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Abstract: Data generated for the Ti–Al–Cr–V system of metallic alloys from our previous publication,
where the composition of 102 alloys were computationally Pareto optimized with the objective of
simultaneously maximizing the Young’s modulus and minimizing density for a range of temperatures,
was the starting point of the current research, where compositions at different temperatures of these
alloys were analyzed for phase stability in order to generate new data for compositions and volume
fractions of stable phases at various temperatures. This resulted in a large dataset where a lot of data
were still missing as all the phases are not stable at a given temperature for all the compositions.
The concept of Self-Organizing Maps (SOM) was then applied to determine correlations between
alloy compositions, stabilities of desired phases at various temperatures, associated Young’s moduli
and densities, and the effect of the composition of phases on these properties. This work should help
alloy designers to determine the required chemical composition of a new alloy with reference to the
temperature of application of that alloy and see the effect of temperature and composition on stable
phases and associated properties of alloys.
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1. Introduction

Titanium alloys possess high strength, fracture toughness, creep strength, excellent resistance to
corrosion, and a longer fatigue life at a moderate density when compared to steel and nickel base
alloys [1]. As a result, titanium alloys are considered an important structural material in the aerospace
industry [1–5]. Currently ~80 % of the global titanium production is consumed by the aerospace
industry, and it is used more in military aircraft when compared with commercial aircraft [1]. One of
the disadvantages of titanium alloys is their relatively high density (4.5 g/cm3) when compared to
aluminum alloys (2.7 g/cm3) and carbon–epoxy composites (1.5–2.0 g/cm3) [1]. Additionally, extraction
of titanium is an expensive process [1]. When using it as an aerospace component, it requires
a specialized material removal process such as laser-assisted machining to fabricate and shape aircraft
components free of machine damage [1,2]. This further adds to the final cost of the titanium alloy
parts [1–3].

At room temperature, titanium alloys can have two allotropes: hexagonal close-packed (HCP)
known as α-Ti and body centered-cubic (BCC), also known as β-Ti [1–3]. Other alloys such as those
based on nickel, aluminum, and magnesium have single crystal structures at room temperature [1].
The allotropy of titanium has been exploited by the researchers resulting in commercial titanium

Metals 2019, 9, 537; doi:10.3390/met9050537 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0002-7169-8659
http://www.mdpi.com/2075-4701/9/5/537?type=check_update&version=1
http://dx.doi.org/10.3390/met9050537
http://www.mdpi.com/journal/metals


Metals 2019, 9, 537 2 of 14

based alloys produced as α-titanium alloys, near-α-titanium alloys (small amount of β-phase),
(α+β)-titanium and near-β-titanium alloys (small amount of α-phase), while β-titanium alloys have
not been commercially produced in significant amounts [1,2]. Chemical composition of these two
phases is almost identical, but these phases provide different properties to alloys. Specifically, alloys
with α-Ti phase possess low-to-medium strength, have good toughness and ductility, are weldable,
and possess excellent resistance to creep at high temperatures [1]. On the other hand, alloys with β-Ti
phase possess high strength and fatigue resistance, they are heat treatable [1], resistant to creep at
intermediate temperatures, and are less ductile than α-Ti alloys [1].

Aluminum is the most common α-stabilizer. Tin has also been used in a few cases [1], whereas
Cr, V, Mo, Nb, and Fe are used as β-stabilizers [1]. Titanium has a valency of two, three or four [1].
Any alloying element with lower valency promotes stabilization of α-phase, while elements with
valency higher than titanium promote formation of β-phase [1]. Neutral elements such as C, N, Si,
and Re are used to improve other desired properties such as tensile strength [1]. Thus, chemical
composition and heat treatment significantly affect the stability and amount of desired phase required
in the alloy for application at a given temperature [1,2]. It should be pointed out that several undesirable
phases can also form during the processing [1,2]. In the context of titanium alloys containing α- and
β-phases, the undesirable phases are titanium aluminides, such as Ti3Al (D019), γ-TiAl, and Laves
phases. Thus, it is extremely important to understand the correlation between the chemical composition,
stability of phases at a given temperature and a range of temperatures, volume fraction of desired
phases, concentration of alloying elements in the desired phase, and bulk properties of interest such as
Young’s modulus and density [1–3].

First commercial use of alloys based on Ti–Al–Cr–V system was as a β alloy [1]. Specifically,
Ti-13V-11-Cr-3Al (at. %) was used in the airframe, fuselage frame, wing, longerons, bulkheads,
ribs, landing gear, and body skins of Lockheed SR-71 Blackbird supersonic military aircraft [1] where
aerodynamic friction and shock waves caused heating of the skin to a temperature of approximately
300 ◦C [1]. Design process used to develop this alloy was traditional, based on time-consuming classical
experimentation, personal experience of the designer, intuition, and empiricism [1–5].

In order to significantly reduce the need for experimentation, reduce the total amount of time
spent designing new alloys, and eliminate the subjectivity factor of the designer, we have developed
a computational design methodology using multiobjective evolutionary optimization algorithms and
response surfaces with periodic experimental verifications [6–11] applicable to arbitrary alloys.

A significant advance in this design methodology applied to Ti–Al–Cr–V system was an attempt [12]
to eliminate the need for classical experimentation by combining a commercial software [13] utilizing
large experimental databases and thermodynamics of solids in conjunction with a robust commercially
available multiobjective optimization software [14]. We are dealing with designing chemistry of alloys
for the temperature range of 30 to 1500 ◦C, while simultaneously optimizing two objectives: Young’s
modulus and density. Simulations were performed at 30, 200, 400, 600, 800, 1000, 1200, 1300, 1400,
and 1500 ◦C. The result obtained from this was a set of Pareto-optimized candidate alloys for each of
the mentioned temperatures. Pareto optimized in the current context means the best trade-off between
Young’s modulus and density. In the simulations performed through JMatPro (Sente Software, Surrey,
UK), stability of equilibrium phases was not checked. Therefore, in this work, we decided to perform
calculations under the framework of CALPHAD (calculation of phase diagrams) approach for the
Pareto-optimized set of alloys reported in our previous work.

Objective of the current work is to present a further refinement in this alloys design methodology
by calculating the amounts and effects of various phases and their stability at different temperatures.
For this purpose, an initially Pareto-optimized set of Ti–Al–Cr–V alloys [12] will be enlarged and studied
for its physical metallurgy using framework of CALPHAD [15] approach. Thereafter, a study of the
entire dataset will be presented to draw correlations between composition, amount (volume fraction) of
stable phases at these temperatures, composition (concentration) of alloying elements in these phases,
and macroscopic properties such as Young’s modulus and density. This alloy design approach will also
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help the experimentalists to screen alloys prior to manufacture (including designing heat treatment
protocols) by avoiding compositions for which detrimental phases are stable for a composition at
a particular temperature.

Stages for designing heat treatment for achieving desired microstructure that will be helpful for
achieving desired properties are as follows.

1. Estimate the stability of the desired phases, which is helpful for achieving the desired properties.
In this work, we have worked on this part by studying stability of α and β-phases in titanium
alloys for a range of compositions and temperatures. Additionally, we have mentioned the
formation of undesired phases in the current case, titanium aluminides and Laves phases, for the
same temperature and composition range. Thus, a reader can focus on that composition and
temperature range prior to designing heat treatment protocol.

2. After determining stability of a phase, it is important to create time–temperature–transformation
(TTT) and continuous cooling transformation (CCT) diagrams to study the evolution of the
desired phases. Thus, in step 1, the designer should deal with thermodynamics, while in step 2
the focus should be the kinetics of phase transformation.

From steps 1 and 2, an experimentalist has information about the thermodynamics and kinetics of
phase transformation for a set of compositions and temperatures from the phase stability calculations
and the TTT and CCT diagrams. Then, the experimentalist can design heat treatment protocol that will
be helpful in precipitating these phases in desired size ranges, which will define the microstructure
and will help in achieving desired macroscopic properties. Grain size and volume fraction of desired
phases can be found in the literature.

2. Materials and Methods

In the current work, the original dataset of Pareto-optimized chemical compositions of Ti–Al–Cr–V
alloys [12] was further utilized by generating new data for each of the compositions and temperature
with another software, Thermo-Calc Software 2018B (Thermo-Calc Software, Stockholm, Sweden) [15],
via its TCTI2 thermodynamic database. This new data includes volume fraction of stable phases
and concentrations of alloying elements in these phases. Thereafter, a versatile optimization
software package modeFRONTIER 4.5 (ESTECO, Trieste, Italy) [16] was applied via the principle of
Self-organizing Maps (SOM) [17–23] on this enlarged dataset to draw meaningful conclusions, which
proved to be helpful in understanding the correlations between composition, temperature, stable
phases, phase compositions, and Young’s modulus of elasticity and density of the alloy.

In these computational studies, concentrations of Al were allowed to vary from 0 to 50 wt. %,
while Cr and V varied between 0 and 15 wt. % [12]. In α-titanium alloys, aluminum addition is
above 9–10 wt. %. In our dataset, most of the alloys had aluminum concentration above 10 wt. %.
However, we have two β-stabilizers: Cr and V. Thus, some β-phase will also form. Since aluminum is
an α-stabilizer and, in the current study, is present in large amounts when compared to β-stabilizers,
Cr, and V, we are dealing with (α + β) titanium alloy system [1–3].

Figure 1 shows the phase diagram of one of the candidate alloys from our dataset
(Ti88.34-Al11.15-Cr0.4-V0.11 in wt. %. with Cr fixed at 0.4 wt. % and V fixed at 0.11 wt. %.) where
aluminum concentration was allowed to vary, while titanium adds up to the balance. In Figure 1, it can
be observed that, apart from HCP_A3 (α) and BCC_B2 (β), there exist several other phases such as
titanium aluminides, like TI3AL_D019, TIAL_L10, and C15_LAVES. Even BCC_B2 (β) exists in two
forms—ordered and disordered phase—on the phase diagram. We have stated the notations that we
observed from Thermo-Calc Software [15]. In Thermo-Calc, while plotting the figures, if we chose
“ordering”, we get it displayed on the phase diagram. During equilibrium calculations, we observed
B2 phase in two forms: BCC_B2 and BCC_B2#2. Thus, we used these notations so that readers can
easily follow the phases that were mentioned from the Thermo-Calc Software manual.
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There also exists titanium aluminide (Ti3Al) phase as ALTI3_D019 (α2), which forms if the
aluminum concentration is more than 9% [1,3]. However, Ti3Al precipitates are brittle and reduce
alloy’s fracture strength and ductility [1–3]. Titanium aluminides are also used in the aerospace
industry as entirely Ti3Al (α2)- and γ-TiAl-ordered L10 structure (TIAL_L10) compounds, due to their
high-temperature strength and comparatively lower density. Efforts have been made to improve upon
ductility and fracture toughness along with the manufacturing cost [1–3].

In this work, further discussion of these phases will be avoided as we are dealing with (α + β)
titanium alloy system and titanium aluminide phases are not desired in this system. Thus, we performed
equilibrium calculations and estimated the amount of stable phases for 102 alloys at temperatures
(30–1500 ◦C) for which Young’s modulus and density have been reported [12]. Thereafter, we analyzed
the CALPHAD [15] predictions and found that for several compositions, properties are different, while
the amount (volume fraction) of phase is the same. Therefore, we further calculated the concentration
of alloying elements in each of the equilibrium phases to better understand the current system.
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Figure 1. Phase diagram for one of the alloys from the Ti–Cr–Al–V system.

A matrix was created where 102 rows represent 102 Pareto-optimized candidate alloys taken
from a previous work performed by Dulikravich et.al. [12]. The 57 columns are for 1 temperature,
4 alloying elements, 10 equilibrium phases (thus, 4 × 10 = 40 concentrations of alloying elements in the
10 equilibrium phases), and 2 properties (Young’s modulus and density of the alloy). A number of the
columns had many empty cells as not all of the equilibrium phases are stable for each candidate alloy.
All of these columns are interrelated. Thus, we chose Self-organizing Maps (SOM) algorithm [20] in
our work as it is known for capturing the topology of the multidimensional data sets.

The SOM algorithm is a classification technique that is based upon an unsupervised artificial neural
network, popularly known as self-organizing feature maps (SOM) [17–22], which was popularized by
Teuvo Kohonen in the 1980s. SOM implements a term competitive learning along with a neighborhood
function to preserve the topological properties of the dataset [21]. This makes SOM a perfect tool to
visualize high-dimensional datasets in lower dimensions—usually two to three—while preserving
the topology for determining various correlations within the dataset [18]. SOMs can be considered
as a nonlinear generalization of principal component analysis (PCA), an unsupervised machine
learning method [20,22]. Recent studies demonstrated the advantage of using SOM over PCA [10,14].
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Most importantly, SOMs have been successfully used for feature extraction of scarce datasets (sample
size of about 40), whereas conventional neural networks require very large training datasets. In this
work, we used SOM module in a commercial optimization package modeFRONTIER [16], which
utilizes the following steps.

1. Scaling: Logistic scaling was used to minimize error.
2. Learning cycle: For our dataset, we used Batch SOM, where the learning cycle is updated after all

the input samples are presented to the network (batch learning)
3. Set up training parameters: In the following text, key setting parameters are introduced, that were

adjusted during the analysis.

a. X-dimension and Y-dimension: It is an integer positive value and it represents the dimension
of a component of the Kohonen map. The default value set by the toolbox was at 7 for X
and 7 for Y.

b. Map units: This is an integer positive parameter and it represents the dimension of
the Kohonen map. The default value of 49 was set in this work so that the ratio
between X-dimension and Y-dimension is equal to the ratio between the first two principal
eigenvalues of the dataset matrix. Software suggests a default value based on the size of the
dataset. From our experience, increasing this value usually improves accuracy, although it
will take more time to develop the model.

c. Initialization type: We used linear initialization where the initial map is obtained by using
a linear combination of Kohonen map dimension and the two principal eigenvalues of
the dataset.

d. Random seed: This is an integer number, usually used for sequence repeatability. That is,
if two SOMs are generated with the same seed, they will return identical maps. For a more
random distribution, seed value can be set to 0. In this case, the map is automatically
seeded with a value that is based on the current time on the computer which will rarely be
same, and hence there is less chance of sequence repetition.

Development of the model is performed in two stages, initial rough phase and fine tuning phase.
These radii are defined for these two stages of development of model. Therefore, there exist a few
additional parameters, namely, initial rough radius, final rough radius, rough phase radius, initial fine
tuning radius, final fine tuning radius, and fine tuning phase length. Rough phase and fine tuning
are two stages during the development of the model, for which the radius is defined. All of these
parameters have an integer positive value which needs to be fine-tuned during the analysis so as to
minimize the topological error [16]. Topological error is a measure that represents the SOM’s ability to
show how well the SOM network reflects the relative position of sample data. As mentioned, adjacent
SOM-units represents neighbor data in the input space. In the current work, topological error was zero.

Another error metric used for this work is quantization error, which was estimated at about 0.1.
Quantization error is a measure of SOM’s ability to learn from the data distribution. SOM is known for
preserving the topology of the data set. In this work, very low topology error was observed for logistic
scaling. When scaled by other approaches, this error was a nonzero number.

Our purpose of using SOM maps can be summarized as follows:

• Find correlations between various variables (alloying elements), volume fractions of equilibrium
phases, concentrations of alloying elements in the equilibrium phases, and temperatures and
properties that can be supported from the literature.

• Classify the dataset in various clusters and identify the units/clusters with candidate alloys having
a set of superior properties. In our case, we marked the hexagonal units in the SOM maps with
alloys that were part of the Pareto front of the best trade-off solutions when simultaneously
maximizing Young’s modulus and minimizing the density of the alloys [12].



Metals 2019, 9, 537 6 of 14

• This method predicts the range of chemical compositions, temperatures, volume fraction
of equilibrium phases, and concentrations of elements in equilibrium phases of alloys for
superior properties.

This approach can be used as an additional screening tool for selecting a very small set of alloys to
be manufactured in the next alloy design cycle.

3. Results

Our work in progress presented in this paper can be divided into three stages:

1. Stage 1: Determine the composition regime that we want to focus on for designing new titanium
alloys for improved performance. The current work is the summary of stage 1 based on the
equilibrium calculations performed under the framework of the CALPHAD approach. From this
work, we have been able to determine the composition range that we will work on, the effect
of temperature on the equilibrium phases for these compositions and associated macroscopic
properties. We did not include a table for best alloys as, we have used 102 candidate alloys from
our previous work, where we have tabulated the best performing alloy for each temperature.

2. Stage 2: In this stage, we will use the information from the Stage 1 and make an attempt to design
and perform heat treatment simulations under the framework of CALPHAD approach. Our group
has expertise in performing heat treatment simulations in Thermo-Calc Software [23–25]. One of
the challenges in performing heat treatment simulations in any CALPHAD-based tools is the
estimation of interfacial energy between the matrix phase and the precipitate phase. Interfacial
energy is an important parameter that plays a key role in determining several aspects of heat
treatment such as critical radius, activation energy, and nucleation rate in the early stages of the
heat treatment, and coarsening rates that determine the final size of grains after annealing [25,26].
Several research groups have reported that CALPHAD-based tools overestimate the interfacial
energy and, thus, it needs to be modeled carefully [25,26]. We have also published one paper [25]
on this topic where we have demonstrated ways to address the discrepancy in interfacial energy,
calculated through CALPHAD-based tools and the interfacial energy that will be helpful in
properly simulating the experimental findings. In our recent work, we performed isothermal
annealing in Thermo-Calc Software for simulating nucleation and growth of copper clusters in
soft magnetic FINEMET alloys and verified our findings with atom Probe Tomography results.
We noticed that for a small change in interfacial energy value from 0.54 to 0.64 J/m2, mean radius
increases from 2.5 nm to 20 nm for copper clusters in soft magnetic FINEMET alloys. To further
increase in interfacial energy to 0.7, 0.75, and 0.8 J/m2, mean radius becomes stagnant, but it is
~45 nm [26].

3. Stage 3: Once we optimize interfacial energy as a function of composition of the alloy and
annealing temperature, we can proceed further towards performing experiments.

Figure 2 shows the SOM maps obtained from the above analysis for desired properties of interest
(Young’s modulus and density), temperature, and desired phases responsible for superior properties in
(α + β) system, HCP_A3 (α), BCC_B2 (β1), and BCC_B2#2 (β2). In these figures, we have highlighted
the hexagon units that contain alloys that were part of the Pareto front. There were 102 candidate
alloys analyzed, and all the alloys were accommodated in 49 hexagonal units (0–48) of the SOM map.
Within each hexagon, we can observe a square. Size of square determines the number of candidate
alloys that were part of that hexagon unit. In some units, there is just a point. This means that no
candidate alloys were part of this unit.

In the original dataset [12] of 104 Pareto-optimized Ti–Al–Cr–V candidate alloys, there were four
candidate alloys with different compositions for temperatures of 30, 200, 400, 600, 800, and 1000 ◦C,
while there were 20 candidate alloys with different compositions for each of the high temperatures
(1200, 1300, 1400, and 1500 ◦C). Thus, there were 24 candidate alloys for temperatures below 1000 ◦C,
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and 80 candidate alloys for temperatures above 1000 ◦C. Two candidate alloys were removed from
the original dataset [12] as it was difficult to find equilibrium, thus, resulting in the final set of 102
Pareto-optimized candidate alloys that were then analyzed using SOM. Based on temperature, there
were lower number of alloys below 1000 ◦C. As a result, candidate alloys for which calculations were
performed below 600 ◦C became part of the hexagonal unit 0 in the SOM temperature map.

In order to study SOM maps in Figure 2, one must focus on the temperature range and then the
associated property. It can be observed that for hexagonal unit 0, both Young’s modulus and density are
high. If one wants to study the properties at intermediate temperatures, they can focus on hexagonal
unit 48, which again contains candidates with high Young’s modulus and density. Similarly, if one
wants to study alloys at high temperature, they must focus on hexagonal units 20 and 27, which contain
candidates with high Young’s modulus and near average density. Thus, from these SOM figures,
an experimentalist can identify a set of candidate alloys at the desired temperature of application and
then study their associated properties.

Thereafter, the reader can study the stable phases associated with those units. At high temperature
(hexagonal units 20 and 27), one can observe that BCC_B2 (β1) phase is stable. From the literature,
it is known that α-phase is stable up to 885 ◦C and after that β-phase is stable up to melting point.
However, in these SOM maps it can be observed that HCP_A3 (α) phase is present in some amounts at
temperatures well above 885 ◦C. This is an interesting observation. Thus, an experimentalist must
study the compositions for which HCP_A3 (α) phases are present in large amounts above 885 ◦C and
check for stability of titanium aluminides and Laves phases for these compositions as these are present
in titanium alloys with high aluminum content.
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Since the α-phase is responsible for superior properties at high temperature, this can be helpful
in designing alloys for applications where a small amount of HCP_A3 (α) phase will be helpful.
Up to 600 ◦C (unit 0), HCP_A3 (α) phase is stable as mentioned in the literature. For intermediate
temperatures (unit 48), BCC_B2#2 (β2) phase is stable. Thus, now we can proceed further to study the
distribution of alloying elements in the SOM space.

As mentioned in the previous section, we will focus on α and β-phases only, as we are dealing with
a (α + β) system. Hence, we will only briefly discuss undesirable phases, such as titanium aluminide
and Laves phases shown in Figure 3, where one of the key findings is the appearance of liquid phase
at intermediate to high temperatures. An experimentalist must avoid the alloy compositions which
can have liquid phase at temperature of application. Another observation is that these titanium
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aluminide phases are present in large number of candidate alloys that were not part of the original
Pareto optimized set. Hexagonal units 7, 23, 24, and 30 in the SOM map shown in Figure 4 contain one
candidate alloy each. The rest of the hexagonal units do not contain candidate alloys that were part of
the original Pareto-optimized set of alloys where the amount of these titanium aluminide phases was
stable in comparatively large amounts. This shows the efficacy of application of multiobjective design
optimization combined with the SOM analysis.Metals 2019, 9, x FOR PEER REVIEW 8 of 13 
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of alloys at desired temperature. Additionally, they can compare it with Figures 2 and 3 and look at the
desired phase they want in their system as well as the phases that they want to avoid.

In phase stability calculations, it was observed that for several candidate alloys the volume
fraction of the desired phase was comparable, but the properties of alloys were different. Consequently,
composition of phase was calculated and used in the SOM analysis. Another reason for this type of
analysis was that there exist traces of HCP_A3 (α) at high temperatures and traces of BCC_B2 (β1) at
low temperatures. Hence, this analysis will be helpful for the readers to understand the reason for
existence of HCP_A3 (α) at high temperatures and traces of BCC_B2 (β1) at low temperatures, so that
they can design the alloy compositions for desired temperature of application. Additionally, they can
check if undesirable titanium aluminides are stable for these compositions.

Figure 5 shows the distribution of concentrations of alloying elements in HCP_A3 (α) phase
where temperature was included for comparison. Here, it can be observed that in hexagonal unit
0 (average temperature: ~551 ◦C), candidate alloys are entirely HCP_A3 (α) and it is in accordance
with the information reported in the literature [1]. There exists some trace amount of HCP_A3 (α) at
higher temperatures in the non-Pareto candidate alloys around hexagonal unit 48. This is because
in [4], a Pareto set was defined from a large number of virtually created alloys from response surfaces
for each temperature. Thus, the rest of the alloys virtually generated in reference [12] were part
of the non-Pareto set. Around unit 48, there is a moderate amount of aluminum, low vanadium,
and chromium is comparatively high, but to a maximum of 1 g/mole, which is significantly low.
Chromium is a β-stabilizer; thus, another reason for comparatively high chromium in unit 48 is that in
this unit the BCC_B2#2 (β2) phase is the stable phase. Figure 4 shows that hexagonal units around
unit 48 contain the highest amount of chromium. Around hexagonal unit 20 (high-temperature),
again, there are some trace amounts of HCP_A3 (α). Figure 5 shows that around hexagonal unit 20,
the units contain low aluminum and negligible amount of chromium and vanadium (β-stabilizers).
Also, it can be observed (Figure 4) that the unit adjacent to hexagonal unit 20 contains average
aluminum, low chromium and average vanadium concentrations. Thus, Figures 4 and 5 can provide
better understanding of the stability of β-phase at lower temperatures and appearance of trace amounts
of α-phase at higher temperatures.
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Figure 6 shows the distribution of alloying elements in BCC_B2 (β1) phase. In units on the right
hand side of unit 27 temperature increases, while Young’s modulus and density decrease (Figure 4),
and aluminum content of β1 phase increases. From Figure 4, it can also be observed that in units on
the right hand side of unit 27 aluminum content of the alloys increases. Thus, one can conclude that
increase in aluminum (an α-stabilizer) at elevated temperatures leads to an increase in aluminum
content in the BCC_B2 (β1) phase, which leads to a decrease in Young’s modulus and density.Metals 2019, 9, x FOR PEER REVIEW 10 of 13 
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It can also be observed that in unit 0, for the composition of the BCC_B2 (β1) phase, that there are
high amounts of chromium and vanadium. This is expected [1] as hexagonal unit 0 is for temperatures
below 600 ◦C. From literature [1], it is known that α to β transformations occur at around 785 ◦C.
Thus, for even a trace amount of β-phase to appear at temperatures lower than 600 ◦C, composition
of β-phase must be such that high amount of β-stabilizer elements is present. SOM maps are
able to capture this complex trend. Hence, SOM analysis is able to draw correlations between the
composition of alloy, stability of BCC_B2 (β1) phase, composition of BCC_B2 (β1) phase, temperature,
and desired property.

Figure 7 shows the concentrations of alloying elements in BCC_B2#2 (β2) phase. Hexagonal unit
48 contains candidate alloys with the highest amount of BCC_B2#2 (β2). Temperature in this region
is in the average range, while Young’s modulus and density are the highest for this unit (Figure 4).
From Figure 7, it can be observed that unit 48 contains the highest amount of chromium and vanadium
(β-stabilizers) in BCC_B2#2 (β2) phase and their contents decrease in the adjacent units.

Unit 48 also contains alloys with the highest Young’s modulus and density and they decrease in the
adjacent units. Even in Figure 4, hexagonal unit 48 contains alloys with highest amount of chromium,
which decreases in the adjacent units, while it contains low amounts of aluminum, which increases
in the adjacent units. Thus, a correlation can be drawn between the alloy composition (chromium
content), stability of BCC_B2#2 (β2) phase, phase composition (maximum chromium and vanadium
in BCC_B2#2 (β2) phase) and Young’s modulus and density (highest) at an average temperature in
unit 48. Additionally, the decrease of Young’s modulus and decrease in density can be observed with
change in alloy composition and phase composition in the adjacent units.
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4. Discussion

In this work, a novel attempt was made to use SOM analysis on already Pareto-optimized
chemical compositions of a set of alloys to computationally correlate chemistry, stable phases, phase
compositions, and targeted macroscopic properties of titanium alloys that will be helpful in the
cost-effective computational design of optimized Ti–Al–Cr–V alloys at elevated temperatures. There is
scope for future work, as we observed that the alloys for temperatures below 600 ◦C were clubbed in
a single hexagonal unit 0 since only a limited amount of data was available for low temperature alloys.
In the future, the entire range of temperatures from 30 to 1500 ◦C should be used for detailed study of
the phase stability and transformations in this class of alloys.

Key findings from this work can be listed as follows.

• For high temperature (~1358 ◦C) the reader should analyze unit # 20. This unit contains alloys
with high Young’s modulus (~89600 N/m2) and slightly above average density (~3920 kg/m3).
The stable phase for this unit is BCC_B2 (β1). Average composition of alloys included in this unit
is Al ~21.33 wt. %, Cr ~3.0 wt. %, V ~3.31 wt. %, and Ti ~71.68 wt. %.

• For average temperature (~1122 ◦C) the reader should analyze unit # 48. This unit contains alloys
with high Young’s modulus (~91000 N/m2) and high density (~4170 kg/m3). The stable phase for
this unit is BCC_B2#2 (β2). Average composition of alloys included in this unit is Al ~18.77 wt. %,
Cr~9.06 wt. %, V ~6.23 wt. %, and Ti ~65.33 wt. %.

• For low temperature (~551 ◦C) the reader should analyze unit # 0. This unit contains alloys with
high Young’s modulus (~86800 N/m2) and higher density (~4040 kg/m3). The stable phase for
this unit is HCP_A3 (α). Average composition of alloys included in this unit is Al ~14.93 wt. %,
Cr ~0.64 wt. %, V ~1.00 wt. % and Ti ~81.74 wt. %.

It should be pointed out that this design methodology is applicable to other metallic alloy systems.
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5. Conclusions

A computational methodology was presented to determine correlations between the chemical
concentration of alloying elements, stability of desired phases over a range of temperatures, and their
effect on multiple macroscopic properties of alloys. Additionally, the efficacy of using SOM maps in
determining these correlations was demonstrated including an attempt to elucidate the deterioration of
properties for candidate alloys having the same amount of desired phases by correlating them with the
compositions of the desired phase. This study will be helpful to alloy designers in understanding the
Ti–Al–Cr–V system and designing alloys that are expected to perform as per expectations at desired
temperature of application. SOM maps were also able to capture the trends shown in a large dataset
with many missing data as distribution of desired phases and the phase compositions appears in the
same region on the SOM maps, even though SOM algorithm has no a priori information about the
complex phase stability interrelations in multicomponent alloys. One of the drawbacks of the SOM
algorithm is that the prediction accuracy is often not very high as the values are averaged over each
hexagonal unit that can contain a maximum of six candidate alloys at its six vertices, while a few
candidate alloys at the vertices can be part of more than one unit. This way, a candidate alloy can
contribute to the average values of concentrations of alloying elements, volume fractions of phases,
concentrations of alloying elements in the phases, and macroscopic properties over a unit for more
than one unit. However, the SOM algorithm is able to capture the complete trend shown in the dataset.
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