Supplementary Materials

High-Pressure Oxidative Leaching and Iodide Leaching followed by Selective Precipitation for Recovery of Base and Precious Metals from Waste Printed Circuit Boards Ash

Altansukh Batnasan^{1,*}, Kazutoshi Haga¹, Hsin-Hsiung Huang² and Atsushi Shibayama^{1,*}

- ¹ Graduate School of International Resource Sciences, Akita University, 1-1 Tegata-Gakuen machi, Akita, 010-8502, Japan; altansux@gipc.akita-u.ac.jp (A.B), sibayama@gipc.akita-u.ac.jp (S.B), khaga@gipc.akita-u.ac.jp (K.H)
- ² Department of Metallurgy and Materials Engineering, Montana Technological University, 1300 West Park Street, Butte, MT 59701, United States; hhuang@mtech.edu (H.H)

*Correspondence: altansux@gipc.akita-u.ac.jp; altansukh.b2008@gmail.com; sibayama@gipc.akita-u.ac.jp; Tel.: +81-18-889-3296 (A.B); Tel.: +81-18-889-3051 (S.B)

Contents

Table S1. The thermodynamic data for individual species for the construction of the Eh-pH diagram.

Figure S1. A schematic diagram of an autoclave used in this study.

Figure S2. A comparison of the XRD pattern of the leach residue of HPOL with WPCBs ash sample

Figure S3. FE/SEM image of gold particles precipitated from solution by reductive precipitation with L-AA

Figure S4. EDS spectra of gold particles precipitated from the solution by reductive precipitation with L-AA

Species	dGo kcal (25 °C)	Notes	Species	dGo kcal (25 °C)	Notes
H ⁺ A	0	NBS	Au(OH)4 ⁻ A	-108.85	NBS
H ₂ O 0 L	-56.675	NBS	Au(OH)3 0 A	-67.727	NBS
K ⁺ A	-67.703	NBS	Au 0 S	0	NBS
KOH 0 A	-104.5	NBS	Au(OH)3 0 S	-75.746	NBS
I ⁻ A	-12.326	NBS	Au(OH) 0 A	-25.928	Helgeson Sup Crt
I ₂ 0 A	3.92	NBS	Au(OH)2 ⁻ A	-65.905	Mironov
$I_3 - A$	-12.285	NBS	AuI2 ⁻ A	-11.323	Bard
IO3 ⁻ A	-30.593	NBS	AuI4 A	-10.561	Bard
IO4 ⁻ A	-13.982	NBS	AuI 0 S	-0.120	Bard
Au ⁺ A	39	NBS	H ₂ Oc 0 A	-170.060	Ascorbic acid, H2Asc
Au ³⁺ A	103.6	NBS	HOc ⁻ A	-164.371	HAsc-
Au(OH)63- A	-182.406	NBS	Oc²- A	-147.587	Asc ²⁻
Au(OH)5 ²⁻ A	-147.337	NBS	Oc 0 A	-153.918	DHA

Table S1. The thermodynamic data for individual species for the construction of an Eh-pH diagram.

References:

- 1. Schmid, G.M. Chapter 11: Copper, Silver, and Gold. In *Standard potentials in aqueous solution*, 1st ed.; Bard, A.J., Parsons, R., Jordan, J., Eds.; Marcel Dekker: New York, United States, 1985; pp. 313–320.
- 2. Mironov, I.V., Belevantsev, V.I. Hydroxogold(I) complexes in aqueous Solution. *Russ. J. Inorg. Chem.*, **2005**, *50*, *7*, pp. 1210–1216.
- 3. Matsui, T.; Kitagawa, Y.; Okumura, M.; Shigeta, Y. Accurate standard hydrogen electrode potential and applications to the redox potentials of vitamin C and NAD/NADH, *J. Phys. Chem. A* **2015**, *119* (2), pp. 369–376. doi: 10.1021/jp508308y.
- 4. Merck Index, 11th ed., Entry #855. https://www.rsc.org/merck-index

$$H_{2}Asc(a) = HAsc^{-} + H^{+}; \quad Ka1 = \frac{[H^{+}][HAsc^{-}]}{[H_{2}Asc]} = 10^{-4.17}$$
$$HAsc^{-} = Asc^{2-} + H^{+}; \quad Ka2 = \frac{[H^{+}][Asc^{2-}]}{[HAsc^{-}]} = 10^{-11.57}$$

5. https://www.chemeo.com/cid/57-757-9/L-Ascorbic%20acid.pdf

Figure S1. A schematic diagram of an autoclave used in this study.

Figure 2. A comparison of the XRD pattern of the leach residue of HPOL. with WPCBs ash sample

Figure S3. FE/SEM image of gold particles precipitated from solution by reductive precipitation with L-AA

Figure S4. EDS spectra of gold particles precipitated from the solution by reductive precipitation with L-AA