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Abstract: This work investigates overload-induced retardation effects for semi-elliptically cracked
steel round bars. The specimen geometry equals the shaft area of a 1:3 down-scaled railway axle and
the material is extracted from railway axle blanks made of EA4T steel. Rotating bending tests under
constant amplitude loading as well as overload tests considering overload ratios of ROL = 2.0 and
ROL = 2.5 are conducted. The experimental results are compared to a crack growth assessment based
on a modified NASGRO equation as well as the retardation model by Willenborg, Gallagher, and
Hughes. The evaluated delay cycle number due to the overload by the experiments and the model
shows a sound agreement validating the applicability of the presented approach.
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1. Introduction

In order to assess the fatigue life under variable amplitude load (VAL) scenarios, the use of the
linear damage accumulation rule according to Palmgren [1] and Miner [2] still acts as a standardized
approach, due to the comparably engineering-feasible applicability. However, especially the impact of
load sequences, such as retardation effects by intermediate overloads, majorly affect the fatigue life
under VAL, which is not properly considered applying this rule [3]. In general, the retardation effect
is a physically complex phenomenon, which is influenced by several interacting factors such as the
loading condition, metallurgical properties, environment, and others [4].

According to Carlson et al. [5], the most significant mechanisms affecting the retardation behavior
after a single overload are based on residual stresses [6], crack deflection [7], crack closure [8], strain
hardening [9] as well as plastic crack tip blunting/resharpening [10]. Several models to assess the
retardation effect during VAL are available, whereas in [11], a separation in yield zone and crack closure
concepts is presented. Herein, the models by Wheeler [12], Willenborg et al. [13], Porter [14], Gray and
Gallagher [15], Gallagher and Hughes [16], Johnson [17], as well as by Chang et al. [18] are highlighted
in the case of the yield zone concepts. For the crack closure approaches, the models by Elber [8], Bell and
Creager [19], Newman [20], Dill and Staff [21], Kanninen et al. [22], Budiansky and Hutchinson [23],
as well as by de Koning [24] are referred. Due to their simplicity and the advantage that model
parameters can be practicably evaluated by experiments, the yield zone models are commonly applied
within crack growth assessments considering retardation effects at VAL [25]. Further details regarding
the crack growth behavior under VAL, as well as the application of assessment models are provided
in [26].
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This paper focuses on the retardation effect in case of round bars containing semi-elliptical
cracks. The investigations are part of the research project Eisenbahnfahrwerke 3 (EBFW 3) [27], which
holistically analyzes the residual fatigue life of railway axles in order to properly assess inspection
intervals [28]. As maintained in [29], the material parameters, loading conditions, as well as the
initial crack geometry act as fundamental factors influencing a safe life fatigue assessment of railway
axles [30]. A study in [31] demonstrates that measured load spectra of railway axles majorly affect
the residual life; hence, sequence effects such as crack retardation need to be considered within
the crack growth estimation. In addition, within the EBFW 3 project, the transferability of fracture
mechanical parameters from small-scale, single edged tension or bending (SET or SEB) specimens
with straight crack fronts to full-scale railway axles, containing semi-elliptical cracks is investigated,
see [27]. In between these two completely different geometries and dimension, a down-scaled round
bar specimen, denoted as 1:3 specimen, is used to investigate the issue of transferability in detail.
Further details regarding the manufacturing and testing procedure of the 1:3 scaled specimens and
experimental results covering constant amplitude and overloads are provided in [32]. In summary,
this paper scientifically contributes to the following research topics:

• Crack growth tests with 1:3 round bar specimens, incorporating constant amplitude loading, as
well as the effect of overloads.

• Application of a yield zone model based on small-scale SEB specimen test data to assess the
influence of overloads on the fatigue crack retardation of the 1:3 specimens.

• Comparison of results by experiments, modelling and evaluation of the transferability of test
data from small-scale SEB specimens, with straight crack fronts to round bars containing
semi-elliptical cracks.

2. Materials and Methods

Within this study, a commonly applied steel for railway axles, namely EA4T, is investigated as
base material. In [33] the crack growth behavior for this steel is presented. The nominal chemical
composition and mechanical properties are provided in Tables 1 and 2.

Table 1. Nominal chemical composition of investigated steel material in weight per cent [33].

Steel C Si Mn Cr Mo P S Fe

EA4T 0.26 0.29 0.70 1.00 0.20 0.0200 0.007 Balance

Table 2. Nominal mechanical properties of investigated steel material [33].

Steel f y (MPa) f u (MPa) A (%)

EA4T 631 789 18.5

As introduced, 1:3 scaled round specimens, which are manufactured from real railway axle blanks
are investigated. The testing diameter of the 1:3 scaled specimens measures 55 mm including one
semi-elliptical crack, with an initial minimum surface length of about 2s = 4 mm. The initial crack
depth, a, and surface crack length, s, equals a ratio of a/s = 0.8. Prior to this initial crack, a semi-elliptical
notch with a notch depth of a = 1 mm and a surface length of 2s = 2.5 mm is manufactured by spark
eroding. Based on a cyclic load crack initiation procedure, using similar testing conditions as for the
subsequent crack growth tests, the described initial crack dimensions are realized. The size of every
initial crack is measured at the fracture surface after each crack growth experiment showing a sound
reproducibility of the initial crack characteristics.

The crack growth experiments are conducted under rotating bending loading. Details of the
testing procedure and the optical surface crack length measurement are provided in [32]. Firstly,
constant amplitude load (CAL) tests are performed in order to validate the applicability of the crack
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growth model for constant load conditions. Secondly, overload tests that consider the varying overload
ratios are executed in order to research retardation effects.

Finally, an analytical fatigue crack growth assessment, using the software, Integrity Assessment
for Railway Axles (INARA) (Version 19-3-2018_13-47, Materials Center Leoben Forschungs GmbH,
Leoben, Austria), which uses a modified NASGRO approach [34] as well as a yield zone concept [35]
to cover retardation effects, is performed. The model parameters are based on small-scale SEB tests;
hence, a comparison of the model results and the 1:3 experiments demonstrate the applicability of the
assessment procedure and the transferability of fracture mechanical parameters. The utilized crack
growth model is described in detail in the following.

According to Forman and Mettu [36], the crack growth rate da/dN can be described, based on
Equation (1), which is known as the NASGRO equation.

da
dN

= C·F·∆Km·

(
1 − ∆Kth

∆K

)p

(
1 − Kmax

KC

)q with Kmax =
∆K

1 − R
(1)

Herein, a is the crack depth, N is the number of load-cycles, F is the crack velocity factor, R is the
load stress intensity factor ratio, ∆K is the stress intensity factor range, ∆Kth is the threshold stress
intensity range, KC is the fracture toughness, and C, m, p, and q are material constants. The factor F is
calculated based on Equation (2) considering the crack opening function f, which is defined as the ratio
of the crack opening and maximum value of the stress intensity factor, see [37].

F =

(
1 − f
1 − R

)m
and f =

Kop

Kmax
(2)

As shown in Equation (1), the threshold stress intensity range ∆Kth acts as one input material
parameter for the crack growth assessment. Therefore, not only the threshold of the long crack ∆Kth,lc,
but also the effective value ∆Kth,eff for physically short cracks need to be considered. The transition
from ∆Kth,eff to ∆Kth,lc by a certain value of crack extension ∆a is based on crack closure effects [38] and
denoted as the crack growth resistance curve for the threshold of the stress intensity range, usually
abbreviated as R-curve. Details regarding the determination and limitations are provided in [39].
In [34], the R-curve is defined by Equation (3), where the parameters li act as fictitious length scales for
the build-up of the different crack closure effects.

∆Kth = ∆Kth,e f f +
(

∆Kth,lc − ∆Kth,e f f

)
·
[

1 −
n

∑
i=1

νi exp
(
−∆a

li

)]
with

n

∑
i=1

νi = 1 (3)

Furthermore, an empirical approach for the crack velocity factor F is developed in [34], which
additionally considers the R-curve within the evaluation of the factor F, see Equation (4).

F = 1 − (1 − Flc)·
[

1 − exp
(
−∆a

lF

)]
with Flc =

(
1 − f
1 − R

)m
(4)

Hence, the modified NASGRO equation using Equation (1) considers the R-curve based on
Equation (3), and the crack velocity factor F, as given in Equation (4), is applied to assess the crack
growth behavior under constant amplitude loading. To additionally cover retardation effects due
to overloads under variable amplitude load scenarios, a yield zone concept based on the model by
Willenborg [13], Gallagher, and Hughes [16] is presented in [35]. Due to its engineering-feasible
applicability, this yield zone concept is used and slightly modified improve the practicability for
varying railway axle steel materials, see [35]. Herein, the residual stress intensity factor due to
overloads Kres,OL can be determined by Equation (5).
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Kres,OL = KOL·Kmax,OL·
(

1 − ∆a
zOL

)γOL

− Kmax (5)

Herein, COL is a dimensionless constant for the plasticity-induced residual stress intensity factor,
Kmax,OL is the maximum stress intensity factor during the overload, ∆a is the crack extension, zOL is the
size of the overload influenced zone, γOL is a material-dependent exponent, and Kmax is the maximum
stress intensity factor of the basic load, see Equation (1).

Originally, the parameter zOL is calculated by α(Kmax,OL/σy)2 with α depending on plane stress
or strain condition, see [13,16]. In [35], the value zOL is evaluated based on Equation (6), where the
parameters LOL and pOL are determined by statistical regression based on experiments with SEB
specimens and ∆Kth,0 equals the long crack threshold value at R = 0.

zOL = LOL·(Kmax,OL − ∆Kth,0)
pOL (6)

Finally, the crack growth retardation effect, due to overloads is accounted in Equation (1) by
considering an effective stress intensity factor ratio Reff, which is calculated by Equation (7). One can
see that Kres,OL influences Reff and therefore affects the crack growth rate da/dN.

Re f f =
Kmin + Kres,OL

Kmax + Kres,OL
(7)

As shown in [35], the parameters of the used retardation model are evaluated based on small-scale
SEB tests, with the same base material. In the course of the SEB investigations, it is found that the
retardation effect may be over-estimated by the model, leading to significantly low crack growth
rates or even no crack propagation at all. This may result in a non-conservative consideration of
the retardation effect, which should be avoided in practical application. Hence, an additional factor,
denoted as retardation factor RF, is incorporated, which limits the crack growth rate da/dN to a lower
boundary value. The factor is defined as the ratio of the reduced crack growth rate after the overload to
the crack growth rate, at the base load before the overload. Based on the SEB tests, a value of RF = 0.10
is suggested, which equals a maximum decrease of da/dN by the retardation effect down to 10% of
the crack growth rate before the overload. The transferability of this RF-value from SEB to round 1:3
scaled railway axle specimens should be validated within this study.

Besides the overload effect, the software package INARA additionally can also take oxide-induced
crack closure effects into account. A recently published study [40] presents results of SEB tests, which
concludes that the long crack threshold is very sensitive to the influence of oxide debris effects.
However, as the focus of the research within this paper is laid on the influence of overloads, due
to plasticity-induced retardation effects, the oxide induced crack closure is not considered within
this work. Parameters of the applied modified NASGRO model for the investigated steel EA4T are
provided in Table 3.

Table 3. Parameters of applied modified NASGRO model for steel EA4T.

C
(mm/(MPa

√
m)) m (-) p (-) ν1 (-) ν2 (-) l1 (mm) l2 (mm) lF (mm) ∆Kth,eff

(MPa
√

m)
∆Kth,0

(MPa
√

m)

1.92 × 10−8 2.64 0.32 0.43 0.57 0.41e-3 1.75 0.01 2.00 7.35

Regarding the retardation model, values of COL = 1.0, γOL = 0.37, pOL = 2.72, and LOL = 7.62 ×
10−4 mm are used, for details see [35]. In accordance with a preceding study [41] that focuses on the
constant crack growth behavior of another commonly used steel material for railway axles, namely
EA1N, the stress intensity factor for the semi-elliptical crack in round bars is analytically calculated
according to [42], and furthermore summarized in [43]. As aforementioned, the surface crack length
is optically measured during the experiments [32]; hence, in the following, all test results, as well as
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crack propagation parameters are related to the crack extension at the surface. Due to the cut-out of
the specimens from real railway axle blanks, minor residual stresses up to 20 MPa are still measured,
see [41]. As it is highlighted in [41] that these comparably minor residual stresses significantly affect
the crack growth characteristics, the accordant residual stress values are considered within this study
to properly assess the crack propagation. Further details are given in [41].

3. Results

3.1. Constant Amplitude Tests

At first, constant amplitude load tests (CAL) are performed to validate the applicability of the
utilized crack propagation model under constant loads. Figure 1 shows the results of CAL test #1,
which is tested at a nominal bending stress amplitude of σa = 100 MPa. During the experiment, the
surface crack length, 2s, is optically measured and the crack propagation test is stopped at a final crack
length of 2s~18 mm. Utilizing the crack length 2s versus the accordant number of load-cycles, N, in
Figure 1a, the crack propagation rate d(2s)/dN is computed. The corresponding surface stress intensity
factor range ∆KS is calculated based on the procedure in [42], thereby enabling the representation
of the d(2s)/dN vs. ∆KS diagram, as depicted in Figure 1b, for further comparison with the crack
propagation model.
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Figure 1. Results of amplitude load tests (CAL) test #1 at load of σa = 100 MPa (a) surface crack length
vs. load-cycles; (b) crack propagation rate versus stress intensity factor.

At the beginning of the experiment, decreased crack growth rates down to a value of about 1e-7
mm per load-cycle (LC) are observable, which occur due to the short crack effect [34,39], as well as
the prior crack initiation procedure. However, after this initiation and short crack phase, the crack
constantly grows leading to a d(2s)/dN vs. ∆KS curve as presented. The fracture surface of CAL test
#1 is illustrated in Figure 2. One can clearly see the initial starting notch at the top center of the picture
as well as the further crack propagation area. At the final surface crack length of 2s~18 mm, the crack
depth exhibits a~8 mm leading to a final ratio of a/s~0.9.

In Figure 3, the results of CAL test #2, which is tested at an increased nominal bending stress
amplitude of σa = 150 MPa, is demonstrated. Starting from the same crack length of 2s = 4 mm as for
CAL test #1, the total lifetime until the final crack length of 2s~18 mm is only about 1 × 106 load-cycles,
due to the increased bending load, see Figure 3a. Again, the crack propagation rate d(2s)/dN versus
the surface stress intensity factor range ∆KS is evaluated, shown in Figure 3b.

Based on the described modified NASGRO equation, the constant crack propagation model is
applied and the results are compared to the results of CAL test #1 and #2. Cyclic crack resistance
(R-) curves as well as the constant long crack growth behavior for the investigated EA4T steel are
presented in [27], which act as basis for the crack growth assessment in this work. A comparison of the
crack propagation model with the CAL tests is demonstrated in Figure 4. It is shown that the model



Metals 2019, 9, 156 6 of 13

fits well to both CAL crack propagation tests with a somewhat conservative assessment for lower
stress intensity factor ranges. However, these results prove the transferability of the model parameters
evaluated by small-scale SEB specimens to semi-elliptically cracked round bars. Further details of the
transferability and used parameters are provided in [41].
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3.2. Overload Tests

3.2.1. Overload Ratio ROL = 2.0

Second, crack propagation tests, including overloads are performed in order to validate the
applicability of the model to cover retardation effects. In Figure 5, the results of Overload test #1
applying ten overloads under the same load stress ratio of R = −1 with an overload ratio of ROL = 2.0
is illustrated. The surface crack length 2s over load-cycles N in Figure 5a shows that the overload is
applied at 2s~9.4 mm, which equals a surface stress intensity factor range of ∆KS~17 MPa·m1/2 under
the base load bending stress of σa = 100 MPa.
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The specimen’s fracture surface of Overload test #1 is depicted in Figure 6. In accordance with the
CAL tests, the initial starting notch is again observable at the top middle. Again, the crack initiation is
visible due to minor crack propagation rates at the beginning of the experiment, compare to Figure 5b,
which merges into the crack growth regime. Reaching a surface crack length of 2s~9.4 mm, the applied
overload is clearly detectable in the fracture surface. At the end of the experiment, the final a/s-ratio
equals about a value of 0.9, which is in accordance to the CAL tests.
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Similar to the first overload test, Figure 7 shows the results of the Overload test #2, applying the
identical overload ratio of ROL = 2.0 under the same testing conditions. Again, the retardation effect is
pronounced, leading to a delay cycle number of Nd~1.7 × 105. Compared with the Overload test #1
this value is reduced; however, it is still beneficial influence as the overload is recognizable.Metals 2019, 9, x 8 of 13 
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To assess the overload-induced retardation effect, the previously described procedure, using a
modified method based on the approach by Willenborg et al. is applied. Values for the investigated
steel EA4T are evaluated on the basis of SEB tests and are provided in Table 3 on the basis of [35].
These parameters are used to estimate the overload effect for the semi-elliptically cracked round bars
within this study; therefore, validating the transferability of the model parameters from small-scale
SEB to 1:3 scaled railway axle specimen tests, incorporating varying global specimen geometry, as well
as different shapes of the crack front.

As previously described, within the crack growth assessment the additional retardation factor RF
is included, which defines the maximum decrease of the crack propagation rate, due to the overload
compared to the prior base load. A factor of RF = 0.10 means that subsequent to the overload, the
retardation effect can decrease the crack propagation rate to a minimum of 10% of the value at the base
load, before the overload. In this work, two different RF-values in particular, RF = 0.10 and RF = 0.05,
are analyzed to highlight the impact of the retardation factor on the overload effect. As stated, a value
of RF = 0.10 is suggested, based on preliminary performed SEB overload tests in [35]. The transferability
of this value RF = 0.10 and additionally the effect of using RF = 0.05, which enables a more pronounced
retardation effect within the model, is studied.

A comparison of the crack propagation model with the results of the Overload test #1 and #2,
both with ROL = 2.0 is shown in Figure 8. In general, the results reveal a sound agreement between the
model and the experiments. The parameter set, considering RF = 0.05 exhibits a greater decrease of the
retardation-affected crack growth rate, leading to a delay cycle number of Nd~3.78 × 105 compared to
RF = 0.10 with Nd~2.1 × 105 as highlighted in the preceding paragraph. However, the applied model
seems to cover both the constant amplitude as well as the overload-affected region well. A further
discussion comparing the delay cycle number Nd of the model to the experiments is given in Section 4.

Besides the retardation effect, a different crack growth behavior, at the beginning of both tests,
can be observed. As aforementioned within the CAL tests, the decreased crack propagation rates
at the beginning are a result of the short crack effect as well as the prior crack initiation procedure.
The deviation in this case can be primarily explained by a varying initial surface crack length 2s
between both tests. However, the same load stress amplitude is used and the overload is applied at
the same surface crack length, thereby ensuring a sound comparison of both overload test results.
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3.2.2. Overload Ratio ROL = 2.5

Similar to the Overload tests #1 and #2 with ROL = 2.0, two further experiments with ROL =
2.5, denoted as Overload tests #3 and #4, are conducted. The test results are depicted in Figures 9
and 10 respectively, which highlight a pronounced retardation effect in both cases. The delay cycle
number of Overload test #3 is evaluated to Nd = 4.7 × 105, and for Overload test #4 to Nd = 8.5 ×
105. On average, this equals an increase in Nd from ROL = 2.0 to ROL = 2.5 by about a factor of three,
proving the significant impact of the overload ratio ROL on the retardation effect.

Metals 2019, 9, x 9 of 13 

 

 
Figure 8. Comparison of crack propagation model with results of Overload test #1 and #2. 

3.2.2. Overload Ratio ROL = 2.5 

Similar to the Overload tests #1 and #2 with ROL = 2.0, two further experiments with ROL = 2.5, 
denoted as Overload tests #3 and #4, are conducted. The test results are depicted in Figures 9 and 10 
respectively, which highlight a pronounced retardation effect in both cases. The delay cycle number 
of Overload test #3 is evaluated to Nd = 4.7 × 105, and for Overload test #4 to Nd = 8.5 × 105. On average, 
this equals an increase in Nd from ROL = 2.0 to ROL = 2.5 by about a factor of three, proving the 
significant impact of the overload ratio ROL on the retardation effect. 

  
Figure 9. Results of Overload test #3 with ROL = 2.5 (a) surface crack length versus load-cycles;  
(b) crack propagation rate vs. stress intensity factor. 

  
Figure 10. Results of Overload test #4 with ROL = 2.5 (a) surface crack length versus load-cycles;  
(b) crack propagation rate vs. stress intensity factor. 

Figure 9. Results of Overload test #3 with ROL = 2.5 (a) surface crack length versus load-cycles; (b) crack
propagation rate vs. stress intensity factor.

Metals 2019, 9, x 9 of 13 

 

 
Figure 8. Comparison of crack propagation model with results of Overload test #1 and #2. 

3.2.2. Overload Ratio ROL = 2.5 

Similar to the Overload tests #1 and #2 with ROL = 2.0, two further experiments with ROL = 2.5, 
denoted as Overload tests #3 and #4, are conducted. The test results are depicted in Figures 9 and 10 
respectively, which highlight a pronounced retardation effect in both cases. The delay cycle number 
of Overload test #3 is evaluated to Nd = 4.7 × 105, and for Overload test #4 to Nd = 8.5 × 105. On average, 
this equals an increase in Nd from ROL = 2.0 to ROL = 2.5 by about a factor of three, proving the 
significant impact of the overload ratio ROL on the retardation effect. 

  
Figure 9. Results of Overload test #3 with ROL = 2.5 (a) surface crack length versus load-cycles;  
(b) crack propagation rate vs. stress intensity factor. 

  
Figure 10. Results of Overload test #4 with ROL = 2.5 (a) surface crack length versus load-cycles;  
(b) crack propagation rate vs. stress intensity factor. 

Figure 10. Results of Overload test #4 with ROL = 2.5 (a) surface crack length versus load-cycles;
(b) crack propagation rate vs. stress intensity factor.



Metals 2019, 9, 156 10 of 13

As presented for ROL = 2.0 in Figure 8 before, the Overload tests #3 and #4 with ROL = 2.5 are
again compared to the crack propagation model considering RF = 0.10 and RF = 0.05, see Figure 11.
Here, the model again fits well to both experiments, whereas the retardation factor of RF = 0.10 leads
to a reduced pronounced overload effect, with a final delay cycle number of Nd~6.7 × 105 compared
with the value of RF = 0.05 leading to Nd~1.6 × 106. A comparison of the delay cycles Nd of the model
and the experiments is shown in the next section.
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4. Discussion

As the focus of this paper is laid on the applicability of the presented crack growth assessment
for overload-induced retardation effects, this section compares the overload tests with the crack
propagation model in terms of the evaluated delay cycle numbers Nd. Table 4 summarizes the values
of Nd for the Overload tests #1 and #2 with ROL = 2.0 with the results of the model, by considering
a retardation factor RF = 0.10 and RF = 0.05. On average, a delay cycle number of Nd~2.2 × 105 is
evaluated for the experiments, which equals well the value of 2.1 × 105 of the model using RF = 0.10.
Applying a factor of RF = 0.05, a significantly increased pronounced overload effect occurs, which
leads to a non-conservative delay cycle number of 3.8 × 105.

Table 4. Delay cycles Nd by experiment and model for overload tests with ROL = 2.0.

Experiment Nd by Experiment (-) Nd by Crack Propagation Model (-)

Overload test #1 2.6 × 105
2.1 × 105 (RF = 0.10) and 3.8 × 105 (RF = 0.05)Overload test #2 1.7 × 105

A similar analysis for the Overload tests #3 and #4 with ROL = 2.5 is provided in Table 5. There,
a mean value of of Nd~6.6 × 105 is evaluated for the experiments, which again matches well to the
value of 6.7 × 105 of the model using RF = 0.10. Considering RF = 0.05 leads to a non-conservative
assessment with a delay cycle number of 1.6 × 106 as shown for ROL = 2.0.

Table 5. Delay cycles Nd by experiment and model for overload tests with ROL = 2.5.

Experiment Nd by Experiment (-) Nd by Crack Propagation Model (-)

Overload test #3 4.7 × 105
6.7 × 105 (RF = 0.10) and 1.6 × 106 (RF = 0.05)Overload test #4 8.5 × 105

As shown in Table 5, a comparably increased deviation of Nd between both experiments can
be observed. Thereby, the Nd-values are by trend in line with the crack growth behavior at the
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constant base load, whereby test #3, which exhibits a minor value of Nd due to the overload, reveals a
comparably increased crack propagation rate compared to test #4.

5. Conclusions

Based on the investigations in this work, the following scientific conclusions can be drawn:

• Retardation effects, due to the overloads, significantly affect the crack growth rate leading to an
enhancement of the lifetime. Considering the presented test results at overload ratios of ROL = 2.0
and ROL = 2.5, the influence is more pronounced at higher ROL-values.

• The presented crack propagation model based on a modified NASGRO equation and considering
the approach by Willenborg, Gallagher, and Hughes to cover retardation effects fits well with the
conducted 1:3 round specimen overload tests. The additionally introduced retardation factor RF,
which defines the maximum decrease of the crack propagation rate due to overloads, seems to
exhibit a remarkable influence on the delay cycle number Nd. In this study, the suggested value
of RF = 0.10, which is evaluated based on preceding SEB tests, maintains a sound applicability.

• As all model parameters are evaluated on the basis of small-scale SEB tests, the transferability of
these values, by considering the effect of specimen size, geometry, as well as shape of the crack
front, is validated based on the results in this study.

Further work will focus on the interaction of the presented overload with oxide-induced
retardation effects [40], as well as the influence of variable amplitude [45], and multiaxial [46] loads.
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