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Abstract: To solve the nozzle clogging issue in the continuous casting process of 253MA steel,
a method of modifying solid inclusions to liquid phases is proposed. The CALPHAD technique
was employed to predict the liquid region of the Al2O3-SiO2-Ce2O3 system. Then a thermodynamic
package based on the extracted data during the phase diagram optimization process was developed.
This package was then used to compute the appropriate aluminum addition, which was 0.01% in
253MA steel. The Si-Al alloy was chosen as the deoxidant according to the thermodynamic analysis.
The solid inclusions were ultimately modified to liquid phases at 1500 ◦C when cerium was added
through the equilibrium experiments in a MoSi2 tube furnace.
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1. Introduction

Rare earth elements (REs) are widely used in metallurgical, chemical, and advanced materials
products [1–3]. REs were used to improve the quality of steel or slag. For example, the refining slag
of CaO-AlO3-MgO-SiO2 systems containing Ce2O3 promotes the absorption of Al2O3 inclusions [4].
The 253MA steel is developed by adding 0.03–0.08% of cerium into the 21Cr-11Ni austenitic steel.
The high temperature oxidation resistance of 253MA steel is superior to 310S stainless steel (25Cr-20Ni)
with higher nickel addition [5,6]. However, the phase diagrams or thermodynamic data involving
multicomponent-RE2O3 are missing, which restricts the further study and application of rare earth
elements in metallurgy [7–9]. What’s more, a large amount of fine and dispersed inclusions, such as
RE2O3 and RE2O2S, are formed after the molten steel are alloyed by REs since the strong attaching
power between O, S, and REs. These inclusions are easily attached to the inner wall and cause principle
inducement of the nozzle clogging during the continuous casting, which deteriorate the productivity
and the quality of production [10,11].

The clogging problems can usually be relieved by modifying the material or shape of submerged
nozzle and calcium treatment [11–13]. Calcium treatment is the primary choice for dealing with the
clogging issue of Al-killed steel by modifying Al2O3 to liquid phases at the casting temperature [14,15].
Kojola et al. demonstrated that the clogging frequency is remarkably reduced when 253MA steel is
alloyed in the proper order of aluminum, cerium, and silicon [10]. The mechanism of Ca treatment for
Al-killed steel might be similar to the Al treatment of Si-killed Ce-bearing steel, which is the generation
of liquid inclusions, although the author gave the hypothesis that small inclusions might decompose
after Si addition without sampling and analyzing the inclusions. To explain the declined clogging rate
phenomenon in Kojola’s experiments, the CALPHAD (CALculation of PHAse Diagrams) technique
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was introduced to obtain thermodynamic data of complex oxide systems containing REs. Then the
thermodynamic model and package, as well as physical simulation at steelmaking temperature were
employed to study the inclusions evolution behaviors in 253MA steel.

2. Research Methods

The technology routine is shown in Figure 1. The liquid or glass formation regions have been
reported in Al2O3-SiO2-Y2O3/La2O3/Sm2O3 systems. However, the liquid boundary of Al2O3-SiO2

system involving Ce2O3 is unclear. For this reason, the Redlish–Kister polynomial expression and
Kohler’s extrapolation model in FactSage software were employed to optimize the phase diagram of
Al2O3-SiO2-Ce2O3 systems [16,17]. Then the interaction parameters and excess Gibbs free energy (GE)
were extracted during the optimization. Then the GE were used to calculate the standard Gibbs free
energy of liquid inclusions (xCe2O3·yAl2O3·(1−x−y)SiO2, where 0 < x < 1, 0 < y < 1−x) to represent the
chemical equilibrium of every reactions based on Wagner’s relations in the infinite dilute solution of
molten steel, which is always adopted in steelmaking and is different from the minimum total Gibbs
energy principle in FactSage software [18].
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materials were collected in a MgO crucible placed in a graphite crucible in argon atmosphere. The 
materials used to melt the 253MA steel are listed in Table 1. Molten steel samples were extracted by 
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Figure 1. Research routine in this work.

The thermodynamic calculations were conducted by the Main.exe file compiled with the Visual
Basic software (version 6.0, Microsoft Company, Redmond, WA, USA). The results were outputted in
the format of .txt (as shown in the result module of Figure 2) and .xlsx. As shown in Figure 2, the initial
input variants were temperature, calculation step, and original compositions of alloy elements.
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Figure 2. Main interface of the developed program.

According to the thermodynamic calculations, the Si-Al alloy was chosen and the 253MA steel
was melt in the tube furnace heated with 8 MoSi2 units (shown as Figure 3) at 1600 ◦C when the
raw materials were collected in a MgO crucible placed in a graphite crucible in argon atmosphere.
The materials used to melt the 253MA steel are listed in Table 1. Molten steel samples were extracted by
a quartz tube at 1600 and 1500 ◦C and then quenched into the ice-water mixture to reserve the original
morphologies of inclusions at the steelmaking and casting temperature, respectively. The quenched
samples were polished and observed by the FE-SEM (field emission scanning electron microscope,
JEOL, Tokyo, Japan) and EDS (energy dispersive spectrometer, JEOL, Tokyo, Japan).
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Table 1. Chemical compositions of melting alloys.

Raw Material C Si Mn P S N Al Cr Ni Ce Fe

Fe 0.002 0.01 0.02 0.005 0.003 - 0.018 0.02 0.01 - 99.9
Ni 0.01 0.002 - 0.001 0.001 - - - 99.96 - 0.01
Cr 0.008 0.21 - 0.003 0.0015 0.05 0.21 99.1 - - 0.16

Si-Al 0.068 75.7 0.24 0.026 0.005 - 1.3 - - - 22.61
Ce 0.08 0.045 - - - - - - - 99.4 -

3. Results and Discussion

Optimized liquid regions in the phase diagram of Al2O3-SiO2-Ce2O3 (A-S-C) system by CALPHAD
technology is given in Figure 4. The boundaries of full liquid (liquidus) in the A-S-C system have
been compared to those in A-S-RE systems [19–21]. It can be seen that the liquid regions in the
phase diagram of A-S-RE systems were almost located in similar sections, near the SiO2 corner and
symmetrically distributed on the isometric line of mole fraction ratio of RE2O3 and Al2O3 was 1. This is
due to the similar physical and chemical properties of rare earth elements, especially the lanthanide
series. The existence of the liquid regions implies it is possible to modify the fine solid inclusions to
liquid phases.
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During optimization of the of A-S-C phase diagram system, the excess Gibbs free energy of the
complex liquid inclusions (xCe2O3·yAl2O3·(1-x-y)SiO2) deviating from ideal mixture of Ce2O3, Al2O3

and SiO2 was extracted as follow:

xCe2O3(l) + yAl2O3(l) + (1− x− y)SiO2(l) = xCe2O3·yAl2O3·(1− x− y)SiO2(l)
GE = −825000xy(1− x− y)2 + 42569.73xy + 19570.28y(1− y) − 140979.96x(1− x)+
y(1−x−y)(1−x−2y)

1−x

(
14875.48 + 5640.02 1−x−2y

1−x

)
+

x(1−x−y)(1−2x−y)
1−y [215301.91+

547791.07 1−2x−y
1−y + 398115.65

( 1−2x−y
1−y

)2]
+

{
−98.65xy− 10.49y(1− y) + 78.91x(1− x)+

y(1−x−y)(1−x−2y)
1−x

(
−0.71 + 1.21 1−x−2y

1−x

)
+

x(1−x−y)(1−2x−y)
1−y

[
23.6− 202.71 1−2x−y

1−y −

155.94
( 1−2x−y

1−y

)2]
}T

(1)

Equation (1) is used to calculate the Gibbs free energy of liquid inclusions generation. For other
reactions of the solid inclusions generation, the equations are not listed in this work since they can be
referenced from thermodynamic handbooks.

Based on the obtained thermodynamic data, we built the model and package of equilibrium
calculation of multi-reactions including the liquid inclusions generation. The computed results are
shown in Figure 5. As presented in Figure 5a, the liquid inclusions were stable in the region surrounded
by the red dashed line as the mass fractions of aluminum and cerium were feasible. When the mass
fraction of cerium was 0.02%, the inclusions in the 253MA steel transferred from Ce2Si2O7 to liquid
phases as the increase of aluminum addition, and cerium aluminates were formed as the aluminum
content excess 0.017%, shown in Figure 5b. When the mass fraction of cerium was 0.03%, the inclusions
first transferred from cerium silicates to liquid phase, and the amount of liquid inclusions began to
decline as CeAlO3 appeared, shown in Figure 5c. When the mass fraction of cerium increased to 0.04%,
the liquid inclusions precipitated first and then disappeared as the aluminum addition reached 0.015%,
Figure 5d. Considering the required cerium content of 0.03–0.04% in 253MA steel, the aluminum
addition should be the key factor of restricting the inclusions to liquid, which was about 0.01%.

According to the above thermodynamic calculations, only 0.01% aluminum was needed to transfer
the solid inclusions to liquid phases, then the Si-Al alloy, the chemical compositions are listed in
Table 1, and were chosen as the deoxidant. The SEM observation and EDS analysis results of sampled
inclusions from equilibrium experiments at steelmaking and casting temperature are present in Figure 6.
It can be seen that, the inclusions were almost Al-Si-O system after Si-Al alloy was added for 60 min.
The inclusions were mainly Ce2O3/Ce2O2S after cerium was added for 5 min. The morphologies and
compositions changed during the following 25 min, and finally the spherical and liquid inclusions were
formed at 1500 ◦C (the casting temperature). Altogether, the results showed that the solid inclusions
were modified to liquid ones after aluminum was first added in the form of Si-Al alloy and then cerium
was added. Nevertheless, it should take more than 30 min to finish the modifying process after cerium
addition. The mechanism of the modifying process can be explained as: (1) the inclusions of Al-Si-O
system are formed after Si-Al alloy is added; (2) a number of Ce2O3/Ce2O2S are formed immediately
after cerium is added owing to the strong chemical reaction between cerium and oxygen solutes,
and the oxygen activity in molten steel is sharply declined; (3) the early generated Al-Si-O inclusions
decomposed to solutes of aluminum, silicon, and oxygen since the decline of oxygen activity; (4) the
reactions between Ce2O3/Ce2O2S and silicon, aluminum, oxygen keep going on as the continuous
diffusion of solutes in molten steel; and (5) the liquid inclusions are ultimately formed as the schematic
diagram shown in Figure 6.
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Figure 5. Calculation results by developed thermodynamic package. (a) Liquid regions of inclusions;
(b) Effect of aluminum addition on inclusions, wCe = 0.02%; (c) Effect of aluminum addition on
inclusions, wCe = 0.03%; (d) Effect of aluminum addition on inclusions, wCe = 0.04%.
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4. Conclusions

The liquid region is near the SiO2 corner in the phase diagram of Al2O3-SiO2-Ce2O3 systems
optimized by the CALPHAD technique, implying the possibility of modifying Ce2O3/Ce2O2S to liquid
phases. Then the thermodynamic model coded in the user defined package computes the appropriate
aluminum addition, about 0.01%, to control the inclusion compositions’ inner boundaries of liquid
region. The spherical liquid inclusions are found after 30 min of cerium addition when Si-Al alloys are
chosen as the deoxidant instead of pure silicon. The thermodynamic and experimental results can
support the theory and data groundwork to remit the nozzle clogging of 253MA steel in the future.
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