) is available for a particular dataset (training set) but is missing and should be
predicted for other cases. Unsupervised learning is used to detect implicit relationships in a given
unmarked dataset.

In the case of material properties, as mentioned, the complexity can be related to the fact that these
properties are connected with each other and to other chemical-physical ones, in a skein of relations
that has to be untied before predictions. Machine Learning comes to the rescue because it allows the
unhooking of the intermediate levels (“hidden”) from the superficial levels so that these first ones can
be configured in full freedom in the search for correlations (pattern recognition). This process allows
the collection of the input of a first level of knowledge to transform it into the output of a second level
in an operation that always leads to abstracting of concepts. Learning takes the form of a pyramid
with the highest concepts learned starting from the lowest levels [42].

It also means that, in the near future, an expert system can probably be installed in a foundry,
monitoring the material/process situation but, at the moment, these systems are limited to a few very
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interesting research experiences. For instance, in Reference [43] an Artificial Neural Network (ANN)
was used to classify nodular, grey or malleable cast irons on the basis of their microstructure. After
a training session made by 60 samples, the AI showed an accuracy in selection very similar to that
obtained by visual human tests. Reference [44] also deals with ductile cast iron and ANN methods;
in particular, different networks were built and trained by 700 melts and used to predict tensile strength,
elongation and hardness. In addition, in the same article, useful considerations are proposed regarding
the ANN modelling and its input parameters, together with an assessment of their significance and
availability in an industrial environment.

In brief, it is possible to say that an approach, based on AI and ML, can be conveniently used
in material engineering [45,46]. Furthermore, the accuracy in prediction depends on several aspects,
including the consistency and the quality of the data used for training.

2. Aims and Scope

This research has three main objectives, as follows:

- Predict the mechanical properties of metals and, in particular, the tensile properties such as, yield
strength, ultimate strength, ultimate strain and Young’s modulus, starting from experimental
data. In addition, it would be possible to investigate the relationship between these properties
and fundamental aspects of metallurgy, as in the cases of constituent elements, microstructures,
process parameters or treatments.

- Use information directly taken from micrographs by a conventional process of image analysis
but globally converted into macro-indicators related to the content of graphite, ferrite, perlite,
nodularity and vermicularity. In addition, it would be possible to discuss the interrelations
existing between all these features—mechanical and metallurgical—with the scope to recognize
essential and overabundant information. This investigation will involve two different families of
cast alloys, a nodular cast iron (SGI) and a less common compact graphite cast iron (CGI).

- Select and use these essential data inside a Machine Learning (ML) approach, based on pattern
recognition, with the scope to perform an ‘intelligent analysis’ of experimental measures. In this
task, some of the most common methods of ML will be applied, specifically the Random Forest
(RF), the Artificial Neural Network (NN) and the k-nearest neighbours (kNN). These classifiers
will be implemented by the use of conventional codes and accessible platforms, comparing them
in terms of functionality and accuracy in prediction, especially in association with the consistency
and quality of the dataset used for training but also considering the overall variability of the
phenomena under investigation.

- Introduce essential concerns regarding the real applicability of these techniques for scopes related
to the material design, product/process quality control and so on, including practical suggestions
on the way to simplify the procedure towards an industrially-oriented application.

3. Materials and Methods

3.1. Experimental Data

Measures were derived from a large experimental campaign undertaken in the past by some
authors on foundry alloys, where samples in nodular iron and compact graphite cast iron were
manufactured and mechanically characterized. These phases are detailed in References [21–23] and
are here briefly summarized.

3.1.1. Casting

Samples were made by a traditional process of green sand moulding, using a hot blast long
campaign cupola furnace [47], filled with layers of coke and ignited with torches. When the coke
was very hot, solid pieces of metal were charged and alternated with additional layers of fresh coke.
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The high temperature, together with the other chemical conditions, transformed the solid metal into
molten iron. Sand shapes were placed on the pouring line and, then, filled with molten iron.

According to the process parameters, including the use of inoculants, it was possible to produce
two different cast alloys:

1) Spheroidal Graphite Iron (SGI), a material also called nodular or ductile iron with respect to its
high ductility, offered by the spheroidal shape of graphite;

2) Compacted Graphite Iron (CGI), a material with intermediate properties between grey and nodular
iron, thanks to a more compact form of graphite that is becoming quite popular, particularly in
the automotive sector [48].

The castings were finally shaped by tool machining to extract samples in accordance with
the experimental standards. In particular, 4 metal castings, manufactured on two different days,
were created.

Extraordinary care was taken to minimize the risk of unexpected changes in the casting conditions,
especially in terms of chemical composition, temperature and other process parameters that could
interfere with the metallurgical stability (also in accordance with Reference [49]). For instance,
the castings used for extracting samples were produced after a long time of conventional production in
order to stabilize both temperature and metallurgy profiles. In addition, the chemical composition of
the alloys was verified several times by off-line tests.

3.1.2. Metallurgical and Mechanical Properties

The ML algorithms were trained by experimental data from 48 samples, 27 in SGI and 21 in CGI.
In particular, the following metallographic factors were used:

- Quantity of Graphite
- Quantity of Ferrite
- Quantity of Perlite
- Grade of Nodularity
- Grade of Vermicularity

with the related values estimated (in%) by considerations of the micrographs. An image analysis was
permitted to consider the presence and the geometry of the graphite inside the cast alloy (in terms of
area, perimeter, Feret diameter and so on).

In addition, every set of metallographic characteristics was combined with related mechanical
properties, as measured in accordance with the EN ISO 6892-1:2016 [50]:

- Ultimate Tensile Strength [UTS],
- Yield Strength [YS],
- Ultimate Strain [ε],
- Young’s modulus [E].

In synthesis, each one of these 48 samples provided a specific set of 5 (five) metallurgical and
4 (four) values, used in the machine learning. These data are available in Tables A1 and A2 of
Appendix B for SGI and CGI, respectively.

3.2. Machine Learning Algorithms

The current investigation was implemented by using the Orange program and its ML
algorithms [51]. It is an open source platform for machine learning and data visualization, powered by
10 different algorithms, which can be used for data analysis and prediction.

In accordance with a quite common interpretation of the ‘No Free Lunch’ theorem [52], in the
area of ML no universal method exists that can aprioristically provide the best results (for example,
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in terms of predictions) with respect to all sets of potential data [53]. In other terms, it is not possible to
select the proper algorithm in advance.

In this research, in line with previous experiences where the ML has been applied to the prediction
of metal properties [54], the analysis has been limited to the use of the following methods:

3.2.1. Random Forest (RF)

Random forest [55] is a popular algorithm of supervised learning, consisting of the use of a
committee (ensemble) of decision trees. “Ensemble” means that it takes a bunch of “weak students”
and combines them to form one strong predictor. “Weak students” are all random implementations
of decision trees, which are combined to form a strong predictor—a random forest. The random
forest method is often called the “improved implementation” of the decision tree method, because
now to get a more accurate prediction and classification, not one tree is used but the tree committee.
The method quickly gained popularity due to the comparative simplicity of setting up and running
the analysis procedure. In contrast to the classical algorithms for constructing decision trees, in the
random forest method, when constructing each tree, at the stages of splitting vertices, only a fixed
number of randomly selected signs of the training set (the second parameter of the method) is used
and a full tree is constructed (without cutting), that is, each leaf of the tree contains observations of
only one class. A 15 tree, 32 fixed seed for a random generator was used, with a growth control based
on the condition that no split was implemented for a subset smaller than 5 (Table 1).

Table 1. Parameters of the Random Forest (RF).

Number of trees 15

Fixed seed for random generator 32

Do not split subset smaller than 5

3.2.2. Neural Network (NN)

A neural network [56] is another very popular algorithm of supervised learning. It is used to
build an efficient encryption system using a constantly changing key. Neural networks offer a very
powerful and general structure for representing a non-linear mapping of several input variables for
several output variables. A neural network can be considered a suitable choice for functional forms
used for encryption and decryption operations. The NN topology is an important issue, since the
application of the system depends on it. Therefore, since the application is a calculation problem,
a multi-layered topology was used. Neural networks offer a very powerful and general structure for
representing a non-linear mapping of several input variables for several output variables. The process
of determining the values of these parameters on the basis of a dataset is referred to as training and
therefore the data set is usually referred to as a training set. A neural network can be considered a
suitable choice for functional forms used for encryption and decryption operations. A neural network
is a structure (network) consisting of a set of interconnected links (artificial neurons). Each link has a
characteristic input / output and implements a local calculation or function. The output of any link
is determined by the characteristics of its input / output, its relationship with other links, as well as
external inputs, if any. A 5 layer neural network in backpropagation was used. The speed of learning
was 0.6, the inertial coefficient was 0.5, the test mass tolerance was 0.02 and the tolerance of the learning
set was 0.03 (Table 2).

Table 2. Parameters of the Neural Network (NN).

Learning speed 0.6

Inertial coefficient 0.5

Test mass tolerance 0.02

Tolerance of the learning set 0.03

Number of layers 5
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3.2.3. K-Nearest Neighbours (kNN)

The K-nearest neighbours method [57] is one of the methods for solving the classification problem.
It is assumed that there is already some number of objects with an exact classification (i.e., for each
of them it is known exactly which class it belongs to). It is necessary to work out a rule allowing
the classification of a new object as one of the possible classes (the classes themselves are known in
advance). At the heart of kNN is the following rule: an object is considered to belong to the class to
which most of its closest neighbours belong. Under “neighbours” here are objects that are close to the
studied in one sense or another. Note that here it is necessary to be able to determine how close objects
are to each other, that is, be able to measure the “distance” between objects. This is not necessarily the
Euclidean distance. This can be a measure of proximity of objects, for example, in colour, shape, taste,
smell, interests, behaviour, and so forth. Consequently, to apply the kNN method in the feature space
of objects, a certain metric must be introduced (that is, a distance function). If the nearest neighbours
are divided into classes of approximately the same capacity, then, on the contrary, it makes sense
to use those rules that take the distances into account to a greater degree (for example, the average
rule). The rule of weighted majority takes into account both the number of objects in a class (via the
weighting factor) and the distance to these objects. If there are a lot of classes and the weights are
approximately the same, then first, such classes are selected so that their total weight is more than 0.5
and then one of the rules is applied. A Chebyshev metric was used with a number of neighbour equal
to 2 and a uniform weight (Table 3).

Table 3. Parameters of the k-nearest neighbours (kNN).

Metric Chebyshev

Number of Neighbours 2

Weight Uniform

3.3. Correlations

The existence of a link between the various variables under investigation was sought for
by calculating the Pearson correlation index (as done in Reference [58]). Also called the linear
correlation coefficient of Bravais-Pearson, this statistical index shows an eventual linear relationship
between variables.

Given two statistical variables X and Y, the correlation index (rxy) is defined as their covariance
divided by the product of the standard deviations of the two variables. This index varies between −1
and +1, where a > 0 shows the two variables are directly correlated, a value of 0 is for variables are
uncorrelated and, finally, <0 for variables are inversely correlated.

Moreover, for the direct correlation (and similarly for the inverse) it is distinguished:

0 < rxy < 0.3 there is a weak correlation;
0.3 < rxy < 0.7 there is a moderate correlation;
rxy > 0.7 there is a strong correlation.

The Pearson correlation was used in two alternative ways. It permitted relation of the:

- experimental measures by way of estimating the influence between different properties;
- experimental and predicted values by way of estimating the accuracy of the ML methods.

The adoption of the correlation coefficient as a way to evaluate the relationships between variables
but also the accuracy in predictions was preferred in this study (similar to References [59,60]). Instead
of other statistical approaches, it was considered for its extreme simplicity, both in terms of calculation
and comprehension: the correlation coefficient directly represents a clear measure of the strength of
the linear relationship between two variables. At the same time, it is useful to highlight that unrelated
variables are not always independent: this depends on the fact that the correlation coefficient only
detects a linear correlation.
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4. Results

4.1. Experimental Measures

Tables A3 and A4 in Appendix C report the material tensile properties for SGI and CGI, respectively,
as estimated by the three ML algorithms: Random Forest (RF); Neural Network (NN); k-Nearest
Neighbours (kNN). Specifically, for each sample used in the experimental tests (48 in total), the expert
system provided 3 different predictions (RF, NN, kNN) for each of the 4 mechanical properties
under investigation (Ultimate Tensile Strength, Yield Strength, Ultimate Strain and Young’s modulus).
These values are later considered and discussed in terms of Mean Values (µ), Variability (σ, σ%) and
Correlations (rxy).

4.2. Spheroidal Graphite Cast Iron

In particular, the four diagrams in Figure 1 show these tensile properties in the case of SGI
where the values from the measures are reported together with error bars representing the related
variability. In addition, all the diagrams are displayed with a y-scale ranging from 0 to (approx.) the
maximum value. These provide a visual representation of the ability of the ML methods to fit the
experimental values. For instance, in the case of UTS, it is possible to see how the largest part of the
predictions (specifically 69 on 27 × 3 = 81) falls inside the error bars (±9%). These error bars were
evaluated starting from the experimental measures and passing by their relative standard deviation
(σ%). Per each property and each material, a specific σ% can be defined and this percentage can be
used for dimensioning the error bar. The related bars are intended to give an idea of the variability of
the measures, showing at the same time how a large part of the predictions falls inside this variability.
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Comparing these properties, it is also possible to recognize, in general, how prediction on UTS
and YS seems better than those on ε and E.

4.3. Compacted Graphite Cast Iron

The analogous diagrams in Figure 2 show the tensile properties for CGI. This analogy is also
respected for considerations of data and evidence. For instance, also in this case for UTS, the major
part of the predictions (specifically 16 values on 21 × 3 = 63) falls inside the error bars (±6%).

Finally, the diagrams are similarly scaled for Figures 1 and 2, permitting a direct comparison
between the properties of the two materials. It is evident, for instance, the lower properties of CGI
respect to SGI.
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measured and predicted.

5. Discussion

5.1. Prediction Model Validation

Before proceeding with discussing the results, it is appropriate to specify some additional concepts
on the use of the learning and validation process within this work and justify them. Usually studies
involving ML approaches divide the available data into two categories: those used for learning and
those used for validating results. This apparently sensible and correct approach brings with it potential
errors. For example, while the learning phase should vary slightly if information from a limited
number of data is subtracted by the complete dataset, the validation phase is very sensitive to how
many and which specific data are taken into account. Furthermore, whatever the result is, the doubt
remains that the particular choice of data modified the general assessment on the validity of the entire
prediction procedure.

This situation is frustrated when, as in the present case, external data are themselves subject to a
high variability. In other words, it can be accepted that the expert system is trained with data subject to
a certain intrinsic variability, waiting for its forecasts to be subject to a comparable variability. But,
if these predictions are then compared with some specific data extracted from such a variable sample,
the risk of making mistakes is rather high.

To avoid this risk, the simplest way is to increase the dataset of external data, to be used both for
training and validating, as done in Reference [44]—where 700 samples were considered—all of them
representing a homogeneous situation (same alloy, process conditions and so on). In the meantime,
also considering the hypothesis where additional tests are not imaginable in short, a different approach
was here proposed for data analysis. It is in line with another recent paper by some of the authors [54]
where ML algorithms were used for the evaluation of the surface roughness evaluation in steel after
thermal hardening by laser radiation. In brief, the validation is performed on the full dataset of values,
not on part of it.
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5.2. Data Preliminary Analysis

Considering the experimental measures, as reported in Appendix B in Tables A1 and A2, it is clear
there is a not marginal variability in values, in the cases of both metallurgical and mechanical properties.

The relative standard deviation (σ%), expressed as the ratio between the standard deviation (σ)
and the mean value (µ) permits a homogeneous comparison among parameters, providing useful
information. For instance, in the case of SGI, the metallographic factors, expressed by σ%, spread
between 14% (nodularity) and 44% (vermicularity). This variability is lower but also relevant, in the
case of CGI, limited between 5% (vermicularity) and 24% (nodularity). Also, in terms of mechanical
properties, the same variability of measures is confirmed. In particular, it ranges from 5%–6% in the
case of the Ultimate Tensile Strength and the Yield Strength of CGI, up to 19%–21% in the case of the
Ultimate Strain of SGI for both alloys.

As a consequence, the complexity of using these data for predictions on material properties is
evident. At the same time, in Table 4 the relationships between parameters, estimated by the Pearson
correlation coefficient, is reported in the case of the metallurgical properties, showing that several
parameters are, as weighted, in medium-strong relations (e.g., perlite vs ferrite or perlite vs graphite).

Table 4. Correlation matrix between the metallurgical properties in the case of SGI and CGI.

SGI Graphite Ferrite Perlite Nodularity Vermicularity

Graphite 1.00 0.04 −0.29 0.34 −0.30
Ferrite 0.04 1.00 −0.79 0.13 −0.19
Perlite −0.29 −0.79 1.00 0.03 0.05

Nodularity 0.34 0.13 0.03 1.00 −0.99
Vermicularity −0.30 −0.19 0.05 −0.99 1.00

CGI Graphite Ferrite Perlite Nodularity Vermicularity

Graphite 1.00 −0.20 −0.45 −0.24 0.20
Ferrite −0.20 1.00 −0.79 0.13 −0.19
Perlite −0.45 −0.79 1.00 0.03 0.05

Nodularity −0.24 0.13 0.03 1.00 −0.99
Vermicularity 0.20 −0.19 0.05 −0.99 1.00

But the relations of real interest are those that can connect mechanical properties to the
microstructural ones, in order to predict the overall behaviour of an alloy knowing its compound and
microstructure. Several articles, as mentioned, move in that direction, relating micro- and macro-scales,
while the current investigation limits its focus on data analysis.

In particular, Table 5 exhibits, in terms of Pearson correlation coefficients, the relationships between
the metallurgical parameters and the mechanical properties.

Table 5. Correlation matrix between the metallurgical and mechanical properties.

SGI Graphite Ferrite Perlite Nodularity Vermicularity

Ultimate Tensile Strength (UTS) −0.25 −0.87 0.90 0.63 −0.65
Yield Strength (YS) −0.19 −0.83 0.84 0.67 −0.69
Ultimate Strain (ε) −0.03 0.34 −0.32 0.05 −0.06

Young’s Modulus (E) −0.03 −0.09 0.09 0.18 −0.21

CGI Graphite Ferrite Perlite Nodularity Vermicularity

Ultimate Tensile Strength (UTS) −0.44 −0.46 0.69 0.23 −0.17
Yield Strength (YS) −0.46 −0.35 0.61 0.25 −0.17
Ultimate Strain (ε) −0.47 0.00 0.29 0.28 −0.26

Young’s Modulus (E) −0.11 0.08 0.00 −0.39 0.38
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Several preliminary considerations emerge from these data. According to the experimental values,
as correlated by the Pearson coefficient, it seems that:

- the SGI is more affected than the CGI with respect to changes in the metallurgical properties;
- the content of graphite is not so relevant for the definition of mechanical properties, especially in

the case of SGI, while it has a light negative effect on CGI;
- the contents of ferrite and perlite, more than others, directly influence the material strength,

especially in the case of SGI;
- the ductility is directly related to ferrite and perlite content but not to graphite in the case of SGI,

while the graphite shows a light negative effect on CGI;
- the Young’s modulus, evaluated as standard, is practically uncorrelated, except for a slight

dependency to the nodularity and to the vermicularity, more relevant in the case of CGI.

5.3. Expert Algorithms

This preliminary data analysis permits the presentation of a general situation, quite common
in the strength of materials, where each material property seems to be related to many of the others
without strong/predominant dependencies. The consequent network of weak correlations between
properties makes the material data analysis complex. Thus, every approach searching for a linear
dependency is almost useless, unable to “untangle the skein” and artificial intelligence can help with
“cracking” this complexity.

An expert algorithm, in fact, can search for patterns to be recognized without considering their
physical significance. It will simply scan data search for hidden analogies and structures, moving the
vision between different levels of the knowledge abstraction.

5.4. Mean Values and Variability

In Table 6, the tensile properties for SGI and CGI are reported as predicted by the expert system,
in terms of mean values and standard deviations. It is evident how the variability in predictions is
in line with the initial variability of measures. For instance, the experimental data on SGI, measured
on 27 specimens, show an average value of the UTS equal to µ = 549 MPa with variability a σ = ±51,
equal to ±9%. Using these values, the three ML algorithms (RF, NN, kNN) propose three different
predictions, equal to, in the mentioned case, respectively, 536 ± 31 (6%), 550 ± 64 (12%), 520 ± 33 (6%).
The variability of those predictions (±6%; ±12%; 6%) is almost equivalent to the initial one (±9%).
The same concept is also evident in the cases of all the other properties, demonstrating that the selected
ML algorithms do not interfere with the base of data increasing its variability.

Table 6. Mechanical properties prediction in terms of mean values and standard deviations.

SGI Unit Data RF NN kNN

Ultimate Tensile Strength (UTS) MPa 549 ± 51 (9%) 536 ± 31 (6%) 550 ± 64 (12%) 520 ± 33 (6%)
Yield Strength (YS) MPa 340 ± 27 (8%) 341 ± 20 (6%) 341 ± 31 (9%) 320 ± 22 (7%)
Ultimate Strain (ε) % 10.2 ± 1.9 (19%) 9.4 ± 1.8 (19%) 9.7 ± 2.0 (21%) 8.1 ± 0.1 (8%)

Young’s Modulus (E) GPa 170 ± 14 (8%) 177 ± 13 (7%) 170 ± 13 (8%) 157 ± 12 (7%)

CGI Unit Data RF NN kNN

Ultimate Tensile Strength (UTS) MPa 337 ± 22 (6%) 340 ± 24 (7%) 332 ± 19 (6%) 317 ± 5 (4%)
Yield Strength (YS) MPa 268 ± 16 (6%) 268 ± 16 (6%) 268 ± 17 (6%) 251 ± 13 (5%)
Ultimate Strain (ε) % 3.4 ± 0.7 (21%) 3.5 ± 0.5 (14%) 3.4 ± 0.7 (21%) 3.0 ± 0.5 (18%)

Young’s Modulus (E) GPa 150 ± 14 (9%) 154 ± 12 (8%) 146 ± 17 (12%) 136 ± 20 (4%)

5.5. Mean Values and Error Estimation

In Table 7, the distance between the measured and predicted values are reported in terms of
percentage errors with respect to the average values of tensile properties. It is evident how, except
in rare cases, all the different algorithms can provide valid predictions. Also, in the present case,
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the confidence placed by Reference [59] in the possibility of accelerating material property predictions
by the use of machine learning is confirmed.

Table 7. Error estimation in the prediction of mean values.

Property
SGI CGI

RF NN kNN RF NN kNN

Ultimate Tensile Strength (UTS) −2.4% 0.2% −5.3% 0.9% −1.5% −5.9%
Yield Strength (YS) 0.3% 0.3% −5.9% 0.0% 0.0% −6.3%
Ultimate Strain (ε) −7.8% −4.9% −20.6% 2.9% −11.8% −11.8%

Young’s modulus (E) 4.1% 0.0% −7.6% 2.7% −2.7% −9.3%

In particular, of 24 values under investigation, 7 of them (almost 1/3) are predicted with an error
lower than 1%; 11 lower than 3%; 16 (equal to 2/3) lower than 6%. In addition, it can also be noted that
the uncorrected values (with percentage errors > 10%) are essentially related to the prediction of the
Ultimate Strain (ε).

Even in this extreme case, the correspondence is quite acceptable, as demonstrated in Figure 3
where the comparison between measures and predictions is shown in terms of values frequency. It is
possible to see how the density functions for measures and predictions overlap in several situations as,
for example, in the cases of RF and NN methods for the Ultimate Strain (ε). Actually, it is possible to say
that the NN method can closely retrace the density functions for all the situations under investigation.
It means, in practice, that the NN method can predict the real values not limited to the average values
but also through its range of variability. This good accuracy in predicting the mechanical properties of
cast iron offered by the NN method was also reported by Reference [61] with respect to an investigation
involving 24 process parameters and 800 external data.
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Figure 3. Comparison between measured and predicted values in terms of density functions (case of
SGI) for: (a) Ultimate Tensile Stress; (b) Yield Stress; (c) Ultimate Strain; (d) Young’s Modulus.
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It is not the case that the kNN method shows a tendency to systematically underestimate reality
(shown by narrow curves, shifted on the left, towards lower average values). These graphs are related
to SGI but similar considerations emerge from data analysis in the case of CGI.

It is also worth noting that the validity of the predictions by ML does not seem to be affected by
the specific values assumed by the properties. This contrasts with Reference [28], where it was reported
that the prediction by the expert system ceased to be accurate for UTS higher than 100 MPa—in
this analysis, the estimation methods proved to be equally valid for two cast iron families with very
different properties, that is, SGI and CGI with an UTS of, respectively, 539 and 337 MPa.

Furthermore, it is confirmed that the potentiality of CGI in replacing SGI in particular applications
where ductivity may be preferred to high stiffness, as expressed by References [4,62,63].

5.6. Correlations

Even if a prediction is accurate with respect to the average values and to the variability of measures,
their distribution could be significantly different. Thus, the linear correlation is also investigated.
In Table 8, the linear relations between measured and predicted values are reported in terms of Pearson
correlation coefficients: as mentioned, the correlation is much better than the value closer to 1.

Table 8. Correlation between measures and predictions in terms of Pearson correlation coefficient.

Pearson Correlation
Coefficient (rxy)

SGI CGI

RF NN k-NN RF NN kNN

Ultimate Tensile Strength (UTS) 0.39 0.76 0.81 0.48 0.41 0.37
Yield Strength (YS) 0.56 0.74 0.79 0.33 0.33 0.22
Ultimate Strain (ε) −0.12 0.17 −0.14 0.29 0.50 0.19

Young’s modulus (E) 0.17 −0.07 −0.05 −0.02 −0.48 −0.41

Figure 4 reports a graphical representation of the meaning of this linear correlation proposing a
comparison between data with difference Pearson correlation coefficients (rxy). It is the case, in particular,
of the values of Yield Strength (YS) and the Young’s modulus (E) for SGI, characterized by Pearson
correlation coefficients of 0.74 (predicted by NN) and 0.17 (predicted by RF), respectively. The same
diagram shows, simultaneously, properties with different units—namely (MPa) and (GPa)—and each
point represents a single prediction, positioned by the experimental (x-axis) and predicted (y-axis)
values. In this chart, points that are distributed along the bisector (x = y) or very close to it—as the
values of Yield Strength (YS)—demonstrate a good correlation between experimental measurements
and numerical predictions. On the contrary, a distribution of points like clouds, as in the case of
Young’s modulus (E) values, demonstrates a lack of correlation between measures and prediction.
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Instead, Figure 5 reports a graphical representation of data characterized by (substantially) equal
Pearson correlation coefficients.
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It is the case, for instance, of the values of Yield Strength (YS) for SGI where those coefficients are 0.74
or 0.76, depending on the specific ML methods used (NN and kNN, respectively). The correspondence
between the coefficients suggests that the two forecasting techniques are similarly effective. At the
same time, the diagram shows how some aspects can escape attention if the analysis remains limited
to the coefficients. In the figure, it is observed, for instance, how the values predicted by kNN are not
randomly distributed around the bisector but are all shifted to the right. This means, in practice, that
the kNN method proposes predictions subject to a slight, but systematic, error of underestimation,
confirming the similar considerations on the kNN method previously emerged.

5.7. Results Summary

In brief, the accuracy of ML methods in predicting the mechanical properties starting from the
metallurgical properties, as estimated by images analysis samples and macro-indicators, was evaluated
comparing measures and predictions with respect to their mean values (µ)/standard deviations (σ)
(Table 7) and by the overall trend of the Pearson coefficients (rxy) (Table 8). The comparison is also
shown by representing, respectively, the way the density functions, defined by µ and σ, overlap
(Figure 3) and how these values are distributed, point to point, in correlation graphs (Figures 4 and 5).

Thanks to this analysis it is possible to propose, as results, the following considerations:

- ML methods confirm their general validity in predicting the mechanical properties of metals;
- this seems true, even in the presence of a quite limited dataset to be used for training;
- information can be directly taken from micrographs by a conventional process of image analysis

and macro-indicators without the need to go through deeper metallurgical investigations;
- in particular, the NN method seems the most appropriate of those considered;
- the kNN method, although it has good accuracy, also shows a tendency to systematic errors;
- the accuracy in prediction is different for each specific property under investigation, achieving

the best results for UTS and YS but also offering acceptable indications in the other cases;
- the average values of experiments and predictions (measured by µ) often coincide in practice;
- the deviation with respect to the average values (measured by σ) shows a variability in prediction

in line with the intrinsic variability as revealed by the experimental measurements;
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- the Pearson correlation (rxy) can be conveniently adopted for a quick evaluation of data but also
for the validation of predictions.

6. Conclusions

There is no doubt that Artificial Intelligence (AI) and Machine Learning (ML) have become widely
known over the past few years thanks to their applicability. As Big Data technologies retain the status of
the most discussed IT trend of modernity, so ML algorithms can be considered the most powerful tool
focused on the predictive application of large amounts of data. It is the same in the material sciences.

This article proposed the use of three between the most common ML algorithms, available in
an open source platform, in supporting the material data analysis. In particular, the Random Forest,
the Artificial Neural Network and the k-nearest neighbours methods have been preferred for pattern
recognition on two datasets of tensile properties of two different foundry alloys—ductile and compact
graphite cast irons—as measured in previous experiments. The Expert System, trained on these
(extremely limited number of) data, provided predictions in line with the measures, both in terms
of mean values and variability, in large part of the situations under investigation. In particular,
an extremely accurate correspondence between experimental and predicted data along the full range
of values emerges in the case of Ultimate Tensile Strength (UTS) and Yield Strength (YS), with errors
lower than 1% (when considered in terms of mean/expected values). But even in the other situations
under examination, related to the Ultimate Strain (ε) and Young’s modulus (E), the use of AI as an
investigation system could provide valid support. As a consequence, it is possible to confirm the benefit
of the ML techniques in predicting the mechanical properties of cast alloys. Furthermore, they could
help with investigating the strict relationship between these ultimate properties and other fundamental
aspects of metallurgy, as constituent elements, microstructures, process parameters or treatments.

Finally, it is worth considering how the validity in prediction could be reasonably improved:
selecting additional Machine Learning classifiers, optimizing their parameters and enlarging the
dataset adopted for training. All these improvements in the investigation approach are relatively
simple without introducing any additional complexity to the predicting procedure.
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Appendix A

For a better comprehension, the adopted nomenclature is here reported:

SGI Spheroidal cast iron
CGI Compact graphite cast iron
GR Graphite
FE Ferrite
PE Perlite
NO Grade of Nodularity
VE Grade of Vermicularity
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HB Brinell hardness
AI Artificial Intelligence
ANN Artificial Neural Network
ML Machine Learning
RF Random Forest method
NN Neural Network method
kNN k-Nearest Neighbours method
µ Mean Value
σ Standard Deviation
σ% Relative Standard Deviation
rxy Pearson Correlation Coeff.
UTS Ultimate Tensile Strength
YS Yield Strength
ε Ultimate Strain/Ductility
E Young’s/Elasticity Modulus

Appendix B

Table A1. Metallographic and mechanical properties of specimens in Spheroidal Graphite Iron (SGI).
Data from [21–23].

Specimen
GR FE PE NO VE UTS YS ε E

% % % % % MPa MPa % GPa

1 9.1 47.5 43.4 53.9 36.8 500.0 315.3 10.2 154.5
2 12.2 47.1 40.8 63.6 27.2 501.0 302.3 10.3 164.6
3 13.6 42.5 43.9 75.2 17.0 508.7 315.7 8.6 184.9
4 8.6 48.6 42.8 62.6 30.4 496.8 301.2 11.6 184.9
5 12.1 48.5 39.5 67.1 26.2 494.8 325.4 8.5 170.5
6 11.2 42.8 46.0 68.8 23.7 508.8 314.8 8.0 185.7
7 8.3 43.6 48.1 50.9 40.9 501.4 309.2 9.8 153.0
8 12.6 43.6 43.8 79.0 15.2 500.5 309.4 8.8 178.2
9 6.3 52.8 40.9 56.4 34.4 510.2 302.1 8.0 155.0

10 8.6 43.7 47.8 65.7 24.3 549.9 344.7 11.7 168.9
11 12.1 44.8 43.1 75.5 17.1 561.5 347.5 13.4 178.2
12 8.1 49.0 42.9 75.7 17.3 545.4 329.1 12.8 165.4
13 9.2 40.8 50.0 66.9 23.6 554.4 352.4 10.4 155.3
14 7.1 44.6 48.3 68.6 22.3 544.8 346.4 10.9 176.7
15 9.4 47.3 43.4 75.1 17.1 557.4 348.7 12.2 174.7
16 13.2 34.2 52.7 86.1 9.4 570.4 354.8 11.4 141.7
17 11.3 30.5 58.2 85.7 9.4 586.4 366.5 7.5 186.0
18 13.7 39.2 47.1 84.4 10.8 564.4 354.9 9.8 167.0
19 9.1 32.1 58.8 78.2 16.3 582.9 370.9 8.0 173.7
20 10.2 30.8 59.1 80.8 14.1 572.5 353.0 8.5 149.2
21 7.6 33.5 58.8 84.6 10.2 581.9 364.4 12.7 200.6
22 9.3 24.6 66.1 89.6 5.9 651.7 376.8 9.9 160.4
23 7.0 22.7 70.3 81.6 11.9 668.7 397.5 9.0 183.3
24 6.5 24.8 68.7 74.2 17.7 666.6 381.2 8.8 166.4
25 10.2 55.7 34.1 77.7 16.6 514.2 319.0 15.2 164.6
26 7.0 51.6 41.4 72.5 19.7 515.7 335.7 8.1 159.6
27 7.1 45.2 47.7 61.9 27.6 523.9 332.0 10.7 185.9

Mean (µ) 9.7 41.2 49.2 72.7 20.1 549.4 339.7 10.2 170.0
St. Dev. (σ) 2.3 9.0 9.4 10.2 8.8 50.6 26.7 1.9 13.9

R. St. Dev. (σ%) 24% 22% 19% 14% 44% 9% 8% 19% 8%
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Table A2. Metallographic and mechanical properties of specimens in Compacted Graphite Iron (CGI).
Data from [21–23].

Specimen
GR FE PE NO VE UTS YS ε E

% % % % % MPa MPa % GPa

1 21.0 60.2 18.8 16.1 81.2 318.8 253.1 3.3 136.1
2 17.3 62.3 20.4 12.1 85.1 350.1 274.3 2.2 182.5
3 13.9 62.9 23.2 15.4 82.2 307.5 237.8 3.3 146.3
4 14.5 61.6 23.9 9.4 88.5 314.1 252.4 2.2 137.1
5 14.5 62.6 22.9 23.4 74.3 316.2 259.1 2.5 142.1
6 13.2 64.8 22.0 13.0 84.4 308.4 252.3 2.4 140.8
7 15.7 64.3 20.0 17.5 79.7 321.7 258.5 3.4 151.4
8 12.6 61.9 25.6 11.7 86.4 315.0 249.7 2.7 152.9
9 16.7 53.5 29.8 9.0 88.9 312.4 249.5 3.6 156.3
11 11.4 64.9 23.7 15.1 82.7 338.3 273.0 4.4 175.6
12 9.2 67.6 23.3 21.6 74.6 338.8 257.3 4.2 146.4
14 11.2 65.8 22.9 17.9 80.0 336.8 274.0 4.6 132.1
15 10.3 63.0 26.8 16.7 81.4 339.2 270.9 4.2 145.7
16 14.6 56.6 28.9 19.5 78.5 345.8 263.9 3.4 145.8
17 10.1 62.9 27.0 16.7 81.7 346.4 278.4 3.7 159.2
18 11.1 63.5 25.5 16.2 81.8 354.6 288.3 3.1 165.6
19 9.8 59.9 30.3 17.8 80.5 345.0 274.9 3.4 152.6
20 12.8 58.3 28.9 24.0 74.0 345.7 284.1 3.2 129.8
22 12.9 52.9 34.2 18.5 79.5 370.7 281.0 3.9 144.3
23 12.6 53.4 34.0 16.3 81.9 374.0 295.8 3.4 137.9
24 9.7 55.2 35.2 13.3 85.4 380.8 296.7 3.9 167.9

Mean (µ) 13.0 61.2 25.8 16.6 81.2 337.2 267.9 3.4 149.9
St. Dev. (σ) 3.0 4.3 4.7 4.0 4.2 21.8 16.3 0.7 14.0

R. St. Dev. (σ%) 23% 7% 18% 24% 5% 6% 6% 21% 9%

Appendix C

Table A3. Prediction of mechanical properties of Spheroidal Graphite Iron (SGI).

UTS YS ε E

MPa RF NN kNN MPa RF NN kNN % RF NN kNN GPa RF NN kNN

495 510 509 497 325 348 316 301 8.5 8.0 8.0 8.0 171 185 186 160
497 510 510 495 301 349 302 302 11.6 10.7 10.2 8.0 185 165 153 155
500 501 501 497 315 302 309 301 10.2 8.0 8.0 8.0 155 185 153 153
501 510 509 497 302 301 315 301 10.3 8.0 8.0 8.0 165 185 185 169
501 562 564 509 309 316 355 316 8.8 9.0 9.0 7.5 178 149 142 165
501 500 500 497 309 332 315 301 9.8 11.4 8.6 8.6 153 169 155 155
509 557 501 501 316 309 355 309 8.6 8.8 8.5 8.8 185 178 178 178
509 554 501 495 315 345 325 302 8.0 10.2 10.7 9.8 186 178 165 155
510 500 500 497 302 336 309 301 8.0 10.9 9.8 8.5 155 165 155 153
514 510 509 501 319 336 316 309 15.2 8.1 12.8 8.1 165 178 178 178
516 545 524 495 336 329 302 319 8.1 12.8 15.2 8.5 160 177 165 165
524 501 510 497 332 345 315 301 10.7 10.9 10.2 10.3 186 185 155 155
545 562 516 501 329 349 349 309 12.8 13.4 15.2 8.1 165 178 175 178
545 509 516 509 346 332 332 315 10.9 10.7 10.7 8.0 177 178 186 155
550 509 497 497 345 352 301 301 11.7 10.4 10.7 8.0 169 186 153 155
554 545 510 501 352 345 336 302 10.4 8.0 8.0 8.0 155 177 185 165
557 509 514 501 349 329 336 309 12.2 8.0 8.0 8.1 175 178 165 160
562 501 509 501 348 329 316 309 13.4 8.0 8.0 8.0 178 185 165 160
564 573 570 501 355 355 348 309 9.8 10.2 8.0 8.0 167 201 178 178
570 582 564 564 355 367 367 353 11.4 7.5 8.5 7.5 142 167 167 149
573 583 652 570 353 381 377 355 8.5 8.0 9.9 7.5 149 174 183 142
582 564 669 570 364 371 377 353 12.7 7.5 9.9 7.5 201 174 183 142
583 573 652 570 371 353 398 353 8.0 8.5 9.0 7.5 174 201 183 142
586 573 652 570 367 364 355 353 7.5 8.0 8.8 8.0 186 201 160 142
652 586 573 570 377 355 398 353 9.9 7.5 7.5 7.5 160 149 183 142
667 510 669 573 381 336 398 353 8.8 13.4 11.4 8.6 166 160 183 149
669 545 667 573 398 353 381 353 9.0 8.8 9.9 7.5 183 166 166 149
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Table A4. Prediction of mechanical properties of Compacted Graphite Iron (CGI).

UTS YS ε E

MPa RF NN kNN MPa RF NN kNN % RF NN kNN GPa RF NN kNN

308 316 350 308 238 288 252 252 3.3 3.4 2.2 2.4 146 146 141 132
308 355 314 308 252 238 274 238 2.4 3.3 2.2 2.2 141 176 183 146
312 371 315 312 250 252 281 250 3.6 3.3 3.9 3.9 156 138 137 137
314 312 312 314 252 250 250 238 2.2 3.6 3.6 2.2 137 153 183 141
315 308 314 315 250 252 252 238 2.7 2.2 2.2 2.2 153 168 137 137
316 322 346 316 259 284 284 257 2.5 3.4 3.4 3.4 142 146 151 130
319 350 322 319 253 259 274 238 3.3 3.4 2.2 2.2 136 151 183 141
322 319 319 322 259 252 259 238 3.4 3.4 3.2 3.2 151 141 136 132
337 355 339 337 274 257 257 238 4.6 4.2 4.2 3.1 132 176 146 146
338 339 337 338 273 288 250 252 4.4 4.2 4.6 2.4 176 166 132 132
339 346 337 339 271 278 238 273 4.2 2.5 4.6 2.5 146 159 159 132
339 337 308 339 257 271 259 259 4.2 3.7 3.4 3.1 146 166 132 132
345 346 346 345 275 278 281 271 3.4 3.4 3.3 3.3 153 146 144 138
346 316 346 346 264 281 296 271 3.4 4.2 3.9 3.1 146 146 130 130
346 339 339 346 278 271 271 271 3.7 3.4 3.4 3.1 159 166 132 132
346 316 316 346 284 259 259 257 3.2 3.4 3.4 3.4 130 142 142 142
350 308 319 350 274 252 253 238 2.2 3.3 3.3 3.3 183 151 137 136
355 338 339 355 288 273 275 238 3.1 4.2 4.2 3.3 166 146 132 132
371 381 374 371 281 296 296 264 3.9 3.4 3.4 3.4 144 138 138 130
374 381 371 374 296 281 281 250 3.4 3.9 3.9 3.4 138 153 144 144
381 374 312 381 297 274 296 250 3.9 3.7 3.4 3.4 168 153 144 138
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