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Abstract: CeO2 samples prepared by three technological procedures from the same cerium source,
namely cerium (III) nitrate hexahydrate, are studied from the viewpoint of structure, chemical and
phase composition, and micro- and macro-magnetic properties. The scanning and transmission
electron microscopies completed by energy-dispersive X-ray (EDX) analysis yield nano-structural
natures and homogenous chemical compositions of the ceria samples, confirmed also by X-ray
diffraction. The diamagnetic, paramagnetic, and ferromagnetic phases in all samples follow from an
analysis of the room- and low-temperature measurements of hysteresis loops. Iron impurities in ppm
amounts are clearly detected by 57Fe Mössbauer spectrometry not only in the ceria samples but also
in the selected input chemicals used for their preparation. This contributes to the explanation of the
magnetic behaviour of nanosized ceria.

Keywords: CeO2; microstructure; magnetic properties; Mössbauer spectrometry

1. Introduction

Cerium, the chemical element with atomic number 58, is a silver-white metal and the second
element in the lanthanide series. It shows +3 and +4 oxidation states. The most widely used compound
of cerium is cerium oxide CeO2, known also as ceria. It crystallises in the fluorite crystal structure
with space group Fm3m (Figure 1) over the temperature range from room temperature to the melting
point. The fluorite structure consists of a face-centred cubic (f.c.c.) unit cell of cations, with anions
occupying the tetrahedral interstitial sites. This can also be seen as a superposition of a f.c.c. lattice of
cations (Ce4+) with lattice constant a and a simple cubic lattice of anions (O2−) with lattice constant
a/2. In this structure, each cerium cation is coordinated by eight nearest-neighbour oxygen anions,
while each oxygen anion is coordinated by four nearest-neighbour cerium cations [1]. The colour of
CeO2 is pale yellow. The CeO2 nanoparticles can be synthesised by solution-based methods including
co-precipitation, micro-emulsion processes, sol-gel techniques, combustion reaction, etc.
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Figure 1. Fluorite-type crystal structure of CeO2 (Ce atoms are in dark grey and O atoms are in light 
grey). 

Ceria is presently a frequently studied compound because of its unique physical properties, 
which offer a number of various applications. It is extensively used as a catalyst in various chemical 
processes, e.g., for the elimination of toxic auto-exhaust gases [2,3], as a glass-polishing material [4], 
or in biotechnology, environmental chemistry, and medicine [5,6]. The mobility of oxygen vacancies 
and consequently the high ionic conductivity determines ceria as a promising electrolyte for solid 
oxide fuel cells [7] and other applications [8]. Just the oxygen vacancies and their effects on the 
magnetic properties of ceria and some other nonmagnetic oxides, such as Al2O3 or ZnO, call for 
deeper investigations. The main reason is the puzzling large difference in obtained magnetic 
moments presented by authors all over the world. The origin of magnetic moments in these oxides, 
predominantly in their nano-sized form, is ascribed to a formation of localised electron spin 
moments at the oxygen vacancies particularly present at nano-particle surfaces. In the case of CeO2, 
another reason for its ferromagnetic behaviour has to be considered, namely the effects of Ce3+ ions 
on the nano-particle surfaces which, contrary to diamagnetic Ce4+ ions, carry their own magnetic 
moments. Recently, the magnetic behaviour of nanosized ceria has also been ascribed to a presence 
of a small amount of magnetic iron-based impurities. Their amount in units of ppm was detected by 
low-temperature magnetic measurements using a superconducting quantum interference device 
(SQUID) magnetometer and subsequently confirmed by 57Fe Mössbauer spectrometry, which is 
highly sensitive to the presence of iron atoms in a compound [9]. Nevertheless, some Ce-based 
compounds yield a relatively high magnetic moment even if no iron is detected by Mössbauer 
spectrometry. Therefore, the present study is concentrated on ceria prepared by different 
technological procedures. It continues our previous investigations [9,10] in order to shed more light 
on the magnetic behaviours of ceria and Ce-compounds. The nano-sized CeO2 powders were 
prepared from the same cerium (III) nitrate hexahydrate using three precipitation procedures with 
different chemicals. Their structural and physical analyses were completed by analysing selected 
chemicals used for CeO2 production from the viewpoint of possible iron and/or other chemical 
element contaminations.  

2. Materials and Methods  

Three cerium oxide samples, denoted as S4, S5, and S6, were prepared from the same cerium 
source (cerium (III) nitrate hexahydrate, 99.0%, Sigma-Aldrich) using different precipitation 

Figure 1. Fluorite-type crystal structure of CeO2 (Ce atoms are in dark grey and O atoms are in
light grey).

Ceria is presently a frequently studied compound because of its unique physical properties,
which offer a number of various applications. It is extensively used as a catalyst in various
chemical processes, e.g., for the elimination of toxic auto-exhaust gases [2,3], as a glass-polishing
material [4], or in biotechnology, environmental chemistry, and medicine [5,6]. The mobility of
oxygen vacancies and consequently the high ionic conductivity determines ceria as a promising
electrolyte for solid oxide fuel cells [7] and other applications [8]. Just the oxygen vacancies and
their effects on the magnetic properties of ceria and some other nonmagnetic oxides, such as Al2O3

or ZnO, call for deeper investigations. The main reason is the puzzling large difference in obtained
magnetic moments presented by authors all over the world. The origin of magnetic moments in these
oxides, predominantly in their nano-sized form, is ascribed to a formation of localised electron spin
moments at the oxygen vacancies particularly present at nano-particle surfaces. In the case of CeO2,
another reason for its ferromagnetic behaviour has to be considered, namely the effects of Ce3+ ions
on the nano-particle surfaces which, contrary to diamagnetic Ce4+ ions, carry their own magnetic
moments. Recently, the magnetic behaviour of nanosized ceria has also been ascribed to a presence
of a small amount of magnetic iron-based impurities. Their amount in units of ppm was detected
by low-temperature magnetic measurements using a superconducting quantum interference device
(SQUID) magnetometer and subsequently confirmed by 57Fe Mössbauer spectrometry, which is highly
sensitive to the presence of iron atoms in a compound [9]. Nevertheless, some Ce-based compounds
yield a relatively high magnetic moment even if no iron is detected by Mössbauer spectrometry.
Therefore, the present study is concentrated on ceria prepared by different technological procedures.
It continues our previous investigations [9,10] in order to shed more light on the magnetic behaviours
of ceria and Ce-compounds. The nano-sized CeO2 powders were prepared from the same cerium (III)
nitrate hexahydrate using three precipitation procedures with different chemicals. Their structural and
physical analyses were completed by analysing selected chemicals used for CeO2 production from the
viewpoint of possible iron and/or other chemical element contaminations.
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2. Materials and Methods

Three cerium oxide samples, denoted as S4, S5, and S6, were prepared from the same cerium
source (cerium (III) nitrate hexahydrate, 99.0%, Sigma-Aldrich) using different precipitation procedures.
The sample S4 was prepared by conventional direct precipitation of the cerous nitrate solution
with the saturated solution of oxalic acid, whereas the sample S5 was prepared by homogeneous
precipitation with dimethyl oxalate [11]. In both cases, the resulting cerous oxalates were dried
and annealed at 500 ◦C for 2 h in air to convert them into cerium oxides. The sample S6 was
prepared by a well-established precipitation/calcination synthetic route [12,13] using ammonium
carbonate as a precipitant, with subsequent calcination at 500 ◦C. Oxalic acid, dimethyl oxalate,
and ammonium bicarbonate were obtained from Sigma-Aldrich as reagent-grade chemicals with
purity above 99%. All solutions were prepared in deionised water obtained from a Demi Ultra
20 system (Goro, Prague, Czech Republic), in which reverse osmosis and mixed-bed ion-exchange
were used for water purification.

The selected chemicals were subjected to supplementary chemical and/or magnetic analysis.
Cerous nitrate 5N–N (CeN) of purity 99.999% (Sigma-Aldrich) was analyzed using the Inductively
Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), and the content of iron was determined
to be 3.61 ppm. This method was also used for cerous chloride 3N–C (denoted CeCl) of purity 99.9%
(Sigma-Aldrich), which is similarly frequently used for CeO2 production, and the content of Fe was
2.83 ppm. Both values are comparable with 1.78 ppm obtained for cerium (III) nitrate hexahydrate
99.0% used for the preparation of the S4, S5, and S6 samples.

The morphologies and microstructures of the samples were investigated using a TESCAN
LYRA 3XMU FEG/SEM scanning electron microscope (SEM, Brno, Czech Republic) operated at an
accelerating voltage of 20 kV. The microscope was also equipped with an XMax80 Oxford Instruments
detector (UK) for energy-dispersive X-ray (EDX) analysis. The structure in the nano-size dimension
was observed by a transmission electron microscope (TEM) Philips CM12 STEM (Amsterdam,
The Netherlands) with a thermoemission electron source operating at 120 kV. The powder samples
for SEM observation were prepared by spreading a small amount of powder onto a sticky conductive
tape, and those for TEM were treated ultrasonically in an ethanol bath for 5 min and then placed on
holey carbon copper grids.

X-ray diffraction (XRD) patterns were measured at room temperature (RT) using an X’PERT PRO
diffractometer with Co Kα radiation (λ = 0.17902 nm) in the 2θ range from 20◦ to 135◦ in steps of 0.01◦

and time per step of 5 s. The evaluation of powder patterns was realised by the Rietveld structure
refinement method [14] in semi-automatic mode, using the HighScore Plus program Version 4.8.0
(Malvern Panalytical, UK) and the ICSD database (FIZ Karlsruhe, Germany) of inorganic and related
structures [15]. The pattern analysis yielded the phase composition, lattice parameters, and the mean
crystallite size, representing a size of coherently diffracting domains.

Room- and low-temperature (RT, LT) hysteresis loops were measured using the Quantum Design
XL-7 superconducting quantum interference device (SQUID) magnetometer (Quantum Design, CA,
USA). Special care was devoted to the sample holder and to the sample handling procedures, to prevent
any contamination of the holder as well as the samples. The saturation magnetisation was derived
from the hysteresis loops at an accuracy of approximately ±1%.

The Mössbauer spectrometry was used to detect and/or exclude the contamination of the samples
with iron impurities. The measurements were performed at RT in standard transmission geometry
using 57Co(Rh) source. Calibration of the velocity scale was performed with α-Fe at RT and the
isomer shifts are given with respect to its Mössbauer spectrum. All spectra were evaluated using the
transmission integral approach in the program CONFIT [16]. The experimental points were analysed
by double- and single-line components yielding values of isomer shift (δ) and quadrupole splitting (∆).
The relative representation of these subcomponents is denoted by A.
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3. Results and Discussion

3.1. Morphology, Phase, and Chemical Composition

The morphologies of samples obtained using SEM are shown in Figure 2 (left panel). The EDX
chemical analysis has not detected any other elements besides Ce and oxygen (with a usual EDX
inaccuracy in light element quantification). Both integral (area of approx. 1 mm2) and point chemical
analyses in all three samples were done from several places, and the mean values summarised in Table 1
do not yield any systematic difference. Similarly, there is no important difference in microstructure
among the samples and, therefore, the TEM observation was done for the S6 sample only and the
resulting fine nanostructure, including confirmation of CeO2 f.c.c. crystal structure by the diffraction
pattern, is seen in Figure 3. The TEM micrograph clearly shows that the particle size ranges between
approximately 10 and 50 nm.
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Figure 2. Left panel: SEM morphology of the cerium oxide samples S4 (a), S5 (b), and S6 (c). Right panel:
X-ray diffraction patterns.

Table 1. Mean chemical composition (at. %) of the S4, S5, and S6 samples obtained by energy-dispersive
X-ray (EDX) analysis.

Sample/Element Area Point

S4
Ce 28.4 ±4.6

19.1 ±4.1
O 71.6 80.9

S5
Ce 28.6 ±0.2

24.8 ±5.0O 71.4 75.2

S6
Ce 27.9 ±0.4

26.2 ±2.7O 72.1 73.8
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Figure 3. TEM micrographs of the S6 sample nanostructure (a,b) and diffraction with analysed
face-centred cubic (f.c.c.) CeO2 phase (c).

The electron microscope observations are in good agreement with X-ray diffraction measurements.
The patterns of all samples depicted in Figure 2 (right panel) were analysed by the same ICSD 28753
data sheet for the 225 (Fm3m) space group, and the denoted (hkl) peaks are practically identical.
They represent the CeO2 phase. The lattice parameters for S4, S5, and S6 samples: 0.5414(1) nm,
0.5413(1) nm, and 0.5415(1) nm, respectively, are identical in the frame of accuracy of measurement.
A slight difference is observed only in the crystallite (microdomain) size, d, calculated using the Scherrer
formula employing parameters of (111) peak: d = 15.1 nm for S4, d = 21.8 nm for S5, and d = 19.01 nm for
S6. These results point out the nanocrystalline nature of studied samples and confirm the representative
TEM result in Figure 3, rather than quite large CeO2 plates (seemingly single crystals) shown by SEM
in Figure 2 (left panel).

3.2. Macroscopic Magnetic Properties

The hysteresis curves of the S4, S5, and S6 samples measured at RT are presented in Figure 4
(left panel) and those obtained at a low temperature of 2 K are summarised in the middle panel.
They consist of diamagnetic, paramagnetic, and ferromagnetic contributions. The diamagnetic
contribution is reflected at all hysteresis loops by a decrease of magnetisation at higher magnetic
fields. It is described by a negative magnetic susceptibility, χD, practically independent on the applied
temperature. Estimated values of χD of the studied samples are summarised in Table 2. A sharp
magnetisation reversal at lower magnetic fields seen at the RT hysteresis loops in Figure 4 (left panel) is
indicative of the ferromagnetic contribution. This can originate in a large number of structural defects,
particularly surface oxygen vacancies mentioned by some authors [17–21], and/or magnetic impurities,
namely iron [9,10] contributing to small values of RT ferromagnetic saturation magnetisation of an
order of 10−3 Am2/kg, detected also in other usually nonmagnetic compounds [22]. The analysis of
the present magnetic measurements of the S4, S5, and S6 samples has resulted in the detection of a
small amount of iron impurities, in units of ppm as seen in Table 2.

The paramagnetic contribution is practically hidden in the RT measurements, but it can be
well determined from the LT curves. Contrary to the diamagnetic contribution, the paramagnetic
contribution following the Curie–Weiss law is strongly dependent on temperature. It could be
determined from the LT hysteresis loops in Figure 4 (middle panel) after a subtraction of the
diamagnetic and ferromagnetic contributions. This has resulted in magnetisation curves in Figure 4
(right panel) that are compared with the Brillouin function (dash-dotted line) calculated using a total
electronic angular momentum J = 5/2 and the Lande’s g-factor g = 6/7. The estimated saturation
paramagnetic moment Mspm (Table 2) can be converted to the Bohr magneton per formula unit
(Mspm/12), and then compared with the theoretical saturation moment of Ce3+ ions equal to 2.54 µB.
This resulted in a low concentration of the Ce3+ ions in all samples, reaching about 10−3, which is
substantially less compared to the diamagnetic Ce4+ ions.



Metals 2019, 9, 222 6 of 9

Metals 2019, 9 FOR PEER REVIEW  6 

 

 
Figure 4. Measured hysteresis loops at 300 K (left panel) and 2 K (middle panel) of the S4 (a), S5 (b), 
and S6 (c) samples. Paramagnetic contribution is obtained after diamagnetic and ferromagnetic 
correction and compared to the Brillouin function (right panel). 

Table 2. Parameters determined from the magnetic measurements and from the Brillouin function: 
χD—diamagnetic susceptibility established from 300 K and 2 K hysteresis loops; Msfm 
300 K—saturation magnetisation of ferromagnetic contribution at 300 K; Mspm 2 K—saturation 
magnetisation of paramagnetic contribution at 2 K. 

Sample 
χD 

(m3/kg) 
Msfm 300 K 
(Am2/kg) 

Fe content 
(ppm) 

Mspm 2 K 
(Am2/kg) 

Ce3+ concentration 
(-) 

S4 -4.5·10-9 0.0020 9 0.028 0.0009 
S5 -1.1·10-8 0.0008 3 0.045 0.0015 
S6 -2.1·10-8 0.0014 6 0.160 0.0052 

As it was mentioned above, the selected chemicals, namely those at which the iron impurities 
were evidenced by ICP-AES analysis, were studied by magnetic techniques as well.  The small 
amounts of iron impurities (2.83 ppm in CeN and 3.61 ppm in CeCl) have caused a weak 
magnetisation reversal at the room temperature and at the low applied fields. This was similar to 
ferromagnetic contributions detected in the CeO2 samples. Moreover, the RT hysteresis loops (not 
presented here) exhibited paramagnetic responses with mass magnetisation of about 0.3–0.5 Am2/kg 
at magnetic fields of 5.6 MA/m (7 T), and mass susceptibilities of 5x10-8 m3/kg for CeN and of 6x10-8 
m3/kg for CeCl. The much stronger paramagnetic moment of about 15–20 Am2/kg was obtained from 
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Figure 4. Measured hysteresis loops at 300 K (left panel) and 2 K (middle panel) of the S4 (a), S5 (b),
and S6 (c) samples. Paramagnetic contribution is obtained after diamagnetic and ferromagnetic
correction and compared to the Brillouin function (right panel).

Table 2. Parameters determined from the magnetic measurements and from the Brillouin function:
χD—diamagnetic susceptibility established from 300 K and 2 K hysteresis loops; Msfm 300 K—saturation
magnetisation of ferromagnetic contribution at 300 K; Mspm 2 K—saturation magnetisation of
paramagnetic contribution at 2 K.

Sample χD
(m3/kg)

Msfm 300 K
(Am2/kg)

Fe Content
(ppm)

Mspm 2 K
(Am2/kg)

Ce3+

Concentration (-)

S4 −4.5·10−9 0.0020 9 0.028 0.0009
S5 −1.1·10−8 0.0008 3 0.045 0.0015
S6 −2.1·10−8 0.0014 6 0.160 0.0052

As it was mentioned above, the selected chemicals, namely those at which the iron impurities
were evidenced by ICP-AES analysis, were studied by magnetic techniques as well. The small amounts
of iron impurities (2.83 ppm in CeN and 3.61 ppm in CeCl) have caused a weak magnetisation
reversal at the room temperature and at the low applied fields. This was similar to ferromagnetic
contributions detected in the CeO2 samples. Moreover, the RT hysteresis loops (not presented here)
exhibited paramagnetic responses with mass magnetisation of about 0.3–0.5 Am2/kg at magnetic
fields of 5.6 MA/m (7 T), and mass susceptibilities of 5 × 10−8 m3/kg for CeN and of 6 × 10−8 m3/kg
for CeCl. The much stronger paramagnetic moment of about 15–20 Am2/kg was obtained from
the hysteresis loops measured at the low temperature of 2 K. Based on the certificates mentioning
cerium occurring in combination with other lanthanide impurity elements, the strong paramagnetic
moment was successfully analyzed by the Brillouin function of neodymium (J = 4, g = 0.603) and/or
praseodymium (J = 4.5, g = 0.732) overlapping the magnetically poor response of cerium.
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3.3. Mössbauer Spectrometry

The Mössbauer spectrometry was used to verify a presence of iron in the samples and selected
chemicals frequently used in the production of cerium oxide. The measured and analysed Mössbauer
spectra in Figure 5a clearly prove a presence of iron in all three samples. The lower effect of
measurements of coarser powders of the chemicals (Figure 5b) has evoked extended times of data
reading. Nevertheless, the spectra confirm a presence of iron in the chemicals as well. A slightly
better effect, observed at CeN, corresponds to the higher Fe content followed from the ICP-AES.
The spectra of the samples were evaluated using one double-line component with hyperfine parameters
(isomer shift, δ, and quadrupole slitting, ∆) not too different in the frame of experimental errors:
S4: δ = 0.229(10) mm/s, ∆ = 0.316(15) mm/s; S5: δ = 0.251(19) mm/s, ∆ = 0.303(34) mm/s;
and S6: δ = 0.232(12) mm/s, ∆ = 0.333(18) mm/s. The spectra of chemicals were analysed using
the singlet of δ = 0.218(68) mm/s for CeCl and δ = 0.374(31) mm/s for CeC, and a doublet for CeN of
δ = 0.397(43) mm/s and ∆ = 0.118(106) mm/s. Though the measurements are limited by the sensitivity
of the Mössbauer effect, they support the magnetic results and confirm well the chemical analysis
yielding small amounts of iron (see Section 2). They are not substantially different from the previous
findings presented in Refs. [9,10].

It is also evident that the preparation of the “iron-free” cerium oxide would require more
sophisticated synthetic routes and/or a utilisation of the iron-free starting materials. Although some
of the used procedures are recommended for the separation of rare earths from common metals
(precipitation of oxalates) [23], they are obviously unable to remove the residual amounts of iron from
cerium at the ppm level completely.
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4. Conclusions

The study is devoted to a clarification of the magnetic behaviour of ceria in its nano- up to
micro-sized forms. The room- and low-temperature magnetic measurements of the samples prepared
from the cerium (III) nitrate hexahydrate source and using three different precipitation reactions clearly
prove the presence of the diamagnetic, paramagnetic, and ferromagnetic phases. While the effect
of Ce3+ ions as carriers of their own magnetic moments can be excluded due to their insignificant
concentration compared to diamagnetic Ce4+ ions in ceria, the iron impurities detected by chemical
analysis, reflected in hysteresis loops, and confirmed by Mössbauer spectrometry play a significant
role despite their small amount. Their well-established presence in ceria excludes the effect of oxygen
vacancies as a unique source of ceria magnetism.

As follows from the present ICP-AES analyses and from certificates provided by the supplier,
the raw materials (Ce sources) for the ceria preparation contained trace amounts of iron, typically at
the level of several ppm, that was also confirmed by other experimental methods used here. Similarly,
the precipitating agents were also not completely iron-free. For example, the content of iron in oxalic
acid and ammonium carbonate ranges between 2 and 5 ppm according to specifications, and a similar
value may be expected also in dimethyl oxalate. This raises a question of whether it is in general
possible to produce ceria free of iron, in spite of the synthetic routes (especially those utilising oxalic
acid and dimethyl oxalate) which are declared as highly selective separation methods for the rare
earths purification. The effect of neodymium and/or praseodymium, detected in the chemicals, on the
magnetic behaviour of ceria also remains unclear.
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