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Abstract: Developing cost-effective soft magnetic alloys with excellent mechanical properties is
very important to energy-saving industries. This study investigated the magnetic and mechanical
properties of a series of (Fe0.3Co0.5Ni0.2)100−x(Al1/3Si2/3)x high-entropy alloys (HEAs) (x = 0, 5,
10, 15, and 25) at room temperature. The Fe0.3Co0.5Ni0.2 base alloy composition was chosen
since it has very the smallest saturation magnetostriction coefficient. It was found that the
(Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 alloy maintains a simple face-centered cubic (FCC) solid solution
structure in the states of as-cast, cold-rolled, and after annealing at 1000 ◦C. The alloy after annealing
exhibits a tensile yield strength of 235 MPa, ultimate tensile strength of 572 MPa, an elongation of 38%,
a saturation magnetization (Ms) of 1.49 T, and a coercivity of 96 A/m. The alloy not only demonstrates
an optimal combination of soft magnetic and mechanical properties, it also shows advantages of
easy fabrication and processing and high thermal stability over silicon steel and amorphous soft
magnetic materials. Therefore, the alloy of (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 holds good potential as
next-generation soft magnets for wide-range industrial applications.

Keywords: high-entropy alloy; soft magnetic properties; mechanical properties; saturation
magnetostriction coefficient; face-centered cubic (FCC) structure

1. Introduction

Contrasted to the traditional alloy design concept that is based on one or two major elements,
high-entropy alloys (HEAs) usually contain four or more major elements, and the content of each major
element is above 5 at% [1–10]. The high configurational entropy of the HEAs tends to promote forming
the solid solution phases with the face-centered cubic (FCC) [11–15], body-centered cubic (BCC) [16,17],
and hexagonal-close-packed (HCP) structures [18–20], as well as dual solid-solution phases [21–23].
The composition of HEAs is generally near the center of the multi-component phase diagram, and
hence it is difficult to distinguish the solvent from the solute. The following 5 characteristics are
typically and have been verified for the HEAs [4,24,25]:
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(1). high thermal stability and resistance to heat softening;
(2). easier to break the tradeoff between strength and ductility;
(3). very low stacking-fault energy;
(4). high irradiation resistance;
(5). high corrosion resistance.

Consequently, HEAs show promising potentials for wide ranges of industrial applications and
the HEA concept is considered to be one of the three major breakthroughs in alloying theory [3].

To date considerable research efforts on HEAs focus on their microstructures and mechanical
properties [26–31] while there is rising interest in developing high-entropy soft magnetic
materials [32–40]. Magnetic materials play a fundamental role in transformers, motors, electromagnets,
and other power industries [41]. Common soft magnetic alloys include silicon steel, ferrite, iron-nickel
alloys, and bulk metallic glasses. However, to date many challenges still remain for energy-saving
and high-performance applications. For example, it is time-consuming to produce and process
silicon-steels [42]. Ferrite has low magnetization, iron-nickel alloy has low resistivity, and bulk metallic
glass are inherently brittle and are also limited to small size [43,44]. Recent studies have shown that
FeCoNiAlSi-based and FeCoNiMnAl-based HEAs exhibit high saturation magnetization which open
up new research directions of soft magnetic materials [45]. However, the coercivity of HEAs is a
bit high, for example, the coercivity of FeCoNi(Al,Si)0.2 alloy is 1400 A/m [46]. It is known that the
magnetic properties of HEAs are sensitive to the alloy system and the composition, the phase crystal
structures, and the microstructure.

In terms of soft magnetic materials, the most important characteristic is high permeability, high
saturation induction, low core loss and low coercivity. In this study, ferromagnetic elements Fe, Co,
and Ni were selected as the main constituents of the alloy system [47]. The base alloy composition
Fe0.3Co0.5Ni0.2 was chosen since the alloy has a close-to-zero saturation magnetostriction coefficient
(λs) as shown in the Co-Fe-Ni ternary system (Figure 1). To balance soft magnetic and mechanical
properties, Al and Si in small amount was added to Fe0.3Co0.5Ni0.2, and the resulting materials
properties of the (Fe0.3Co0.5Ni0.2)100−X(Al1/3Si2/3)X (X = 0, 5, 10, 15, and 25) high entropy alloys were
studied systematically. It was found that the (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 alloy exhibits excellent soft
magnetic properties. The alloy has small coercivity of 96 A/m, and the saturation magnetic induction
(Bs) and the saturation magnetization (Ms) reached 1.55 T and 1.49 T, respectively. The alloy in the
as-cast state also shows an excellent tensile elongation up to 25% and a yield stress of 122 MPa at
room temperature.
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2. Materials and Methods

2.1. Alloys Preparation

Al, Co, Cr, Fe, and Ni elements with purities of greater than 99.5 wt.% were used to prepare
(Fe0.3Co0.5Ni0.2)100−X(Al1/3Si2/3)X alloys ingots using vacuum arc melting (VAM) and magnetic
levitation melting (MLM). The alloys were remelted five times in order to improve the chemical
homogeneity. The ingot of the maglev melted alloy is cut into a plate with a thickness of 6 mm.
Then the plate was cold rolled to a thickness of 1 mm (i.e., thickness reduction of 83%) by multi-pass
rolling, with 0.5 mm reduction for each step. Subsequent annealing heat treatment was performed at
1000 ◦C for 2 h followed by water quenching or furnace cooling.

2.2. Structural Characterization and Performance Experiments

The crystal structures of the ingots were measured by a Smart Lab X-ray diffractometer
(Bruker D8, Karlsruhe, Germany), using Cu-Kα radiation. The electron backscatter diffraction
(EBSD) was carried out by a field emission scanning electron microscope (ZEISS SUPRA 55, Jena,
Germany). Room temperature compression and tensile tests were conducted on a CMT Model 4305
Universal Electronic Tester with a strain rate of 1 × 10−3 min−1. A hysteresis loop and hysteresis
loss curve were obtained by PPMS (physical property measurement system) and VSM (Vibrating
Sample Magnetometer) at room temperature. The four-point method was used for measuring the
electrical resistance.

3. Results

Figure 2 shows the XRD profiles of (Fe0.3Co0.5Ni0.2)100−X(Al1/3Si2/3)X HEAs, (X = 0, 5, 10, 15, and
25). When X = 0, 5, and 10, the alloys possess a simple FCC structure. When X reaches 15, BCC phase
appears and the alloy exhibits an FCC + BCC dual-phase structure. When the (Al1/3Si2/3) content
increases to 25, the FCC phase disappears and only BCC phase was detected. Al has a much larger
atomic radius than the transition metal elements of the alloys and it is known as a potent BCC phase
stabilizer in steels. Figure 3 shows the hysteresis loops of the (Fe0.3Co0.5Ni0.2)100−X(Al1/3Si2/3)X series
alloys at room temperature. The saturation magnetization of these alloys decreases gradually from
168.06 Am2/kg to 116.48 Am2/kg with increasing (Al1/3Si2/3) contents.
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The variation of the coercivity (Hc) and saturation magnetization (Ms) are shown in Figure 4.
When X ≤ 10, the alloys maintain the FCC structure, and the coercivity increases with increasing Al
and Si contents, increasing from 888 A/m to 1194 A/m. With higher Al and Si contents, the alloys
become BCC dominant, and the Hc drops to 921 A/m when X = 15 but increases to 990 A/m when X =
25. Within a specific crystal structure, increasing Al and Si contents increase the atomic size difference
and hence lattice distortion and coercivity.
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The compression stress–strain behavior of (Fe0.3Co0.5Ni0.2)100−X(Al1/3Si2/3)X alloys is shown in
Figure 5, and the corresponding yield stress and plastic strain are summarized in Table 1. In general,
the yield stress of the alloys increases with increasing the (Al1/3Si2/3) content. When X = 5, the
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Table 1. The magnetic properties and compression behavior of (Fe0.3Co0.5Ni0.2)100−X(Al1/3Si2/3)X high
entropy alloys at room temperature.

Alloys Hc
(A/m)

Ms
(Am2/kg) σ0.2 (MPa) σmax (MPa) εp

(%)

X = 0 887.93 168.06 96 - >20
X = 5 1158.37 153.45 122 - >20

X = 10 1194.29 130.97 116 - >20
X = 15 921.25 117.10 243 - >20
X = 25 990.48 116.48 1445 2050 2.71

The variation of mechanical properties is attributed to the different phase structures and
microstructures. Dissolution of Al and Si in the FCC lattice of transition metals of Fe, Co, and
Ni causes severe lattice distortion, contributing to pronounced solid solution strengthening. However,
excessive addition of Al and Si promotes the formation of BCC phase, and the strength of the alloy
increases rapidly at the cost of significantly reduced plasticity. Similar trend on the effect of Al contents
on the phase stability and mechanical properties of high entropy alloys is reported by Tang et al [48].

For industrial applications, it is necessary for HEAs to possess not only good soft
magnetic properties, but also acceptable plastic deformation ability. The newly-designed
(Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 alloy in the present study has shown good potential for industrial
application as high-performance soft magents. The saturation magnetization of the alloy reaches
153.45 Am2/kg and the resistivity is about 60.3 µΩ·cm. Besides, it also shows satisfactory ductility.
A comprehensive characterization of the aloy is presented in the following sections.

Figure 6 shows the macroscopic appearance of (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 alloy by vacuum
magnetic suspension melting and the sheet after cold-rolled. Figure 7 shows the X-ray diffraction
pattern of the alloy in the as-cast, cold-rolled, water quenching, and furnace cooling states after heat
treatment. A simple FCC structure can be clearly identified in all states while a small peak at around
30 degrees appears in the as-cast and furnace-cooled states.
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Figure 8 presents the EBSD images of the (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 alloy in different
conditions. The as-cast (Figure 8a) alloy shows a coarse column grain microstructure with the column
width of ~1000 µm. After cold-rolling (83% thickness reduction), the grains are significantly elongated
(Figure 8b). Annealing at 1000 ◦C caused complete recrystallization and the resulting grain sizes were
significantly smaller than in the as-cast and cold-rolled states (Figure 8c,d). Annealing also introduced
the formation of a large number of annealing twins but there was no preferred grain orientation
observed. Under the condition of furnace cooling, the average grain size is ~30 µm.
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Figure 9 shows the annular samples of the (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 alloy for magnetic
induction-coercivity (B-H) measurement. Figure 10 shows the B-H and magnetization-coercivity (M-H)
curves of the alloy in the states of as-cast (magnetic suspension melting), cold-rolled, water cooling,
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and furnace cooling after heat treatment, respectively. The soft magnetic properties of the alloy in the
cold rolled variant are the worst. After the annealing treatment, the coercivity decreased from 510 A/m
to 130 A/m due to internal stress release, and the saturation magnetic induction (Bs) improved from
1.14 T to 1.58 T. However, the saturation magnetization is almost constant under cold rolling and
heat treatment conditions, which is about 1.49 T. Note that the coercivity of the alloy under vacuum
magnetic suspension melting (96 A/m) is significantly lower than that of arc melting (>1000 A/m).
The vacuum magnetic suspension melting method is cleaner than arc melting, and causes less oxide
inclusions or other impurity in the ingot, and hence introduces much fewer magnetic domain pinning
points in the alloy, leading to lower coercivity.

Figure 11 shows the hysteresis loss curve of the (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 alloy in different
states. Under the power frequency conditions (50 Hz 1 T), the hysteresis loss (Ps) of the alloy in
the states of as-cast, cold-rolled, water cooling, and furnace cooling after annealing is 3.13 W/kg,
8.91 W/kg, 4.26 W/kg, and 4.43 W/kg, respectively. In the application of soft magnetic materials,
hysteresis loss energy will convert into heat, which will increase the temperature of the equipment and
reduce working efficiency. Therefore, the hysteresis loss should be kept as small as possible.

Figure 12 presents the room temperature tensile stress-strain curves of the
(Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 alloy in the as-cast, cold-rolled, and annealed states. The specific values
are listed in the Table 2. It shows that the as-cast alloy has the lowest strength, but with satisfactory
ductility up to 25% elongation at room temperature. For the cold-rolled alloy, it has the lowest
elongation of 1.3% but the highest yield and fracture stresses due to the work hardening.

Table 2. The magnetic properties and tensile behavior of (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 in
different states.

(Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5
Hc

(A/m)
Ms
(T) σ0.2 (MPa) σmax (MPa) εp

(%)

Magnetic levitation melting 96 1.49 176.1 402.4 26.8
Cold rolling 510 1.48 779.6 917.7 1.3

Water quenching 130 1.40 261.5 558.3 38.3
Furnace cooling 165 1.47 235.5 572.4 33.2
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improved from 1.14 T to 1.58 T. However, the saturation magnetization is almost constant under cold 
rolling and heat treatment conditions, which is about 1.49 T. Note that the coercivity of the alloy 
under vacuum magnetic suspension melting (96 A/m) is significantly lower than that of arc melting 
(>1000 A/m). The vacuum magnetic suspension melting method is cleaner than arc melting, and 
causes less oxide inclusions or other impurity in the ingot, and hence introduces much fewer 
magnetic domain pinning points in the alloy, leading to lower coercivity. 

Figure 10. (a) magnetic induction-coercivity (B-H) and (b) magnetization-coercivity (M-H) (sample
size: 1 × 1 × 4 mm3) curves of (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 alloys in the as-cast, cold rolling, and
annealed states.

Magnetic materials have been developed for decades. As is well known, silicon steel is most
widely used as soft magnetic material at relatively low price. However, the complex production
process and large energy consumption restrict its application range [43]. New materials, such as
amorphous and nanocrystalline soft magnetic materials, also have excellent soft magnetic properties,
but their applications are limited by their poor mechanical properties and thermal stability. In contrast,
the high entropy soft magnetic material such as (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 as identified in the
present study can make up for the deficiency of silicon steel and amorphous soft magnetic material.
It has simple preparation process and stable crystal structure, and it also has balanced magentic and
mechanical properties. It can be seen from Figure 13, the (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 alloy reported
in this study (marked by the star) presents better magnetic properties than other soft magnetic high
entropy alloys.
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The relationship between magnetostrictive coefficient and coercivity of alloys for amorphous
metals and HEAs reported in the literature is presented in Figure 14. This relationship indicates
that identifying alloys with minimum saturation magnetostriction coefficient while optimizing the
processing to lower coercivity is very important in developing soft magnetic materials.Metals 2019, 9, x FOR PEER REVIEW 13 of 16 
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4. Conclusions

Aiming to develop high-performance soft magnets, the magnetic and mechanical properties
of a series of (Fe0.3Co0.5Ni0.2)100-X(Al1/3Si2/3)X high-entropy alloys (X = 0, 5, 10, 15, and 25) were
systematically investigated in this study. The main conclusions are drawn as follows:

(1) The Fe0.3Co0.5Ni0.2 base alloy was chosen since it has very small saturation
magnetostriction coefficient.

(2) The alloys in the as-cast state maintain an FCC solid solution structure when X ≤ 10.
More addition of Al1/3Si2/3 causes formation of BCC phase. The overall trend is that increasing
Al1/3Si2/3 contents increases the strength of the alloy at the cost of reduced ductility.

(3) The (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 alloy was prepared via maglev melting and then underwent
cold-rolling and subsequent heat treatment. The alloy shows high saturation magnetic induction
and saturation magnetization. The lower coercive force (about 100 A/m) is found in as-cast and
annealed states. The hysteresis loss at low power frequency is about 3-4.5 W/kg.

(4) The (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 alloy in the as-cast and after annealing exhibits considerable
deformation ability (ductility up to 25% and 38% elongation, respectively) at room temperature.

(5) The (Fe0.3Co0.5Ni0.2)95(Al1/3Si2/3)5 alloy shows high saturation magnetic induction intensity,
low coercivity, and excellent ductility. Hence, it holds good potential as next-generation
high-performance soft magnetic materials for wide ranges of energy-saving applications.
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