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Abstract: In this paper, a bulk V-containing cobalt-based alloy with high chromium and tungsten
contents was prepared by mechanical alloying and hot pressed sintering using Co, Cr, W, Ni, V and C
pure element powders. XRD, SEM, TEM and Vickers hardness tests were employed to characterize
the microstructure and mechanical properties of the mechanical alloyed powders and hot pressed
bulk cobalt-based alloy. The results show that all elements can be mixed uniformly and that the
Co, Cr, and Ni elements were made into an amorphous state after 10 h ball milling in a high energy
ball miller. The microstructure of the prepared bulk alloy was composed of a γ-Co matrix with a
large number of nano-twins and fine M23C6 and M12C carbide particles well-distributed in the alloy.
The V element was mainly distributed in M23C6-type carbide and no V-rich MC-type carbide was
found in the microstructure. The prepared alloy had a high hardness of 960 ± 9.2 HV and good a
fracture toughness KIc of about 10.5 ± 0.46 MPa·m1/2. The microstructure formation and strengthening
mechanisms of the prepared cobalt-based alloy are discussed.
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1. Introduction

Stellite alloys, a kind of Co-based alloys, are very important in the development of science,
technology, and the progress of industry. They are mainly composed of carbon, cobalt, chromium,
tungsten, molybdenum, etc. Metal carbides formed in the alloy are used as hard phases and Co as the
matrix bonding phase [1,2]. Stellite alloys are widely used industries such as aerospace, nuclear, mining
machinery, and material machining due to their characteristics of wear-resistance, high temperature
resistance, high strength, high hardness, and a certain toughness. In order to further increase the
wear-resistant properties, Tribaloy alloy, another kind of Co-based alloys, which contains a large
volume fraction of intermetallic Laves phases in γ-Co matrix, has been developed [3,4]. It is the
presence of this large volume fraction of Laves phases that enables these materials to resist wear under
poor or unlubricated conditions.

Typically, cobalt-based alloys are prepared by casting or powder metallurgy technology. The casting
process is simple in terms of the technology needed and low in cost, but the size and distribution of
carbides are strongly dependent on the casting temperature of the melt, cooling rate, and thermal
treatment condition, which must be strictly controlled to avoid defects such as macro-segregation,
micro-segregation, porosity, solidification shrinkage, and second phase inclusions [5,6]. Cobalt-based
alloys can be also manufactured by powder metallurgy process using pre-alloyed powders [7,8].
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However, chemical element segregation and oxidation will occur on the surface of the pre-alloyed
powders, which introduces the prior particle boundary (PPB), and therefore, decreases the mechanical
properties of the final powder metallurgy product [9]. Mechanical alloying (MA) [10–12] and hot pressed
sintering, as another powder metallurgy technology, have the potential to shorten the whole preparing
period and produce bulk materials with a uniform fine-grained microstructure. The as-prepared
materials exhibit excellent properties such as high density, good hot workability and improved
mechanical properties.

It is well known that vanadium is a strong carbide-forming element and vanadium-containing
high speed steel W18Cr4V has a good wear-resistant property. However, there is no report about the
effect of vanadium on cobalt-based alloys. Berthod [13] reported a TiC carbide containing cobalt-based
alloy. In this work, based on the Stellite alloys, we designed a novel vanadium-containing cobalt-based
alloy with high chromium and tungsten contents. The alloy was prepared using MA and vacuum hot
pressed sintering methods aiming to further increase the wear-resistant property of cobalt-based alloy.
The microstructure and mechanical properties of the mechanically alloyed powders and hot pressed
bulk cobalt-based alloy was characterized.

2. Materials and Methods

The cobalt-based alloy with a nominal composition of Co-32.4%, Cr-32%, W-25%, Ni-5%, V-5%,
and C-0.6% (in wt. %) was prepared by mechanical alloying and hot pressing using pure element
powders of Co, Cr, W, Ni, V, and C. The purity of these elemental powders was greater than 99.5%.
The process of mechanical alloying was carried out in a high energy ball mill (SPEX8000D, SPEX
SamplePrep, Metuchen, NJ, USA) using a stainless-steel vial and stainless-steel balls of 7 mm in
diameter. The ratio of ball to powder was 10:1 in weight. The 5 wt. % ethanol was used as the
process control agent during the ball milling process. The volume of the vial was 56 mL. A 10 g
mixture of the powders with the stainless-steel balls was charged into the stainless-steel vial under
high pure argon atmosphere. The ball milled powders were put into a graphite mold and sintered
in a vacuum hot press sintering furnace (ZRY-30L, Jinzhou Hangxing Vacuum Equipment Co., Ltd.,
Jinzhou, China). After the furnace was evacuated using a vacuum pump to 10 Pa and then heated to
1200 ◦C at a heating rate of 4 ◦C/min, the ball milled powders were sintered at a pressure of 60 MPa
for 20 min and cooled in the furnace. The ball milled powders and hot pressed bulk sample were
examined by X-ray diffraction with Cu Kα radiation (XRD, Bruker AXS D8 Advance, Bruker AXS
GmbH, Karlsruhe, Germany), a scanning electron microscope (SEM, FEI Quanta 250, FEI, Hillsboro,
OR, USA), and a transmission electron microscope (TEM, FEI Tecnai G2 F20, FEI, Hillsboro, OR, USA)
equipped with energy dispersive X-ray spectrometry (EDS, EDAX Apollo) and a scanning transmission
electron microscope mode (STEM). Quantitative metallography was used to measure the volume
fraction and particle size of various phases in the microstructures of the obtained alloy. The TEM
samples were prepared by an ion thinning instrument (Gantan 695.C, Gatan, Inc., Pleasanton, CA,
USA). The hardness of the hot pressed bulk sample was measured by a Vickers hardness tester (Laizhou
Huayin Testing Instrument Co., Ltd., Laizhou, China) using a 5 kgf load. Fracture toughness was
determined according to the hardness indentation method. Five measurements were used to calculate
average value of hardness and toughness.

3. Results

Figure 1 shows the XRD patterns of the powders ball milled with various time. It can be seen that
at the initial state, the diffraction peaks of Co, Cr, W, and Ni are clearly shown in the pattern, while the
corresponding diffraction peaks of C and V were not present due to their low content. The diffraction
intensity of all elements decreased gradually with the milling time. The diffraction peaks of Co, Cr,
and Ni elements almost disappear except for the W element after 10 h milling. No obvious change
was seen upon further milling for up to 30 h, but peak broadening of W elements was observed.
The disappearance of the diffraction peaks of Co, Cr, and Ni elements indicates that these element
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powders were transformed into an amorphous state. The XRD peak broadening reveals that the W
powders had been transformed into a nanocrystalline state. The crystallite size of the W powders after
milling 10 and 30 h, estimated using the Scherrer formula [14], was found to be approximately 25 and
17 nm, respectively.
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Figure 1. X-ray diffraction patterns of the powders ball milled for different time.

The morphology and micro-structural details of the milled powders were investigated by SEM.
Figure 2 shows the SEM images for the powders ball milled for 10 h. The milled powders had an
irregular morphology with a size below 15 µm. A local amplified back-scattered electron (BSE) image
(Figure 2b) of one particle shows that some white particles about 30 nm in size are distributed uniformly
in the powders. According to the XRD results of the milled powders (Figure 1), the white particles
were deduced to be W phase. The element mapping image (Figure 2c) of EDS reveals that all elements
had been mixed uniformly after 10 h ball milling.
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Figure 2. SEM images of the cobalt-based alloy powders after milling for 10 h, (a) morphology of
the milled powders, (b) back-scattered electron (BSE) image of one particle, and (c) element mapping
image of energy dispersive X-ray spectrometry (EDS) results.
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The cobalt-based alloy powders milled for 10 h were selected for vacuum hot pressed sintering in
the subsequent experiment. Figure 3 is the SEM-BSE image of the obtained bulk cobalt-based alloy
showing that there were three kinds of phases in the alloy according to the contrast, i.e., bright, grey,
and dark phases. XRD results (Figure 4) of the obtained bulk cobalt-based alloy show that these three
phases were M12C (Co6W6C, JCPDS 22-0597), γ-Co (JCPDS 15-0806) matrix, and M23C6 (Cr23C6, JCPDS
85-01281), respectively, all of which had a cubic structure. According to the XRD results, the lattice
constants of M12C, γ-Co and M23C6 were 1.0922, 0.3552, and 1.0657 nm, respectively. No PPBs were
found (Figure 3) in the prepared alloy by hot pressed sintering using mechanical alloyed powders.
Figure 5 is STEM high-angle annular dark field (HAADF) image and selected area electron diffraction
(SAED) patterns of the phases with different morphology and contrast. Both the STEM-HAADF
and SEM-BSE images are atomic number contrast (Z-contrast) images, the γ-Co matrix, M6C, and
M23C6 phases have similar contrast in Figures 3 and 5. Table 1 summarizes the STEM-EDS results and
identified phases by SAED patterns for the phases labeled in Figure 5a. Fe in EDS results would have
been introduced from stainless-steel vial and balls during mechanical alloying process. According to
the results mentioned above, we can conclude that the bright phase was W-containing M12C carbide in
which lots of Cr and V atoms dissolved, the grey phase is the γ-Co matrix, and the dark phase was Cr
and V-rich M23C6 carbide. The V element was mainly distributed in M23C6-type carbide and no V-rich
MC-type (M indicates metal elements) carbide was found in the obtained alloy. The M12C-type carbide
particles had a size of about 1 µm dispersed in the γ-Co matrix. Some coarse M23C6-type carbide
particles have a strip-like shape with about 1 µm in length dispersed in the γ-Co matrix and some
fine M23C6-type carbide particles with about 200 nm in length present within both the γ-Co matrix
and M12C-type carbide. The volume fraction of M12C and M23C6 phases were determined to be about
19.4% and 11.95%, respectively, by using quantitative metallography.
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(a) and selected area electron diffraction (SAED) patterns of the different phases labeled in (a), (b) point
1, bright, (c) point 2, dark, (d) point 3, dark, and (e) point 4, grey.

Table 1. STEM-EDS results of the phases in the prepared bulk cobalt-based alloy (at. %).

Point Cr W V Ni Co Fe C Phase

1 (bright) 29.93 16.44 8.11 0 31.40 2.11 12.01 M12C
2 (dark) 50.46 0 23.38 0 0 0 21.52 M23C6
3 (dark) 53.08 0 26.07 0 0 0.70 17.39 M23C6
4 (grey) 25.20 1.96 2.64 6.33 55.08 4.33 4.46 γ-Co

Interestingly, the TEM bright field image of the prepared bulk cobalt-based alloy (Figure 6) showed
a large number of nano-twins in the γ-Co matrix. The thickness of twin lamellae varied between
10–60 nm.

The alloy had a high hardness of the 960 ± 9.2 HV5. Figure 7 shows the indentation morphology
of the Vickers hardness test and the crack produced by the hardness indentation showing the fracture
of M12C and M23C6-type carbide particles as well as the plastic deformation of γ-Co matrix, marked
by arrows A, B, and C in the Figure 7b, respectively. Only a very short crack was found revealing that
the prepared bulk alloy has a good toughness. According to the indentation methods for determining
toughness, the fracture toughness KIc of the alloy was about 10.5 ± 0.46 MPa·m1/2 calculated by the
Equation (1) [15]:

KIc = δ(E/H)1/2(P/a3/2), (1)

where, δ is a geometrical factor, for a Vickers indentation δ = 0.016; E is the Young’s modulus, according
to Ahmed’s report [7], E = 320 GPa was selected in Equation (1); H is the hardness of the sample, H =

960 HV = 9.4 GPa; 2a is the crack size along the diagonal of the indentation, 2a = 115.2 ± 3.4 µm; P is
the load for Vickers indentation, P = 49 N.
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4. Discussion

The common cobalt-based alloy carbides are M7C3, M23C6, M6C, MC, etc. Service or aging at
elevated temperature causes a large amount of secondary carbides, such as M6C and M23C6 [16]. In the
present study, the prepared alloy had M6C and M23C6-type carbides (Figure 4). The vanadium was
mainly distributed in M23C6-type carbide in the prepared cobalt-based alloy, as shown in Table 1, instead
of forming V-rich MC-type carbide. Even though vanadium is a strong MC-type carbide-forming or
MX-type (M indicates metal elements, X indicates carbon or nitrogen) carbonitride-forming element,
V-rich MC-type carbide is not found in the prepared bulk cobalt-based alloy with 5 wt. % V. However,
MX-type precipitate is usually found in 9-12Cr-type martensitic/ferritic heat resistant steel with much
less V content of 0.2 wt. % [17,18]. The microstructural characteristics of the prepared alloy is that the
M12C-type carbide particles and coarse M23C6-type carbide particles are distributed in the γ-Co matrix
in which there are a large number of nano-twins, and fine M23C6-type carbide particles present within
both the γ-Co matrix and M12C-type carbide particles (Figure 3).

According to the results mentioned above, the microstructure formation mechanism of the
prepared bulk cobalt-based alloy can be illustrated as shown in Figure 8. During the heating and hot
pressed sintering process, the mechanically alloyed powders transform from an amorphous state with
some nano-sized W particles to γ-Co supersaturated solid solution, then the M12C-type and coarse
M23C6-type carbides are formed as follows: 23(Cr, V) + 6C→ (Cr, V)23C6 and 12(W, Cr, Co, V) + C→
(W, Cr, Co, V)12C [19]. Finally, the fine M23C6-type carbide particles within both the γ-Co matrix and
M12C-type carbide particles are precipitated from the γ-Co matrix and M12C-type carbide during the
furnace cooling process after hot pressed sintering because their size is much smaller than that of the
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striplike M23C6 carbide. M23C6 carbide usually precipitates along grain boundaries during the cooling
process in conventional alloys, such as austenitic steels and Ni-based superalloys. While the fine M23C6

carbide precipitates within γ-Co matrix in the present V-containing alloy, we think the reason might be
that the M23C6 carbide contained a lot of V which has a larger atom size and lower diffusion coefficient
than Cr resulting in nucleation of M23C6 within γ-Co matrix and growing up slowly.

The nominal composition of the alloy in atomic fraction was 35.8% Co, 40.1% Cr, 8.9% W, 5.5%
Ni, 6.4% V, 3.2% C. From the STEM-EDS data as shown in Table 1, it can be seen that almost all W
was distributed in M12C, almost all V in M23C6 and the atomic fraction of Cr in M23C6 is about two
times the atomic fraction of V. Based on the STEM-EDS data, the formation of M12C and M23C6 may
consume about 6.1%C in atomic fraction, much more than the added 3.2% C. In fact, the carbon content
in the prepared alloy was determined to be 1.9% in weight fraction, i.e., 9.8% in atomic fraction by a
carbon and sulfur analyzer. The stainless-steel vial and stainless-steel balls were used to prepare the
Co-based alloy powders in this work. According to the STEM-EDS results, only a small amount of
Fe was indeed introduced into the sintered alloy, it is impossible that the carbon introduced from the
stainless-steel vial and stainless-steel balls have much influence. The excess carbon may come from
graphite mold during used for hot pressed sintering and causes an increase in amount of carbides.

The mechanism of nano-twins formation in the prepared cobalt-based alloy is not fully understood
yet. Twins are common in metals with a FCC structure because of low stacking fault energy [20,21].
Twins are usually formed by sliding a single crystallographic dislocation on a continuous {111} plane
driven by a Peach-Koehler force [22]. However, there is no report about the existence of large amounts
of nano-twins in a cobalt-based alloy. From a thermodynamic point of view, the formation of twins
decreases the total interfacial energy, because the excess energy for coherent twin boundaries (TB) is
much smaller than that for conventional high angle grain boundaries (GB). Twins prefer to nucleate at
GBs or triple junctions (TJ) to reduce the GB energies by means of the twinning-induced orientation
change. Although an extra TB is formed, the sum of the interfacial energies (including GBs and TBs)
will be reduced by twinning [23]. In the prepared alloy, the lattice constants of M12C and M23C6

carbides were 1.0922 nm and 1.0657 nm, respectively, about three times the γ-Co lattice constant
(0.3552 nm) calculated using XRD data. Therefore, the interface between γ-Co and carbides are prone
to form coherent interfaces, which causes a large lattice stress and increases the interfacial energy.
In order to reduce the interfacial energies, a large number of nano-twins are formed in the γ-Co matrix.
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The hardness of the prepared bulk cobalt-based alloy was up to 960 ± 9.2 HV5. Casas et al. [11]
reported that the prepared ternary and quinary cobalt-based superalloys by field assisted sintering
techniques have a hardness of about 650 and 900 HV, respectively. Ahmed [7] used Re-Hot Isostatic
Pressing to prepare Stellite 20 alloy with a hardness of 650 HV. Compared with these reported results,
the hardness of the prepared cobalt-based alloy in this work was increased significantly. It is reported
that a Tribaloy T800 alloy coating has a hardness up to 1000 HV, however, the brittle nature of Laves
phases causes a low fracture toughness and reduces the performance of T800 alloy in a wide range of
applications where other properties such as certain ductility and fracture toughness are also needed [24].
The high hardness depends on the microstructure. A large amount of fine carbide dispersed uniformly
in the prepared cobalt-based alloy, which served as a reinforcement agent. Carbides distributed at the
γ-Co grain boundaries prevent slipping and migration of grain boundaries and inhibit grain growth.
Carbides inside the γ-Co grains block dislocation movements to enhance the matrix. The W alloying
element added in the cobalt based alloy was as high as 25%, which means that more W-containing
M12C carbide in the prepared alloy can effectively improve the hardness, more than in a common
cobalt based alloy [25]. In addition, many nano-twins are also found in the γ-Co matrix, which also
play an important role in strengthening the matrix by blocking the dislocation motion [26,27], further
enhancing the hardness. This is also the main difference in the reinforcement mechanism compared
with the previously studied cobalt-based alloys [28]. Therefore, under the synergistic effect of solid
solution strengthening, dispersion strengthening and nano-twins, the as-prepared cobalt-based alloy
presents high hardness. Moreover, the matrix of the prepared Cobalt-based alloy is γ-Co with a FCC
structure and has a fine grain structure. The crack propagation can be restrained by the plasticity of
γ-Co matrix as shown in Figure 7 marked with arrow C. Therefore, the prepared cobalt-based alloy
had not only high hardness but also good toughness, and a good wear-resistant property of the alloy
can be expected.

5. Conclusions

In summary, a bulk V-containing cobalt-based alloy with high chromium and tungsten contents
was prepared by mechanical alloying and hot pressed sintering using Co, Cr, W, Ni, V, and C pure
element powders, the following can be concluded:

(1) All elements can be mixed uniformly while Co, Cr, and Ni elements are made into an amorphous
state after 10h ball milling in a high energy ball miller.

(2) The microstructure of the prepared alloy was composed of γ-Co matrix with a large number
of nano-twins and fine M23C6 and M12C carbide particles which were well-distributed in the alloy.
The V element was mainly distributed in M23C6-type carbide and no V-rich MC-type carbide is found
in the microstructure.

(3) The prepared alloy had a high hardness up to 960 ± 9.2 HV5 and good fracture toughness KIc
of about 10.5 ± 0.46 MPa·m1/2.

(4) The high hardness was mainly attributed to the synergistic effect of solid solution strengthening,
dispersion strengthening, and the large number of nano-twins.
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