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Abstract: The addition of rare earth element Ce in ferritic stainless steel can improve the high
temperature performance to meet the service requirements of automobile exhaust systems at high
temperatures. Automobile exhaust systems are generally applied as welded pipes, so it is necessary
to study the effect of Ce on the weldability of ferritic stainless steel. In this study, the Trans-varestraint
test method was used to test the solidification crack sensitivities of 441 and 441Ce ferritic stainless
steel. The 441Ce steel, which has added Ce, showed poor resistance to weld solidification cracking.
Using Thermo-Calc software, Ce was observed to expand the solidification temperature range
of 441 ferritic stainless steel, increase the time for solid–liquid coexistence during solidification,
and increase the sensitivity of solidification cracking. Further, from scanning electron microscopy and
energy dispersive spectrometer analysis, the addition of Ce was found to reduce high temperature
precipitation (Ti,Nb)(C,N), reduce or even eliminate the “pinning” effect during solidification,
and increase solidification crack sensitivity of 441 ferritic stainless steel.
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1. Introduction

As an important type of stainless steel, ferritic stainless steel has been a popular focus of research
and application in recent years, not only because of its lack of nickel content but also because it
is economical. Its cost is not affected by fluctuations in international nickel prices, and compared
with austenitic stainless steel, ferritic stainless steel too has good thermal conductivity, low thermal
expansion coefficient, good high temperature oxidation resistance, and good high temperature thermal
fatigue resistance; thus, it has a wide range of applications in automotive exhaust systems [1–4].
However, with the constantly increasing requirements of automobile exhaust emission standards,
automobile engine technology is continuously improving, and the exhaust gas temperature is
continuously increasing. Better high temperature performance requirements are therefore imposed on
the high temperature end material of the exhaust system [5–7].

Rare earth elements have a unique electronic layer structure and active chemical properties.
In stainless steel, they can clean the steel, metamorphose inclusions, control solidification structure,
and refine the grain [8–12], so they have received much attention from scholars these days. Some
scholars have shown that the addition of rare earth elements in ferritic stainless steel can improve
its corrosion resistance, mechanical properties, high temperature performance, and other service
properties [13–16]. In order to study and improve the high temperature oxidation resistance, previously
reported studies [17,18] show that adding Ce can increase densification of the oxidation film of ferritic
stainless steel and improve its high temperature oxidation resistance. However, research data on the
influence of rare earth elements on weld solidification crack sensitivity is still lacking. Automobile
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exhaust systems are generally applied as welded pipes, so the alloying effect on the weldability
of ferritic stainless steel needs to be investigated. Only with excellent weldability can the alloyed
stainless steel be utilized commercially. In this study, the 441 type ferritic stainless steel is the research
object. The effect of Ce on the weld solidification crack sensitivity of 441 ferritic stainless steel and its
mechanism were studied using the Trans-varestraint test, and the theoretical support for solidification
crack control of Ce-containing ferritic stainless steel is provided.

2. Materials and Methods

The test materials used were two types of hot-rolled ferritic stainless steel. The chemical
compositions of the test materials are shown in Table 1. The Trans-varestraint test method was
used to evaluate the solidification crack sensitivities of these materials. The test equipment utilized
the MTV2500 testing system produced by D. L. Wright Inc. Samples of dimensions 120 mm ×
30 mm × 6 mm without the weld groove were machined for the Trans-varestraint tests. The weld
was completed by arc remelting, and the remelting position and experimental principle are shown
schematically in Figure 1 [19]. The principle of this method is to apply different strain values to study
the crack generation. An autogenous gas tungsten arc welding method was used to melt the weld
bead. The welding current and arc voltage were 150 A and 17 V, respectively. The welding speed
was 100 mm/min. The welding shielding gas used was 99.999% argon gas, and the gas flow rate
was 12 l/min. Nine series of strains (i.e. 0%, 0.25%, 0.50%, 1%, 2%, 3%, 4%, 5% and 6%) were used
in the tests. The Trans-varestraint tests were performed in increasing order of strain from small to
large values.

The surface cracks of the welds of the specimens that have completed the Trans-varestraint test are
observed by scanning electron microscopy (SEM, ZEISS EVO MA 25, ZEISS Group, Cambridge, UK)
to note the occurrence of cracks and to measure the lengths of these cracks. Metallographic specimens
of the weld cross section were cut from the tested specimens under 0% strain. The specimens were
machined, polished, corroded (corrosive solution, FeCl3:HCl:H2O = 5 g:50 mL:100 mL), cleaned
with anhydrous ethanol, and dried. The microstructures of the specimens were observed by
SEM (FEI QUANTA 600F, FEI Company, Eindhoven, Netherlands) and equipped with an energy
dispersive spectrometer (EDS, OXFORD INCAx-act, Oxford Instruments, Oxfordshire, UK). The Scheil
solidification simulation module of the thermodynamic calculation software Thermo-Calc was used
along with the TCFE9 database to simulate the stainless steel welding solidification process.

Table 1. Chemical compositions of test materials (wt%).

Steel C Si Mn P S Cr Nb N Ti Ce

441 0.005 0.380 0.340 0.008 0.002 18.630 0.430 0.008 0.140 -
441Ce 0.008 0.360 0.310 0.008 0.001 18.440 0.460 0.008 0.190 0.024
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Figure 1. Trans-varestraint test. 
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3. Results and Discussion

3.1. Threshold Strain and Maximum Crack Distance

There are many quantitative indicators for evaluating the thermal crack sensitivities of materials.
In this study, the threshold strain and maximum crack distance (MCD) are used as evaluation
indexes of weld solidification cracks. Threshold strain refers to the strain at crack initiation during
a Trans-varestraint test for a series of small to large strains. Saturation strain refers to the strain that
exceeds the threshold value where the maximum crack length no longer shows a significant change;
the MCD refers to the maximum crack length (MCL) measured for each value of the test strain above
the saturation strain. Figure 2 shows the MCLs of the test materials for the transverse variable restraint
welding solidification crack test under various strains. It can be seen from the graph that the threshold
strain of the 441 ferritic stainless steel is between 0.5% and 1%, whereas the threshold strain of the
441Ce ferritic stainless steel is between 0% and 0.25%. The MCD values for 441 and 441Ce ferritic
stainless steels are 239.5 ± 0.1 µm and 290.0 ± 0.1 µm, respectively. Thus, it can be concluded that the
addition of Ce increases the weld solidification crack sensitivity of 441 ferritic stainless steel.
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3.2. Thermodynamic Calculation of Solidification Process

Table 2 shows the solidification temperature range obtained from simulation calculation. It can
be seen that the solidification temperature range of the 441Ce material with the rare earth element
Ce reached 199 ◦C, which is approximately 14 ◦C higher than that of the 441 material, indicating
that Ce expands the solidification temperature range. Thus, Ce addition increases the area and time
of solid–liquid coexistence during solidification, greatly increases the risk of solidification cracking,
and reduces the ability of stainless steel to resist solidification cracking.

Table 2. The solidification temperature range obtained by simulation calculation.

Steel Solidification Start
Temperature/◦C

Solidification End
Temperature/◦C

Solidification
Temperature Range/◦C

441 1504 1319 185
441Ce 1502 1303 199

3.3. Solidification Crack Distribution and Morphology

Figure 3 depicts the crack distribution and morphology of the test specimen under
Trans-varestraint test for the 5% strain condition. The direction of the columnar crystal of the weld is
mostly perpendicular to the fusion line during solidification crystallization. This is because the liquid
metal solidifies and crystallizes along the direction of the temperature gradient. When the columnar
crystal grows, there is a liquid phase film between the front columnar crystals of the solidification
interface. At this time, a transverse strain is applied to the welding metal, and the liquid phase film
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that has not solidified at the grain boundary is insufficient to fill the gap generated by the strain,
thus forming cracks at the grain boundary. As can be seen from Figure 3, the cracks are primarily
situated at the grain boundary position, verifying that the solidification cracks occur between the
columnar crystals.
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Figure 3. Crack distributions and morphologies under 5% strain for (a) 441 and (b) 441Ce
type materials.

Figure 4 shows the typical shape of a crack formed in the Trans-varestraint test, which applies
instantaneous strain to the specimen. Under the application of a sudden strain, owing to the
temperature difference of the instantaneous cracking zone, the solidification crack morphology
produced by the Trans-varestraint test has the characteristics of both high and low temperature
zones [20]. The high temperature zone is close to the crystal front and shows the characteristics of
liquid phase fracture; the liquid film traces at the time of fracture are visible between the crystals.
Peng et al. [21] believe that the crystallization process of the columnar crystal at the moment of cracking
in the high temperature region is complete or nearly complete, and the connection, contact, and void
formation of adjacent columnar crystals are also complete; this means that at this moment, the adjacent
columnar crystals have only the connections of the residual low-melting of the liquid phase film and
the liquid bridge forms. The low temperature zone refers to the zone of solidification cracking that
is away from the crystallization front. In this zone, it is observed that the columnar crystal plane
with complete crystal morphology has annular or striped ridges, and the arrangement direction of
each annular ridge and the main direction of the striped ridges are roughly parallel to the direction of
the columnar crystals, similar to a waterfall; the low temperature zone is close to final solidification
(i.e., in a liquid–solid zone with poor fluidity), which is pulled apart under a large tensile strain and
forms the characteristic shapes of the annular and striped ridges.
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3.4. Precipitation

Figure 5 shows the metallographic structure of the weld cross-section after application of the
Trans-varestraint test for the 0% strain condition, as observed under scanning electron microscopy
(SEM). It can be seen from the figure that a large number of precipitates appear in the intragranular
and grain boundaries of the 441 material. The precipitates of 441Ce are relatively small. This indicates
that the addition of the alloying element Ce reduces the generation of the precipitated phase and has a
purifying effect on the grain boundary as well as the crystal inside, thus greatly influencing the hot
crack sensitivity and strength of the material.
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The grain boundary of the metallographic structure of each weld cross-section was further
magnified under SEM, and energy dispersive spectrometer (EDS) analysis was performed on the
precipitation on the grain boundary. The results are shown in Figure 6. The precipitation of the
441 weld grain boundary is granular, and the size is approximately 1 µm. The EDS result shows that
it is a composite precipitation rich in Fe, Cr, Ti, and Nb. The precipitation of the 441Ce weld grain
boundary is relatively small, and the spectrum of the precipitation is similar to that of the 441 weld
grain boundary. The thermodynamic calculation results in Table Table 2 indicate that Ce expands the
solidification temperature range, increases the degree of undercooling during the solidification process,
promotes heterogeneous nucleation and growth of the liquid metal during solidification, increases the
grain boundary, and refines the grain, so that the precipitated phase is dispersed. In addition, rare
earth elements can reduce the activity of C, increase the solubility of C, and reduce the precipitation
of carbides of Ti and Nb during solidification [22]. Ce is easily segregated near the grain boundary
because in the cooling process following the solidification of the weld, the radius of the Ce atom is
large, which tends to segregate Ce near the grain boundary, thus causing lattice expansion near the
grain boundary and increasing its energy. It is easy to nucleate the carbide [23] so that the precipitation
of the grain boundary is fine and exhibits a dispersed distribution.
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441Ce type materials, respectively.

Figure 7 depicts the phase-temperature equilibrium diagrams of 441 and 441Ce steel using
Thermo-Calc software. When 441 ferritic stainless steel solidifies, it produces high melting point
precipitates (Ti,Nb)(C,N). Some of these precipitations occur on the solidification grain boundary,
destroying the liquid film that has not yet solidified at the boundary, improving the bonding strength
of the boundary, and forming a "pinning" effect, as shown in Figure 8. This effect reduces the sensitivity
of the weld solidification crack. Compared to the 441 stainless steel without added Ce, 441Ce increases
the solidification temperature range, prolongs the total time of the weld in the solid–liquid mixing
stage during the welding cooling process, and greatly increases the risk of solidification cracking.
In addition, the Ce atoms are segregated on the grain boundary during solidification [23], which easily
forms a low-melting liquid film. Because Ce promotes a solid solution of C [23], it is not conducive
to precipitation of carbides of Ti and Nb, thus reducing such precipitations. Further, it reduces the
pinning effect of precipitation, so the addition of Ce greatly improves the weld solidification crack
sensitivity of 441 ferritic stainless steel.
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4. Conclusions

The sensitivity of the solidification crack of 441 ferritic stainless steel can be improved by adding
the rare earth element Ce; the observations and conclusions of such an addition are as follows:

(1) Ce widens the solidification temperature range of 441 ferritic stainless steel, so in the actual
welding process, it increases the duration of the weld metal in the solid–liquid mixing stage, thus
improving the solidification crack sensitivity of stainless steel.

(2) The high temperature precipitates produced during solidification of 441 ferritic stainless steel
weld metal, especially at the solid–liquid interface, can pin the interface, improve the bonding strength
of the interface, and prevent the solidification cracks. After adding Ce to 441 ferritic stainless steel,
the precipitates produced in the weld can be reduced and the weld structure can be purified. It is
precisely because of this purifying effect that the pinning due to high temperature precipitates in the
solidification process of the weld metal is weakened and solidification crack sensitivity is improved.

(3) In a future work, the influence of Ce on solidification temperature range and the precipitates
will be studied in depth, and the improvement of the anti-solidification crack properties of
Ce-containing ferritic stainless steel will be explored.
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