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Abstract: In this study, X-ray computed tomography was used to analyze powder binder separation
in TC4 green bodies. Firstly, for the scanned results of the whole green body, because of the relative
low resolution (36 µm), the powder binder separation can only be analyzed by using gray value
distribution. Then, local regions (areas near the gate and the central parts) were scanned by using
a much higher resolution (2.3 µm). Both of the volume fraction of powder content and gray value
distributions indicate that powder particles tend to accumulate in the central parts. Finally, based on
the results tested by using submicron resolution (0.8 µm), the effects of the volume and morphology
of the powder particles on the powder binder separation were analyzed.
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1. Introduction

Powder injection molding (PIM) has an excellent ability to manufacture products with large
quantities, low cost, complicated shape and excellent performance [1,2]. Thus, these products have been
used to many industrial and research fields such as for automobile and aerospace parts. Four crucial
steps are involved in PIM: feedstock made by mixing binder and powder particles, mold filling, binder
removing from green body, and sintering of the powder particles [3]. The powder-binder separation
phenomenon emerging in the mold filling is the major cause of nonhomogeneous composition
distribution, which leads to the collapse and sagging of green body during debinding, as well as the
geometrical error and non-uniform properties of the final sintered parts.

During mold filling, because of the physical property differences and pseudo-plastic behavior,
the complex physical environments may lead to relative movement between the powder particles and
binder. In the previous studies [4–8], much research was performed to analyze the powder-binder
separation, and the characteristics of these methods were summarized in Table 1. It can be seen that
an effective method for analyzing powder-binder separation of the green body nondestructively is
urgently needed.

Recently, X-ray computed tomography has been widely applied to material science and
engineering [9–11] and some researchers began to use this technology to analyze the powder-binder
separation [12,13], because of its obvious advantages, including 3D and the non-destructive
characterization of the spatial structure. In the previous studies, powder-binder separation was
analyzed by using gray value distribution in the CT reconstructed data [14,15]. However, due to the
spatial resolution limit (40 µm), those results are indirect evidence to characterize this phenomenon,
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and the specific distribution of powder particles cannot be analyzed. In this study, a CT scan was
performed by using a much higher spatial resolution to study powder-binder separation and further
verifying the accuracy of previous studies.

Titanium and its alloy are famous due to their relative low density, high specific strength and
corrosion resistance [16]. Because of these advantages, this material has attracted attention for many
years. However, due to high processing costs, the application of titanium alloy is limited. To overcome
the drawbacks of the conventional processing techniques, PIM are increasingly used to produce
titanium alloy parts [17,18]. Thus, Ti6Al4V (TC4) powder was selected as the subject for this study.

The aim of this present study is a detailed quantification analysis of the powder-binder separation
characteristics in the TC4 green bodies by using multiscale CT tests.

Table 1. Analysis methods of powder-binder separation in the previous studies.

Method Description Advantages Limitations

Optical Microscope observing phases distribution
in the surface visible and direct

only surface information;
introducing artifacts after

sample preparation

SEM observing phases distribution
in the surface visible and direct only surface information

Density Test
sample is broken into many

parts and density distribution
is obtained

high reality
introducing artifacts after

sample preparation destructive
tests; time consuming

Hardness Test
sample is broken into many

parts and hardness
distribution is obtained

high reality destructive tests; time
consuming

2. Experimental Procedure

The powder used in this study has a particle size distribution of D1 0= 15 µm, D50 = 29.1 µm
and D90 = 49.2 µm. SEM observation image and chemical information are shown in Figure 1 and
Table 2, respectively. For the binder system shown in Table 3, this study used the same components
and corresponding proportion as the research performed by Liu [19]. The feedstock was prepared by
mixing TC4 powder (AMC Powders, Beijing, China) and binder, and the solid loading used in this
study was 62 vol%. The mixture was injected into the mold cavity by using an injection pressure of
90 MPa, an injection temperature of 160 ◦C, and a mold temperature of 45 ◦C. The sample dimension
is 67 mm × 11 mm × 6 mm.
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Table 2. Chemical elements of the TC4 powder.

Elements Ti Al V Fe C O N

Weight (wt %) Balance 6.14 4.13 0.09 0.011 0.092 0.0004

Table 3. Constituents of the binder.

Constituent PW LDPE PP SA LPW PEG-10,000 Naphthalene

Melting Point (◦C)
Binder Weight (wt %)

58
Balance

125
5–10

4
12

66
5

−24
5–9

65
3

80.5
6–10

It is known that a CT test with a higher spatial resolution obtains a smaller tested area and
vice-versa. To solve this problem, multiscale tests can be performed on the same sample by using
a different resolution. The advantages of this method are that high resolution tested results can
give clear and accurate regional information, because the structure is constituted by more voxels.
For example, if a structure’s volume is about 512 µm3, for the 4 µm and 1 µm resolution tested results,
the corresponding amount of voxels are 8 and 512, respectively. These data can help to speculate the
structural characteristics in the whole sample tested by using a low resolution precisely. In this study,
multiscale CT tests were performed on nanoVoxel-3000 equipment (Sanying Precision, Tianjin, China)
which has two X-ray imaging paths. Firstly, a whole green body can be scanned by using the large
view system then, for the interested areas, optical coupled with CCD system was used to perform
the high resolution tests (2.3 µm and 0.8 µm). The scanning method and parameters is shown in
Figure 2A and Table 4, respectively. Besides high spatial resolution, the density distinguishing ability
of this system is 0.1%, thus, the subtle change of the powder contents can be distinguished precisely.
Seen from Figure 2B, the regions near the gates and central part were recorded as Region 1, 2 and 3,
respectively. The CT data was analyzed by Avizo 8.1 software (Thermo Fisher Scientific, Merignac,
France). It is noted that every data in this paper represents a mean value of five samples.Metals 2018, 8, x FOR PEER REVIEW  4 of 9 
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Figure 2. (A) Sketch map of multiscale CT tests. (B) Side view of the green body, the yellow and red
circle shows the corresponding interested areas scanned by high resolution.

Table 4. Scanning parameters of multiscale CT tests.

Resolution
(µm)

Voltage
(kV) Frames Detector System

36
2.3
0.8

120
120
120

1440
1800
1800

Flat panel
Optical coupled with CCD-4×lens

Optical coupled with CCD-10×lens

For the X-ray CT tests, gray value of each voxel represents the corresponding matter’s absorbing
ability of X-ray. In Yang’s study, the experiment results verified that matter’s density is proportional to



Metals 2019, 9, 329 4 of 8

the gray value within certain range [14]. Moreover, in this study, to verify the accuracy of the image
segmentation (OSTU method), porosities of 5 porous sample prepared by different processing were
obtained by Archimedes’ principle and CT data, respectively. Seen from Table 5, the results tested by
the two methods are similar. Thus, the accuracy of analyzing powder-binder separation by using gray
value distribution and image segmentation can be guaranteed.

Table 5. Porosity tested by Archimedes’ principle and CT data.

Sample Number Porosity Tested by Archimedes’ Principle (%) Porosity Tested by CT Data (%)

1
2
3
4
5
6

43.5
49.4
54.8
58.2
62.8
66.9

44.3
50.5
54.7
58.8
63.4
67.4

3. Results and Discussion

Firstly, powder-binder separation in the whole green body can be analyzed by using the results
tested by 36 µm resolution. Figure 3A shows the reconstructed 3D rendering. Under this tested
condition, it can be seen that powder particles and binder cannot be clearly distinguished, thus,
the quantitative calculation of the feature structure by using threshold segmentation method cannot
be used. Due to the resolution limitation, the previous study used gray value distribution to analyze
powder-binder separation in the whole green body [14,15]. In this study, the average gray value of
each slice image along Z direction was obtained. As shown by the curve in Figure 3B, the gray value
increases from region 1 to region 2, then decreases from region 2 to region 3. Because the gray value
is proportional to the matter density, it can be seen that powder particles and binder accumulate in
the central parts and the areas near the gate, respectively, and the powder-binder separation mainly
occurs in these three regions.Metals 2018, 8, x FOR PEER REVIEW  5 of 9 
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Figure 3. (A) 3D rendering of the whole green body. (B) Gray value distribution along the
corresponding direction.

However, the powder-binder separation analysis by using gray value distribution is only based
on the physical inferences and this method lacks direct observation results to prove its accuracy. Next,
the results tested by a much higher resolution are analyzed to solve this problem.
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Figure 4A shows the reconstructed slice images tested by 2.3 µm resolution and this scanned
area is in the middle of the green body. It can be seen that powder particles and binder can be clearly
distinguished, thus volume fraction of the corresponding structure can be calculated by the way of
OSTU segmentation method. The extracted powder particles are shown in Figure 4B and the calculated
volume is 6003 voxels. Seen from Figure 4B, along Z direction, the average volume fraction and gray
value of each slice were calculated and the results are shown in Figure 4C,D, respectively. It can be
seen that the distributional characteristics of the curves are similar in the two graphs. The accuracy of
the analysis method by using gray value distribution was verified by the direct observation results.
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Figure 4. (A) Reconstructed slice image tested by 2.3 µm resolution. (B) The extracted powder
particles in the calculated volume. (C) Volume fraction distribution of the powder particles along
Z direction. (D) Gray value distribution of the slice images along Z direction. Every data point in the
two figures is the mean value of 5 samples, and the relative differences calculated by each sample’s
data and the corresponding mean value were less than 10.6% (reasonable value for X-ray tests) and
4.3%, respectively.

Seen from Figure 4C,D, the volume fraction of powder particle and gray value of each slice in
Region 2 are both higher than those of Region 1 and 3. This means that powder content tends to
accumulate in the central part. In the previous studies, this phenomenon was explained by the velocity
difference between the powder particles and binder during injection process. In the gate areas, shear
stress for the feedstock can be very high due to the maximum shear stress usually occurs near the gate.
Because the feedstock exhibits pseudo-plastic behavior, viscosity of the feedstock decreases near the
gate, which may induce the powder-binder separation. Moreover, note that the ability to maintain the
original velocity is related to the density of material, therefore, the velocity of powder particles was
faster than that of the binder near the gates. The binder with slower velocity was surely in arrears of
the powder particles, which led to more powder particles appearing in the central parts [14]. Thus, for
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the three regions, the different physical effects such as velocity and shearing rate lead to the different
powder-binder separation phenomenon.

Seen from Figure 4C the variation range of the powder content is about 62 ± 3 vol%. According
to the sintered quality of these samples, ±3% is a reasonable variation range.

To detect the more subtle phenomenon of the powder-binder separation during mold filling, the
tested results of 0.8 µm resolution were analyzed. Seen from Figure 5A,B, there are many pores in
the powder particles and the feature sizes can be obtained by using the measurement tool in visual
analysis software. It can be seen that CT test with high resolution can also be regarded as a powerful
method to evaluate the quality of powder particles.
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Figure 5. (A) Reconstructed slice image tested by 0.8 µm resolution. (B) Defect measurement of the
powder particles. (C) Packing state of the powder particles. (D) Statistic of the powder particle volume
distribution in the three local regions. Every data point in the figure is the mean value of 5 samples,
and the relative differences calculated by each sample’s data and the corresponding mean value were
less than 4.7%.

With the resolution increasing, the micro-structure details become much more clear and the
accurate morphology analysis can be performed. By the way of OSTU segmentation method, Figure 5C
shows the stack state of powder particles and the size of the calculated volume is also 6003 voxels.
Firstly, the volume size of each powder particle in the three regions was calculated and the statistical
results are shown in Table 6. It can be seen that a larger number of powder particles appears in the
central part and the average volumes of the three regions are similar. These data can explain that why
the powder content is higher in Region 2. By comparing the standard variance of the three regions in
Table 6, the size of the powder particles in the central part is revealed to be more uneven. The volume
distributions of powder particles in the three regions are shown in Figure 5D. The numbers of powder
particle with volume larger than 5000 µm3 are similar and there are more relatively small ones in
Region 2.
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Table 6. Statistical results of the volume and sphericity of the powder particles in the three local regions.

Area Amount

Vol. Sphericity

Average
Volume/µm3

Standard
Deviations

Average
Value

Standard
Deviations

Region 1 6821 8008 13143 0.801 0.167

Region 2 7743 7749 17479 0.854 0.151

Region 3 7064 7942 14633 0.81 0.161

Based on the computational principle of 3D morphology, the sphericity degree of the powder
particles were obtained and Table 6 shows the statistic results. Since this parameter of the standard
sphericity is obviously 1, it can be seen that much more spherical particles appeared in the central part
than in the gate area.

Combining with the statistical results obtained by the submicron resolution, in addition to the
density difference between powder particles and binder, another significant factor leading to the
powder binder separation is the size and shape difference of the powder particles. During mold filling,
because the powder particles with relatively small volume have smaller contact surface with the other
powder particles, their speeds were less affected by the friction. Moreover, for the feedstock mixture,
the powder particle shape that is closer to sphere certainly has better mobility.

4. Conclusions

Multiscale CT tests provided comprehensive information for us to successfully analyze
powder-binder separation phenomenon in the TC4 green bodies. Due to the density difference and
shear thinning behaviors, more powder particles moved to the central parts. Based on the submicron
tests (0.8 µm) results, powder particles with smaller size (volume less than 5000 µm3) and relative
spherical shape tended to accumulate in the central parts. Thus, the volume and morphology difference
of the powder particles aggravated powder-binder separation. The accuracy of the analysis method
used in the previous studies was verified by using the high resolution (2.3 µm) results.

Compared to the image segmentation, calculation process of the method by using gray value
distribution is much easier and the demand for the test resolution is low. Thus, statistical analysis of the
gray value distribution can be a more general method for the analysis of the powder-binder separation.
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