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Abstract: The aluminum content in oriented silicon steel obviously influences its magnetic properties.
In the current work, the movement and melting process of added aluminum particles during
Ruhrstahl-Heraeus (RH) treatment were simulated using a mathematical approach, considering
the effect of the multiphase fluid flow on the evolution of aluminum particles and the dissolved
aluminum distribution. The current model was validated by the [Al] content in the molten steel
measured by an industry experiment. Most of the added aluminum particles were melted within 5 s
after they connected with the molten steel under the superheat of 28 K. The statistics of the melting
time and trajectory length showed a normal distribution. Furthermore, both the melting time and the
trajectory length of aluminum particles decreased as the superheat increased. Since the maximum
mixing time may go up when the superheat is excessive, the suggested superheat should range from
20 K to 30 K during the RH refining process. Besides, an appropriate sampling position with a short
mixing time was proposed.

Keywords: mathematical model; RH treatment; aluminum melting; mixing time; superheat

1. Introduction

The Ruhrstahl-Heraeus (RH) refining technology is widely used in the manufacture of ultra-carbon
steel, such as Interstitial-Free steel and silicon steel [1–3], which requires exact control of the compositions
and properties. Since the aluminum concentration in molten steel has a significant effect on the magnetic
property of silicon steels, the aluminum melting and mixing processes are extremely important. Cold
aluminum particles are added from the vacuum chamber several times to adjust the composition and
the temperature of the molten steel during the RH treatment. The solid aluminum particles are heated
by the molten steel and melted into the molten steel, and the dissolved aluminum then circulates with
the turbulent flow in the RH reactor. The mechanism of the melt of the feeding alloy has been discussed
in some previous studies [4–8]. When the 25 ◦C alloy makes contact with the high-temperature molten
steel, a solidified crust of steel is formed around the alloy particle. Firstly, the diameter of the particle
increases and then decreases [9,10]. When the steel crust is melted completely due to the heat transfer,
the molten aluminum is dissolved and mixed into the molten steel. Recently, the numerical modeling
approach has been applied to reveal the interior reaction and transport phenomena, which has the
advantages of efficiency and convenience in computation. Thus, following the previous study on
the transport phenomena between the alloy and the molten steel, a lot of investigations have been
developed to simulate the mixing time of the RH reactor using the mathematical modeling approach,
while few of them consider the effect of the injection process and the melting process [11]. Usually,
a certain mass tracer is injected in the molten steel, and the movement of the tracer and the mixing
time are then investigated. Actually, plenty of researchers have focused on the simulation of the
fluid flow [2,12–14], the chemical reaction [15–17], and the inclusions’ behavior [18–20] during the RH
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treatment. However, few previous studies have been concerned with the coupling model of the flow
field and the alloy melting process.

In the current study, coupling the aluminum particles’ melting process with the multiphase fluid
flow, a mathematical model including the feeding process of aluminum particles was developed to
investigate the melting and the mixing process during the RH degassing process. Moreover, the
influence of superheat on the aluminum evolution was investigated and the optimized superheat range
was obtained.

2. Mathematical Model

2.1. Multiphase Fluid Flow

The coupled volume of the fluid and discrete phase model is employed to simulate the flow field
during the RH treatment, and the turbulent features are solved by the k-ε model. Detailed information
on the multiphase fluid flow simulation, including the mesh and the solution method, can be found in
references [21,22]. Figure 1 shows the fluid flow simulation results based on the above mathematical
model. The molten steel circulates among the ladle and the vacuum chamber accompanied by the
mass transfer of dissolved aluminum.
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2.2. Melting of Added Aluminum Particles

In the refining process of the silicon steel, the cold aluminum is added into the molten steel to
control the composition of the molten steel, which is significant to the property of the silicon steel.
Figure 2 shows the temperature profile and the melting process of the aluminum particle. Based on the
heat transfer between the aluminum particle and the molten steel, the steel shell is frozen around the
aluminum particle, and the radius of the particle is given by Equation (1) [4,23].
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where r is the radius of the particles; r0 is the initial radius of the particles; ρ is the density, kg/m3; and
Θl is the dimensionless temperature calculated by Equation (2):

Θl =
Tl − Ts

Ts − T0
(2)

where Tl is the temperature of molten steel; Ts is the solidification temperature of molten steel; T0 is the
initial temperature of aluminum particles; and Fo, Ph, and Bi are dimensionless numbers calculated by
the following Equations (3)–(5):

Fo =
kAlt

ρAlCp,Alr2
Al

(3)

Ph =
∆Hs

Cp,Al(Ts − T0)
(4)

Bi =
Nukl
2kAl

(5)

where k is the thermal conductivity; t is the time; Cp is the heat capacity; ∆Hs is the enthalpy change of
melting; and Nu is the Nusselt number calculated by Equation (6), which is related to the Reynolds
number Re and the Prandtl number Pr, as follows:

Nu = 2 +
(
0.4Re1/2 + 0.06Re2/3

)
Pr0.04 (6)

Re =
2ρlrAl(ul − uAl)

µl
(7)

Pr =
Cp,lµl

kl
(8)

where u is the velocity; µ is the viscosity; and the subscripts l and Al represent the liquid steel and the
aluminum particle, respectively.
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Figure 2. Schematic of aluminum melting process: (a) Temperature distribution on aluminum particles;
(b) Aluminum particles’ melting process. (Tm is the temperature of aluminum particles).

Further, the lifetime of the steel shell tAl is derived by Equations (3) and (5) from references [4,23]
and given by Equation (9).

tAl =
ρAlCp,AlrAl

πhΘl
(9)

h =
Nukl
2rAl

(10)
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where h is the heat transfer coefficient, J/m2
·s·K. The material properties and parameters used in the

current model are listed in Table 1. In the current work, the liquidus temperature of the molten steel is
1777 K. The actual temperature of the molten steel is higher than its liquidus temperature, and the
superheat is the difference between the two temperature values. Four cases with varied superheats are
compared in the following part of this paper.

Table 1. Material properties and operation parameters (data from [24]).

Item Symbol Values Unit

Density of molten steel ρl 7020 kg/m3

Viscosity of molten steel µl 0.0067 Pa·s
Heat capacity of liquid steel Cp,M 820 J/(kg·K)

Thermal conductivity of liquid steel kl 40.3 J/(m·s·K)
Solidification temperature of molten steel Ts 1777 K
Initial temperature of aluminum particles T0 298 K

Density of solidified aluminum ρAl 2700 kg/m3

Heat capacity of aluminum Cp,Al 1080 J/(kg·K)
Thermal conductivity of aluminum KAl 123 J/(m·s·K)

Enthalpy change of melting of aluminum ∆Hs 3.88 × 105 J/kg
Argon gas flow rate G 1800 NL/min

Immersed depth H 600 mm
Initial radius of aluminum particles r0 0.01 m

Total mass of added aluminum particles mAl 102 kg
Temperature of molten steel Tl 1787/1797/1805/1837 K

When the calculating time exceeds the existence time of the aluminum particles or the calculated
particle diameter is smaller than the initial one, it means that the aluminum particle is dissolved into
the molten steel and the transport equation is solved by Equation (11):

∂
∂t

(
ρlC[Al]

)
+∇ ·

(
ρl
→
u lC[Al]

)
= ∇ ·

( µt

Sct
∇C[Al]

)
+ S[Al] (11)

where C[Al] is the concentration of dissolved aluminum, Sct is the turbulent Schmidt number, and S[Al]
is the source item produced by the melting of solid aluminum particles. The mixing time is defined as
the first time when the aluminum concentration stabilizes within ±5%. Some variables, including the
melting time, the trajectory length, and the melting position, are recorded during the calculation using
user-defined functions.

2.3. Computational Conditions

In the current work, combined with user-defined subroutines, the model of the aluminum melting
process is built by Fluent 17.0, a Computational Fluid Dynamic (CFD) software developed by the
FLUENT Inc. company in New York, USA. Based on the steady fluid flow, a certain amount of 10 mm
aluminum particles are added at the center of the vacuum chamber and above the top surface within
1 s. All of the injected particles are randomly distributed within a cube (0.2 m × 0.2 m × 0.2 m). The
convergence criterion is set to be 10−6 and the time step for the aluminum melting process calculation
is 0.01 s. All computations are performed on a Windows 10 personal computer with Intel 3.4GHz CPU
and 16GB RAM.

3. Aluminum Particles Evolution

3.1. Melting Process

Based on an actual industrial experiment, the melting process of aluminum particles is simulated,
and the evolution of particles is shown in Figure 3. At the beginning, the added aluminum particles
fall into the molten steel with a free-fall velocity. The aluminum particles immerse in the molten steel
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and then quickly float up to the top surface due to the density difference, as shown in the first picture
(t = 1 s) in Figure 3. With the fluid flow in the RH reactor, the aluminum particle is spread on the
gas-liquid phase interface and moved from the center to the sidewall near the down-leg snorkel. Most
of the particles are melted before they reach the sidewall of the vacuum chamber under the superheat
of 28 K. The movement of the dissolved aluminum is influenced by the turbulent flow and diffusion.
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3.2. Melting Time and Trajectory Length

Figure 4 shows the statistical result of the melting time and the trajectory length using the bin size
of 0.5 s and 0.5 m. Due to the high temperature of the molten steel, the added aluminum particles are
melted very rapidly. Almost all aluminum particles are melted within 5 s and most of them are melted
at 2.5–3 s after they connect with the molten steel under the condition of 28 K superheat. The average
melting time and the average trajectory length are 2.64 s and 1.57 m, respectively. The frequency
distribution profiles of the melting time and the trajectory length are similar, and both of the two are
normal-distributions. The fitting line between the trajectory length and the melting time, L = 0.582 × t,
as shown in Figure 4, indicates that the average moving velocity of aluminum particles is 0.582 m/s.

In practice, samples are taken near the point-2(P2) in Figure 5. During the whole RH refining
process, chemical compositions of the molten steel change with the time and position. The sampling
position may affect the final result and the mixing time is related to the sampling position. Usually, we
prefer to take samples at the position with a short mixing time, whose result is close to the average
content in the whole ladle. Based on the mixing time, the optimal sampling position can be obtained.
The normalized concentration variation of the points with different heights and positions is compared
as shown in Figure 6. The peak value for each point increased as the monitor depth increased, and
that of the point-3(P3) is the largest. It is suggested that when a shallow sampling position is applied,
such as 100 mm below the top surface in the ladle, the sampling position should be close to the ladle
sidewall and away from the two snorkels; when a deep sampling position is applied, such as 500 mm
below the top surface in the ladle, the sampling position should be close to the center between the
ladle sidewall and the two snorkels. Anyway, the sampling position in the middle of the two snorkels
is inadvisable. From the concentration variation curves, the last point is found outside the range
0.95–1.05, and the corresponding time is defined as the mixing time of this point. The most reasonable
sampling position is point-8(P8), which has the shortest mixing time among the nine monitors, as
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shown in Table 2. For 3–4 min after the aluminum addition, the sampling result taken between the
snorkels and the ladle sidewall could be used to represent the average result in the RH reactor.
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Figure 4. Melting time and trajectory length of aluminum particles. 

Figure 4. Melting time and trajectory length of aluminum particles.Metals 2019, 9, x FOR PEER REVIEW 7 of 14 

 

 

Figure 5. Positions of nine monitors. 

(a) (b) (c) 

Figure 6. Variation of the dimensionless concentration of aluminum at three typical monitors: (a) 
monitors 500 mm below top surface; (b) monitors 300 mm below top surface; (c) monitors 100 mm 
below top surface. 

Table 2. Mixing time results for different monitors. 

Positions 
500 mm below top 

surface 
300 mm below top 

surface 
100 mm below top 

surface 
P1 P2 P3 P4 P5 P6 P7 P8 P9 

Mixing time 
(s) 579.7 201 225.5 624.5 240.1 211.1 672.5 173.7 232.8 

3.3. Model Validation 

The variation of the calculated dissolved aluminum concentration is shown in Figure 7. The 
molten steel circulates among the ladle and the vacuum chamber. The dissolved aluminum circulates 
with the molten steel three times and then gradually reaches full mixing. The tendency of the 
aluminum content transformation suggests that the calculated results show a good agreement with 
the measured results. In addition, compared with the results of the industrial experiment, the 
computational aluminum content is slightly larger than the measured results, which may result from 

Figure 5. Positions of nine monitors.



Metals 2019, 9, 442 7 of 13

Metals 2019, 9, x FOR PEER REVIEW 7 of 14 

 

 

Figure 5. Positions of nine monitors. 

0 300 600 900
0

1

2

3

4

5

6

7

[A
l]
/[

A
l]


Time (s)

 P1

 P2

 P3P3

P1

P2

(a) 

0 300 600 900
0

1

2

3

4

5

6

7

[A
l]
/[

A
l]


Time (s)

 P4

 P5

 P6

P4

P5

P6

(b) 

0 300 600 900
0

1

2

3

4

5

6

7

[A
l]
/[

A
l]


Time (s)

 P7

 P8

 P9

P7

P8

P9

(c) 

Figure 6. Variation of the dimensionless concentration of aluminum at three typical monitors: (a) 

monitors 500 mm below top surface; (b) monitors 300 mm below top surface; (c) monitors 100 mm 

below top surface. 

Table 2. Mixing time results for different monitors. 

Positions 

500 mm below top 

surface 

300 mm below top 

surface 

100 mm below top 

surface 

P1 P2 P3 P4 P5 P6 P7 P8 P9 

Mixing time 

(s) 
579.7 201 225.5 624.5 240.1 211.1 672.5 173.7 232.8 

3.3. Model Validation 

The variation of the calculated dissolved aluminum concentration is shown in Figure 7. The 

molten steel circulates among the ladle and the vacuum chamber. The dissolved aluminum circulates 

with the molten steel three times and then gradually reaches full mixing. The tendency of the 

aluminum content transformation suggests that the calculated results show a good agreement with 

the measured results. In addition, compared with the results of the industrial experiment, the 

computational aluminum content is slightly larger than the measured results, which may result from 

Figure 6. Variation of the dimensionless concentration of aluminum at three typical monitors:
(a) monitors 500 mm below top surface; (b) monitors 300 mm below top surface; (c) monitors 100 mm
below top surface.

Table 2. Mixing time results for different monitors.

Positions
500 mm below Top Surface 300 mm below Top Surface 100 mm below Top Surface

P1 P2 P3 P4 P5 P6 P7 P8 P9

Mixing
time (s) 579.7 201 225.5 624.5 240.1 211.1 672.5 173.7 232.8

3.3. Model Validation

The variation of the calculated dissolved aluminum concentration is shown in Figure 7. The molten
steel circulates among the ladle and the vacuum chamber. The dissolved aluminum circulates with the
molten steel three times and then gradually reaches full mixing. The tendency of the aluminum content
transformation suggests that the calculated results show a good agreement with the measured results.
In addition, compared with the results of the industrial experiment, the computational aluminum
content is slightly larger than the measured results, which may result from the fact that the current
model does not consider the aluminum loss of reactions in the molten steel. Since the reaction of the
slag-steel-refractory-inclusions-alloy system is complex, it still needs more concern and further studies.
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4. Effect of Superheat on the Melting Process

4.1. Melting Time and Trajectory Length

Figure 8 shows the melting process of aluminum particles under different superheat conditions.
The solid aluminum particles’ melting rate increases when the superheat is increasing. At the time of
6 s, a larger number of aluminum particles exist in the molten steel in Figure 8a for the superheat of
10 K, a small number of aluminum particles exist in the molten steel in Figure 8b for the superheat of
20 K, and no aluminum particles exist in the molten steel in Figure 8c for the superheat of 60 K. This
means that a higher superheat of the molten steel leads to a faster melting rate of aluminum particles.
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The effect of the superheat values (10 K, 20 K, and 60 K) on the distributions of the melting time
and the trajectory length of the added aluminum particles are shown in Figure 9. Both the melting
time distribution and the trajectory length distribution show a similar normal distribution. The width
of the normal distribution curve decreases and the height of the normal distribution increases as the
superheat increases.Metals 2019, 9, x FOR PEER REVIEW 10 of 14 
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Figure 9. Melting time and trajectory length of aluminum particles under different superheats:
(a) Melting time; (b) trajectory length.

To investigate the effect of the superheat on the melting process, four cases with different superheat
values (10 K, 20 K, 28 K, and 60 K) are performed, as shown in Figure 10. Both the melting time and the
trajectory length of aluminum particles decrease as the superheat is increasing. When the superheat is
more than 28 K, the decreasing rates of the melting time and the trajectory length become slower than
those of the superheat lower than 28 K.
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Figure 11 shows the variation of the average diameter of present aluminum particles with time.
The initial diameter of the aluminum particle is 10 mm. The average diameter of aluminum particles
increases first and then decreases as the time is increasing, which revealed the growth and the melting
process of the steel crust around the aluminum particle. For the cases with the superheat of 28 K and
60 K, all of the particles are melted and dissolved into the molten steel within 5 s, while the average
diameter decreases very slowly after 5 s when the superheat is 10 K.
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Figure 11. Variation of average aluminum particles diameter with time.

All aluminum particles are melted within a short time, while the melting position for each particle
is random. To evaluate the melting position of aluminum particles, the top surface in the vacuum
chamber is divided into 2000 cells. The statistics number and probability of aluminum particles melted
in each cell are calculated, as shown in Figure 12. For different superheat values, the melting positions
of aluminum particles are different. The melting center moves from the sidewall to the center of the
vacuum chamber as the superheat is increasing. Additionally, Figure 12 shows that the melting center
is close to the down-leg snorkel center with the superheat of 20 K.
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4.2. Mixing Time

As shown in Figure 13, the mixing time distributions on the vertical center plane for different
superheat values are similar, and it is obvious that the mixing time at the down-leg snorkel exit is less
than that at the up-leg snorkel entrance. There is an eddy center near the bottom of the ladle, whose
mixing time is less than that of neighboring regions. The comparison shows that the maximum mixing
time appeared near the top surface in the ladle, especially between the dawn-leg snorkel and the ladle
sidewall, where the flow field is weak.
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Figure 13. Effect of superheat on the distribution of alloy mixing time.

Figure 14 shows the relationship between the superheat and the maximum mixing time value in
the whole computational domain. If the superheat is too low or too high, the mixing time goes up.
Since the trajectory length is affected by the superheat, the melting center moves towards the sidewall
as the superheat is decreasing. Actually, only when the melting center is close to the center of the
down-leg snorkel can an optimized mixing time of the whole ladle be obtained. Thus, when the drop
point of added aluminum particles is at the center of the vacuum chamber, the suggested superheat is
20–30 K, which leads to a short time for the complete mixing of added alloy in the molten steel.
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5. Conclusions

Coupled with the multiphase fluid flow and the heat transfer, an alloy melting mathematical
model is established to investigate the evolution of aluminum particles and the mixing phenomena
during the RH refining process. The effect of the superheat on the melting process is discussed and the
following conclusions can be drawn:

1. The optimized sampling position is close to the ladle sidewall and away from the two snorkels.
The suitable sampling depth is 100 mm below the top surface in the ladle;
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2. The higher superheat would lead to a short time for the melting of aluminum particles. The
decreasing rate of the melting time and the trajectory length would become low if the superheat
is over 28 K;

3. The most difficult mixing region, between the down-leg snorkel and the ladle sidewall, is observed.
In that region, the mixing time is much higher than that in the interior region away from the
two snorkels;

4. The alloy mixing time is influenced by the molten steel temperature. As the added aluminum
particles drop at the center of the vacuum chamber, the suitable superheat is 20-30 K and the
mixing time can be reduced.
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