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Abstract: The influence of graphite morphology on the phase, microstructure and properties of hot
dipping and diffusion aluminizing (HDDA) coating on flake/spheroidal graphite cast iron (FC/FCD)
was investigated. The microstructure and properties of the HDDA coatings on FC/FCD were
determined by the graphite morphology. The outer and inner layers of the HDDA coating comprised
the Fe2Al5 and FeAl phases, respectively. The outer layer of HDDA on FCD was dense and uniform;
however, some pores of different sizes were found in the outer coating on FC, resulting in looser
HDDA coating. Hence, the wear resistance of the HDDA coating on FC was worse than that of
the coating on FCD. During oxidation, many continuous oxidation channels were formed from the
coating surface to the matrix in the HDDA coating on FC, resulting in the oxidation of graphite in
the HDDA coating and the matrix. However, only exposed spheroidal graphite was oxidized in the
HDDA coating on FCD. Thus, the high-temperature oxidation resistance of the HDDA coating on FC
was also worse than that of the coating on FCD.

Keywords: graphite morphology; hot dipping and diffusion aluminizing; phase;
microstructure; properties

1. Introduction

The valve guide is an important part of engines and a major index for evaluating engine
performance. In general, the valve guide is made of cast iron due to its better castability and
machinability, and lower cost than steels with similar mechanical properties [1]. Because of the
long-term operation of engines, the resistance to high-temperature oxidation and wear is required for
the inner wall of the valve guide [2]. Although the wear resistance of high-phosphorus (0.35–0.65 wt.%
P) cast iron is better than that of ordinary cast iron [3], the high-temperature oxidation resistance
of high-phosphorus cast iron cannot meet engine demands. Surface treatment technology not only
modifies the surface properties of cast iron effectively, but also maintains the original excellent
mechanical properties of the matrix.

At present, the main surface treatment technologies for improving resistance to high-temperature
oxidation and wear are hot-dip aluminizing [4], micro-arc oxidation (MAO) [5], thermal spraying [6],
pack-aluminizing [7], and hot dipping and diffusion aluminizing (HDDA) [8]. Hot-dip aluminizing
can improve oxidation resistance, and MAO coating on hot-dip aluminized cast iron improves both
oxidation resistance and wear resistance. However, when the oxidation temperature is higher than
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the melting point of pure aluminum in the middle coating, the ceramic coating will fall off. Thermal
spraying is only suitable for parts with simple shapes, and pack-aluminizing technology is relatively
complex and costly. The high-temperature oxidation resistance and wear resistance can be improved
by HDDA coating, due to the metallurgical combination between it and the matrix, for which the
technology is simple and low-cost.

The HDDA is a composite process which includes hot-dip aluminizing and subsequent thermal
diffusion treatment [9]. The diffusion treatment can improve the oxidation resistance [10,11] and wear
resistance [12] of aluminized steel due to the formation of a Fe-Al intermetallic phase on the surface. The
Fe-Al intermetallic coating formed during the diffusion process will react with oxygen to form a layer of
alumina ceramic in the oxidation process, which can prevent cast iron from being oxidized. Moreover,
the hardness of Fe-Al intermetallic phase is higher than that of cast iron. Therefore, the HDDA can
effectively increase high-temperature oxidation resistance and improve the wear resistance of cast iron.

According to the graphite morphology, gray iron can be classified as flake graphite cast iron
(FC), spheroidal graphite cast iron (FCD), and compacted vermicular graphite cast iron (CV). The
effect of flake/spheroidal graphite morphology on the high-temperature oxidation resistance of hot-dip
aluminide cast iron has been studied extensively. For example, Lin et al. [13] found that aluminide
coating on FCD was superior to FC in terms of oxidation resistance. Oxidation channels formed due
to the oxidation of the flake graphite, resulting in the further oxidation of the FC matrix. However,
the effect of graphite morphology on diffusion and wear resistance has not been studied. In addition,
the wear resistance of cast iron decreased with the increase of the oxidation resistance by hot-dip
aluminizing. Hatate et al. [14] found that the wear loss of austempered cast iron increased from
spheroidal to flaky graphite under both dry and wet conditions. However, the wear resistance of cast
iron remains to be further improved.

In this study, the effect of flake/spheroidal graphite on the microstructure and phase of HDDA
coating, as well as its high-temperature oxidation resistance and wear resistance, was studied.

2. Materials and Methods

2.1. Materials

High-phosphorus FC and FCD (Ningbo Zhongbo metal material Co. Ltd., 4 grade, fully ferritic)
were used as the matrix materials in this study. The chemical composition provided by the supplier of
FC/FCD is shown in Table 1. The cast iron was cut into pieces measuring 10 mm × 10 mm × 4 mm and
polished using 400 #, 800 #, then 1200 # SiC paper.

Table 1. Chemical composition of FC/FCD (wt.%).

Alloy C Si Mn P S Fe

FC 3.00 0.80 1.20 0.50 0.02 Balance
FCD 3.00 1.60 0.70 0.50 0.02 Balance

2.2. HDDA Process

The HDDA process included hot-dip aluminizing and diffusion. The specimens for hot-dip
aluminizing were cleaned ultrasonically in 10 wt.% NaOH (AR, Tianjin Damao Chemical Reagent
Factory, Tianjin, China) solution, deionized water, 20 vol.% HCl (AR, Tianjin Fuqi Chemical Reagent
Co. Ltd., Tianjin, China) solution and deionized water at 25 ◦C for 3 min each, then fluxed in a mixed
solution of 6 wt.% KF (AR, Tianjin Jizhun Chemical Reagent Co. Ltd., Tianjin, China) and 4 wt.% NaCl
(AR, Tianjin Fengchuan Reagent Technologies Co. Ltd., Tianjin, China) at 100 ◦C for 5 min. During the
aluminizing process, the samples were dried and preheated at 200 ◦C for 2 min, then immersed in a
molten aluminum bath (purity > 99.7%) at 730 ◦C for 5 min in a well-type electrical resistance furnace
(SG2-5-10, Tianjin Zhonghuan, Tianjin, China). After hot-dip aluminizing, the samples were air-cooled to
room temperature. Finally, the diffusion of specimens was conducted at 950 ◦C in static air for 1 h. Then,
the samples were cooled in a box-type furnace (FURNACE 1300 ◦C, Tianjin Zhonghuan, Tianjin, China).
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2.3. High-Temperature Oxidation

Isothermal oxidation was performed to study the high-temperature oxidation behavior of the
HDDA coating on FC/FCD. The samples were placed in a non-reactive alumina crucible. Isothermal
oxidation was conducted at 750 ◦C in static air for 12 to 72 h. Then, crucibles containing the samples
were cooled to room temperature in air. The masses of specimens were measured using a precision
electronic balance (0.1 mg accuracy) after the oxidation experiment. The weight change per unit area
of three specimens was averaged for each set of experimental conditions.

2.4. Wear Resistance

The Vickers hardness of FC/FCD with and without HDDA was measured by a microhardness
tester (HMV-2T, Ningbo Op Instruments Co. Ltd., Ningbo, China) at a load of 980 mN for 15 s. The wear
resistance of HDDA coating on FC/FCD was evaluated on a ball-on-disc tribometer (SFT-2M, Lanzhou
Zhongkekaihua, Lanzhou, China) by sliding Si3N4 balls (2 mm diameter) against the specimens with
a load of 8 N, sliding speed of 400 r/min, sliding track diameter of 4 mm, and duration of 20 min in
air [15]. The 3D morphology of the wear track profile was observed using a metallographic microscope
(DSX510, Hongkong OLYMPUS, Hongkong, China).

2.5. Microstructure and Phase Analyses

The cross-sectional and surface microstructure of the HDDA coating was examined by a Hitachi
S-4800 field-emission scanning electron microscope (SEM, Suzhou Seins Instrument Co. Ltd., Suzhou,
China) with energy-dispersive spectrometry (EDS). The cross-section was polished using 400 #, 800 #,
1200 #, 1500 # and 2000 # SiC paper, then polished with a polishing cloth, and corroded 1–2 s. The phase
composition of the HDDA coating was analyzed by a Rigaku DMAX-RC X-ray diffraction (XRD, Brook
AXS Co. Ltd., Germany) system with Cu Kα radiation. The phase composition of the inner layer was
analyzed by grinding the outer layer with SiC paper and performing XRD afterward.

3. Results and Discussion

3.1. Microstructure and Phase of the Hot-Dip Aluminide Coating

Figure 1 shows the microstructure of hot-dip aluminide coating on FC/FCD hot-dip aluminized at
730 ◦C for 5 min. According to the EDS (EDS analysis of needles at 3 and 6 locations is performed at
10,000 times) in Table 2 (EDS spectra in Figure 2) and the XRD results in Figure 3, the aluminide coatings
on FC and FCD consist of an outer Al topcoat and inner Fe2Al5 coating, and FeAl3 is distributed in
the outer Al topcoat in bulk and rod forms. These are consistent with the results reported by Lin et
al. [13] and Zhang et al. [16]. From Figure 1, we can observe that the inner Fe2Al5 intermetallic coating
of aluminized FCD grows inward as a tongue-like structure perpendicular to the matrix. However,
the interface between the Fe2Al5 coating and FC matrix is fairly smooth and the Fe2Al5 intermetallic
coating on aluminized FC (110 µm) is thicker than that on the aluminized FCD (70 µm). Because Si
inhibits the diffusion of Al atoms, these differences are due to the higher Si content in FCD than that in
FC [17,18]. It is clear that flaky/spheroidal graphite can prevent the growth of the intermetallic coating,
as shown in Figure 1a,b.
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Table 2. The EDS analysis of hot-dip aluminide coatings in Figure 1.

Point Al (at.%) Fe (at.%)

1 100.00 0.00
2 70.82 29.18
3 74.25 25.75
4 100.00 0.00
5 71.71 28.29
6 76.44 23.56

3.2. Microstructure and Phase of the HDDA Coating

Cross-sectional micrographs of HDDA coatings on FC and FCD diffused at 950 ◦C for 1 h after
hot-dip aluminizing are shown in Figure 4a,b. Phase transformation occurs in hot-dip aluminide
coating after diffusion, but the HDDA coatings on FC and FCD still consist of two layers. According
to the EDS results in Table 3 (EDS spectra in Figure 5a–d) and the XRD profile in Figure 6a,b, the
Fe2Al5/FeAl phase is observed on all outer/inner coatings of the two matrixes. The α-Al2O3 coating
is formed by the reaction between the Al atoms on the surface of the HDDA coating and oxygen
in the air at high temperature. It cannot be observed in the cross-sectional micrographs due to its
small thickness [19]. The interface between the outer and inner coatings, and that between the inner
coating and FC, are smooth, because the Si content of FC is less than that of FCD. Furthermore, a
larger amount of flaky graphite is found throughout the HDDA coating on FC. However, spheroidal
graphite is embedded in the HDDA coating, as shown in Figure 4b. Apparently, the outer coating
of HDDA on FCD is dense and uniform. Nevertheless, some pores of different sizes are observed in
the outer coating of HDDA on FC. The graphite morphology in FC and FCD is similar to agaric-like
flake and spheroidal morphology, respectively. Spherical graphite crystals are independent of one
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another, but flaky graphite crystals interact with one another. The exposed flaky graphite will be
oxidized during diffusion, resulting in the oxidation of adjoining graphite crystals. Thus, some pores
formed by oxidation of the tip of flake graphite are found around the flaky graphite throughout the
HDDA coating. Some needles are observed in the inner coatings of the HDDA on FC and FCD, of
which the growth direction is parallel to the interface between the outer and inner coatings, as shown
in Figure 4c,d. According to the EDS results in Table 3 (EDS spectra in Figure 5e,f), the phase of the
needles in the inner coatings of the HDDA on FC/FCD is FeAl2 phase.
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Table 3. The EDS analysis of HDDA coatings in Figure 3.

Point Al (at.%) Fe (at.%)

1 70.91 29.09
2 42.18 57.82
3 70.94 29.06
4 43.76 56.24

Needle (FC) 62.92 37.08
Needle (FCD) 68.69 31.31
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3.3. High-Temperature Oxidation

3.3.1. High-Temperature Oxidation Kinetic Curves

Figure 7a shows the oxidation kinetic curves of the FC/FCD with and without HDDA coating
in air at 750 ◦C. The weight change per unit area of FC/FCD is higher than that of HDDA FC/FCD.
This result indicates that HDDA can improve the high-temperature oxidation resistance of FC and
FCD. The weight change per unit area of the HDDA FCD is much lower than that of HDDA FC. After
72 h oxidation, the weight change per unit area of the HDDA FCD is 3.6786 mg/cm2, which is half of
HDDA FC.
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The weight change per unit area of HDDA FC/FCD follows a parabolic law in Figure 7a. Then, the
oxidation kinetic curves are described by fitting the experimental data to a parabolic law (Figure 7b):

4 m2 = Kp × t (1)

where 4 m is the weight change per unit area of HDDA FC/FCD, Kp is a constant, and t is the oxidation
time. The value of Kp can characterize the oxidation rate. The smaller the constant, the better the
high-temperature oxidation resistance [20–22]. Kp can be calculated according to Equation (1); the Kp
values for the FC and FCD are listed in Table 4. The Kp of HDDA FC is relatively high; therefore, the
HDDA coating on FCD has better high-temperature oxidation resistance than that of FC. Compared to
the results reported by Lin et al. [13], it can be found that the Kp value of HDDA is lower than that of
hot-dip aluminizing. The main reason is that the oxidation resistance of Fe-Al alloy coating is better
than that of Al alloy coating [9].

Table 4. The Kp (mg2/cm4 s) of HDDA FC/FCD oxidized at 750 ◦C.

Alloy Kp

HDDA FC 1.84 × 10−4

HDDA FCD 6.13 × 10−5

3.3.2. Microstructure and Phase of the HDDA Coating after Oxidation

The cross-sectional BSE microstructures of HDDA FC and FCD after oxidation are shown in
Figure 8a,b. The HDDA coatings on FC/FCD are composed of two layers after oxidation. According
to the EDS data in Table 5 (EDS spectra in Figure 9) and the XRD data (red and black colors were
used to mark before and after oxidation, respectively) in Figure 10a,b, the outer intermetallic layer
comprises the Fe2Al5 phase and the inner layer comprises the FeAl phase in the HDDA on FC/FCD
after oxidation. However, there is no obvious change in the thickness of the Fe2Al5 coating or FeAl
coating because of the low oxidation temperature and short oxidation time. After oxidation, a large
amount of flaky graphite is observed in the HDDA coating on FC. The color of graphite at the interface
between the HDDA coating and the FC matrix region is paler than that of the FC matrix. Figure 8c,d
shows magnified images of the inner coatings on FC and FCD. Some needles can be observed in the
middle of the inner coatings on the two matrixes, the distribution of which is also parallel to the
interface between the outer and inner coatings. Comparison of the XRD profiles before and after
oxidation shows that the number of Fe2Al5 phase peaks decreases, but the number of α-Al2O3 phase
peaks increases. Thus, the amount of Al2O3 increases after oxidation [23–25].

Table 5. The EDS analysis of HDDA coatings after oxidation in Figure 6.

Point Al (at.%) Fe (at.%)

1 72.11 27.89
2 51.00 49.00
3 70.91 29.09
4 55.66 44.34
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Figures 11 and 12 show the distribution of Al, Fe, C, and O in the cross-section of the HDDA
coating on FC and FCD after oxidation. Numerous O atoms, instead of C atoms, are observed in
the flaky graphite throughout the HDDA coating, and many O atoms are distributed in the interface
between the HDDA coating and matrix region (Figure 11c,d)). Therefore, the flaky graphite distributed
throughout the HDDA coating is oxidized (2C+O2→2CO or C+O2→CO2). The flaky graphite at the
interface between the HDDA coating and the matrix region is also oxidized to CO or CO2, which
also explains why the color of graphite at the interface between the HDDA coating and the FC
matrix region is paler than that of the FC matrix. However, only the exposed spheroidal graphite is
oxidized (2C+O2→2CO or C+O2→CO2), while that inside the matrix and inner coating is not oxidized
(Figure 12c,d). The occurrence of O infiltration into matrix in A region (Figure 12d) is quite special.
Because the spheroidizing grade of FCD is 4, a small amount of vermicular graphite is found in FCD
matrix. Exposed vermicular graphite is oxidized in region A, leading to the penetration of O past
the HDDA coating into matrix. If the FCD is full of spherical graphite, the penetration of O will not
occur. After oxidation of flaky graphite, many continuous oxidation channels from the surface to the
matrix in the HDDA coating on FC are formed which lead to the oxidation of graphite at the interface
between the HDDA coating and the matrix region and are consistent with the results reported by Lin
et al. [13]. At the same time, alumina is formed around the oxidation channels in the HDDA coating,
but iron oxide is formed around the oxidation channels in FC matrix. Therefore, the high-temperature
oxidation resistance of the HDDA coating on FCD is much better than that on FC, which is determined
by the graphite morphology.
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3.3.3. Surface Micrograph of the HDDA Coating after Oxidation

Figure 13a,b shows the surface morphologies of the HDDA coating on FC and FCD after oxidation.
The surface of the HDDA coating on FCD is dense and uniform, but the surface of HDDA FC shows
peeling and warping. This is mainly due to graphite oxidation at the interface between the HDDA
coating and the FC matrix region during oxidation, resulting in poor adhesion between the HDDA
coating and the matrix. The XRD analysis reveals the formation of α-Al2O3 on the surface of the HDDA
coatings on FC and FCD, as shown in Figure 10a,b. As the HDDA coating falls off, the oxidation area
increases. Thus, the value of the weight change of HDDA FC is larger than that of HDDA FCD.
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3.4. Abrasive Wear

3.4.1. Hardness of the HDDA Coating

Figure 14 shows the average Vickers hardness of FC/FCD with and without HDDA. The hardness
of FC/FCD is 220 ± 25 HV and 250 ± 24 HV, respectively, and the hardness of HDDA FC is 788 ± 32 HV.
However, the hardness of HDDA FCD is higher than that of HDDA FC, which is approximately
923 ± 40 HV, as a result of the formation of pores in the outer coating of HDDA on FC.

Metals 2018, 8, x FOR PEER REVIEW  13 of 16 

 

Figure 13a,b shows the surface morphologies of the HDDA coating on FC and FCD after 
oxidation. The surface of the HDDA coating on FCD is dense and uniform, but the surface of HDDA 
FC shows peeling and warping. This is mainly due to graphite oxidation at the interface between the 
HDDA coating and the FC matrix region during oxidation, resulting in poor adhesion between the 
HDDA coating and the matrix. The XRD analysis reveals the formation of α-Al2O3 on the surface of 
the HDDA coatings on FC and FCD, as shown in Figure 10a,b. As the HDDA coating falls off, the 
oxidation area increases. Thus, the value of the weight change of HDDA FC is larger than that of 
HDDA FCD. 

 

 
Figure 13. SE micrographs of HDDA coatings after oxidation: (a) FC and (b) FCD. 

3.4. Abrasive Wear 

3.4.1. Hardness of the HDDA Coating 

Figure 14 shows the average Vickers hardness of FC/FCD with and without HDDA. The 
hardness of FC/FCD is 220 ± 25 HV and 250 ± 24 HV, respectively, and the hardness of HDDA FC is 
788 ± 32 HV. However, the hardness of HDDA FCD is higher than that of HDDA FC, which is 
approximately 923 ± 40 HV, as a result of the formation of pores in the outer coating of HDDA on FC. 

 
Figure 14. Average hardness of FC/FCD with and without HDDA. 

3.4.2. Friction Coefficient, Abrasion Loss and Wear Morphology 

Figure 15a displays the friction coefficients of FC/FCD and HDDA FC/FCD. The friction 
coefficients gradually increase and then become a relatively stable value. Evidently, the friction 
coefficient of the HDDA FC fluctuates between 0.26 and 0.30, but the friction coefficient of the HDDA 
FC fluctuates between 0.31 and 0.32. The fluctuation range of the friction coefficient of HDDA FC is 
larger than that of the HDDA FCD. This phenomenon can be explained by the pores formation due 

Figure 14. Average hardness of FC/FCD with and without HDDA.

3.4.2. Friction Coefficient, Abrasion Loss and Wear Morphology

Figure 15a displays the friction coefficients of FC/FCD and HDDA FC/FCD. The friction coefficients
gradually increase and then become a relatively stable value. Evidently, the friction coefficient of the
HDDA FC fluctuates between 0.26 and 0.30, but the friction coefficient of the HDDA FC fluctuates
between 0.31 and 0.32. The fluctuation range of the friction coefficient of HDDA FC is larger than that
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of the HDDA FCD. This phenomenon can be explained by the pores formation due to flaky graphite
oxidation during the diffusion process, resulting in poor internal adhesion of the Fe2Al5 intermetallic
coating. Therefore, some particles will fall off during the wear process, resulting in greater fluctuation
of the friction coefficient of HDDA FC. The average abrasion losses of FC/FCD with and without HDDA
are shown in Figure 15b: 0.8108 mm3, 0.5926 mm3, 0.2732 mm3, and 0.3613 mm3 for HDDA FC, FC,
HDDA FCD, and FCD, respectively. The lower the average abrasion loss, the better the wear resistance
is [26,27]. Thus, the wear resistance of FCD can be improved by HDDA, which has no obvious effect
on the wear resistance of FC. It should be noted that the friction coefficient increased after HDDA,
which worth being studied further in the future.
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The 3D morphology of the wear track profile in Figure 16a,b shows the depth of the wear tracks
for the HDDA coatings on FC and FCD. The depth of the grinding mark of HDDA FC is clearly greater
than that of HDDA FCD in the 3D wear figure. The average wear depth and width are shown in
Table 6, and the values are consistent with the 3D profile. It can be concluded that the HDDA coating
on FCD is more stable to friction and wear than that of the HDDA FC.
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Table 6. Wear depth (µ) and wear width (mm) of HDDA FC/FCD.

Alloy Wear Depth Wear Width

HDDA FC 101.25 1.14
HDDA FCD 49.73 0.75

4. Conclusions

The graphite morphology did not affect the phase composition of the HDDA coating on FC/FCD,
but it determined the microstructure and properties of the coating. The HDDA coatings on FC/FCD
consisted of an outer Fe2Al5 topcoat and an inner FeAl layer. A large amount of flaky graphite was
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found throughout the HDDA coating on FC, which featured some pores. However, spheroidal graphite
was also embedded in the HDDA coating, resulting in a dense and uniform morphology. The flaky
graphite provides a channel for the penetration of O past the HDDA coating into matrix, but the
spherical graphite can well prevent the penetration of O. Therefore, the high temperature oxidation
resistance and wear resistance of HDDA FCD are about three times that of HDDA FC.
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