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Abstract: In order to study internal relation among the behavior of the weld pool, the microstructure
of weld bead and the waveform of short-circuiting gas metal arc welding (S-GMAW), a high speed
photograph-images analysis system was formed to extract characteristics of weld pool behavior. Three
representative waveform control methods were used to provide partly and fully penetrated weld
pools and beads. It was found that the behavior of the weld pool was related to the instantaneous
power density of the liquid bridge at the break-up time. Weld pool oscillation was triggered by the
explosion of the liquid bridge, the natural oscillation frequencies were derived by the continuous
wavelet transform. The change of weld pool state caused the transition of oscillation mode, and it led
to different nature oscillation frequencies between partial and full penetration. Slags flow pattern
could be an indication of the weld pool flow. Compared with the scattered slags on fully penetrated
weld pool, slag particles accumulated on partially penetrated weld pools. The oscillating promoted
the convection of the welding pool and resulted in larger melting width and depth, the grain size,
and the content of pro-eutectoid ferrite in the weld microstructure of S235JR increased, the content of
acicular ferrite decreased.

Keywords: short-circuiting gas metal arc welding; waveform control method; weld pool oscillation
and flow; microstructure; high speed photograph; image processing; continuous wavelet transform

1. Introduction

Short circuit gas metal arc welding (S-GMAW) has various advantages such as low heat input,
small heating area, and high thermal stability. Benefiting from advances in digital control technology,
the power sources can control the voltage and current and output specific shapes of the arc curve which
aim to handle the molten material transfer and control the spatter. Kah [1] proposed a classification of
control techniques for S-GMAW: Natural metal transfer, current controlled dip transfer, and controlled
wire feed short circuit mode. On account of the controlled wire feed short circuit mode represented by
cold metal transfer welding (CMT) introducing external mechanical forces on the wire it will not be
discussed here. Different shapes of the current and voltage waveform change the droplet transition,
which leads to the different weld pool behavior, weld shape and microstructure.

Currently, there are a variety of S-GMAW waveform control methods on the market, which can be
divided into two types. The first method is represented by Surface Tension Transfer (STT) [2] and Cold
Arc process [3]. This type of methods reduces the circuit current at the beginning and end of the short
circuit period to permit a smooth touch and break of the bridge of the molten metal, preventing spatter.
The other type is represented by Cold MIG (Metal-Inert Gas Welding) process [1] and Low Spatter
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Control (LSC) [4]. In this type of methods, considerable increase of the current gradient to accelerate
the droplet detachment during the short-circuit period meanwhile the short circuit period, dramatically
reduces the short-circuit period. The current in this period is reduced and occurs faster compared to a
conventional short arc. However, the welding circuit of this process maintains partial current when
the bridge breaks compared with the first type processes. Figure 1 compares the waveform of the
conventional, the Cold Arc, and the LSC.
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Figure 1. Comparison of (a) conventional, (b) Cold Arc, and (c) Low Spatter Control (LSC) waveform.

The behavior of weld pool is a direct reaction of weld pool state, the dynamic variation of weld
pool has a great influence on the weld bead shape and microstructure. Weld pool behavior may
contain sufficient information to understand the mechanisms of welding bead formation and control
the stability of welding process [5–7], so it is of great significance to study the weld pool behavior of
S-GMAW using different waveforms.

Many researchers have studied the weld pool behaviors in recent years. In gas tungsten arc
welding (GTAW), for acquiring the amplitude and oscillation frequency of the weld pool, Yu Shi et al. [8]
used line laser to illuminate the surface of weld pool. It is found that the oscillation frequency and
amplitude of GTAW pool change abruptly in the process of partial penetration to full penetration.
Liu [9] investigated the pulse frequency on fluid flow behavior of the weld pool in pulsed current GTAW.
The result showed that weld pool oscillations triggered by pulse current lead to more heterogeneous
nucleation sites, and the resonance between the movement of the weld pool and pulse current frequency
greatly promotes grain refinement.

Compared with GTAW, there are complex interactions among arc plasma, droplet transfer, and
pool behavior in GMAW. Richardson et al. [10] found that current pulses could not be used to trigger
weld pool oscillation effectively for GMAW, the interactions between the transferred droplets and
the weld pool can trigger the weld pool into oscillation. Tang et al. [11] developed a filter-reflection
observation system to acquire the weld pool profile during double-pulsed gas metal arc welding
process. It was found that the weld pool oscillation caused by low frequency pulse can effectively
reduce the porosity and refine the weld structure.

To date, most investigations of weld pool behavior mainly focuses on GTAW and pulsed GMAW
processes. However, no much research has been done in the area of weld pool characteristics with
different S-GMAW waveform control methods. In this paper, a high speed photograph-images analysis
system for weld pool observation was formed to capture the dynamic behavior of S-GMAW weld pool
with the aim to reveal the internal relationship among the S-GMAW current waveform, the behavior of
weld pool, the geometry of weld bead, and the microstructure.
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2. Materials and Methods

2.1. Experimental System

The experimental system consisted of welding system, high-speed photography system, and
welding electrical signal synchronous acquisition system, as shown in Figure 2.
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Figure 2. Schematic of high-speed photography system for weld pool observation.

EWM Phoenix 521 (EWM Hightec Welding GmbH, Mundersbach, Germany), EWM Cold Arc
(EWM Hightec Welding GmbH, Mundersbach, Germany), and Fronius TPS5000 (FRONIUS, Pettenbach,
Austria) were selected as power sources of welding system to provide needed waveforms. The welding
position was PA(Flat position, as per ISO 6947). The movement of the workbench was controlled
by servo motor. Current sensor, voltage sensor and signal acquisition card constituted the welding
electrical signal synchronous acquisition system. Acquisition frequency of signal acquisition card is
1.5 × 106 Hz. The high-speed photography system was used to recorded the behavior of the weld pool.

In order to capture the side-view of welding pool during the welding process, the high speed
photography camera was at position one of Figure 2, which is on the same horizontal plane as
the welding test plate. Dynamic information about the weld pool oscillation from the high speed
photography pictures was obtained by tracing the pool surface as a function of time. The shooting
angle is perpendicular to the welding seam in the same plane. A light-emitting-diode (LED) was used
as its excitation light source at position one, whose wave length was 850 nm, and continual output
was 3 W. A laser source 850 nm near infrared filter was used to filter out strong arc during welding
process. Acquisition frequency of position one is 10,000 Hz. The shooting picture is shown in Figure 3a.
Positions of the camera and backlight source need to be changed to capture the contour and the flow
behavior of the weld pool surface, as shown in position two of Figure 2. Different narrow-band filters
were selected to obtain different information of the weld pool surface which have different spectral
characteristics. The high speed camera was equipped with 850 nm near infrared filter to obtain the
contour information of the weld pool with the laser shined by the same type laser source mentioned
above at position two, as shown in Figure 3b. 650 nm near infrared filter was installed to obtain metal
flow information of the weld pool with no laser shined, as shown in Figure 3c. Acquisition frequency
of position two of Figure 2 was 2000 Hz. During video capturing, the camera was placed at an angle
deviation of about 0–5◦. In the analysis, the effect of these angles was not taken into account. However,
based on the geometry employed, it is estimated that average errors are of the order of 1.5%.
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Figure 3. Pictures captured for different condition: (a) side-view shooting picture; (b) overhead
shooting effect (850 nm near infrared filter was added); and (c) overhead shooting effect (650 nm near
infrared filter was added).

2.2. Materials and Welding Parameters

In order to acquire both partly and fully penetrated weld pools under the same welding parameters,
2 mm and 4 mm of size 150 mm by 150 mm S235JR (1.0038) steel plate were selected as the base
material, the weld bead was located in the middle of the plate. The length of the weld bead was
120 mm. The filler wire of ER70S-6 (G42) mild steel with a diameter of 1.2 mm was used for welding.
The chemical composition of the base material and filler wire are given in Table 1. A mixture of 82%
Ar + 18% CO2 was used as a shielding gas, with a flow rate of 15 L/min. The travel speed was kept
constant at 22 cm/min. The contact tip to workpiece distance (CTWD) was 20 mm. Welding conditions
were selected that give an almost constant arc length, with an average voltage of approximately 20 V.
The joint type was bead-on-plate. Welding parameters are listed in Table 2.

Table 1. Chemical compositions (in wt%) of base metal and filler wire (Fe balance).

Materials C Mn Si P S Ni Cr Mo V Other

S235JR 0.17 1.40 0.3 0.035 0.035 - - - - N 0.012
ER70S-6 0.06–0.15 1.40–1.85 0.80–1.15 0.025 0.035 0.15 0.15 0.15 0.03 Cu 0.5

Table 2. Welding parameters.

No. Waveform Wire Feed Rate (m/min) Voltage(V) Thickness (mm) Penetration

1 Conventional 2.4, 2.7, 3.0, 3.3 19 4 Partial
2 LSC 2.4, 2.7, 3.0, 3.3 19 4 Partial
3 Cold Arc 2.4, 2.7, 3.0, 3.3 19 4 Partial
4 Conventional 3.0 19 2 Full
5 LSC 3.0 19 2 Full
6 Cold Arc 3.0 19 2 Full

2.3. Principle of Measurement

The image analysis was carried out using a computer program built with LabView to obtain the
change of the height of weld pool surface and the diameter of liquid bridge neck. Direct information
about the weld pool oscillation from the high speed photography pictures was obtained by tracing the
height of reference point on the weld pool surface as a function of time. The processing processes are as
follows: (1) the contour of weld pool and wire silhouette in high speed photography was extracted by
image processing system to obtain the pixel coordinates of contour, as shown in Figure 4b. (2) Direct
information about the weld pool motion from the high speed video pictures was obtained by tracing
the pool surface as a function of time. For this purpose, a reference point was defined on the weld pool
surface, as depicted in Figure 4b. The distance between the reference point and the center of wire was
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1.8 mm (1.5 times wire diameter). The Y-coordinate of reference point was measured as a function of
time. In this way the change of the position of the reference point during welding can be outlined and
the trend of the pool motion can be revealed [10]. (3) The shortest distance between the white line and
the red line was calculated to obtain the diameter of liquid bridge necking of liquid bridge during
short-circuit period. The process flow is shown in Figure 4.
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3. Results and Discussion

3.1. The Metal Transfer Process and Impact on the Weld Pool

During the short circuit period, the heat source of weld pool is mainly the resistance heat of
the filler material and the molten filler material. Arc heat is the main heat source during the arc
period. In order to compare the heating power of different waveform control methods to the weld pool,
Equation (1) was used to calculate the welding power for all waveform control methods, Equations (2)
and (3) were used to calculate the welding line energy on the base metal [12,13].

Pw =
1

ta + ts

[(∫ ta

0
u(t)i(t)dt

)
+

(∫ ts

0
u(t)i(t)dt

)]
(1)

Qb = Pw ∗ ηeff ∗ (ta + ts) = Pw ∗ ηeff ∗ tw (2)

Qpl =
Qb

v ∗ tw
=

Pw ∗ ηeff

v
(3)

where u(t) is the voltage curve during welding, i(t) is the current curve, tw is the welding time, tarc

is the burning-arc time, ts is the arc-shorting time, Pw is the welding power during single a droplet
transfer cycle, Qb is the heat in the base material, ηeff is the thermal efficiency of the welding process,
Qpl is the heat power applied to the weld pool per unit length, and v is the welding speed.

The arc length of S-GMAW is short hence the heat losses to the surrounding atmosphere are low.
The effective thermal efficiency is high and the ηeff of S-GMAW is 0.85 [14] which is higher than that of
Pulsed GMAW and Spray GMAW.

Figure 5 shows the combination of voltage and current waveform and metal transfer process of
different S-GMAW processes. In order to ensure the comparability of waveforms, the volume of the
drops was similar at the time of waveforms acquisition. The arc current curve of traditional S-GMAW
process is influenced by two factors: Inductance of the welding circuit and re-striking current. The
re-striking current determines the peak current in the arc period. Then the current declined to the
background current, this period was tarc1 as shown in Figure 5a. Inductance of the welding circuit
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determined the rate of current decline. The LSC process maintained the large current for a defined
short period of time after the arc ignites to ensure that the arc had sufficient energy to heat the welding
wire and the base material. Then the current decreased to the background current by the current
control to regulate and initiate the next detachment, this period was tarc1 as shown in Figure 5b. As for
Cold Arc process, the current was decreased dramatically to permit a smooth break of the bridge of
the molten metal at the end of short-circuit period. After the arc had been stabilized, the current was
raised for a defined short period of time, known as melt pulse, to heat the welding wire and the base
material. Then the current decreased to the background current, this period was tarc1 as shown in
Figure 5c. The average heating power to the base material and weld pool outlines of three waveforms
is shown in Table 3.
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Table 3. The effective heating power to the base material and weld pool outlines.

Waveforms Plate
Thickness/mm

Wire Feed
Rate/m·min−1

Effective Average
Heating

Power/KJ·m−1

Pool
Width/mm

Pool
Length/mm

Conventional 4 3 409.915 5.6 ± 0.5 11.2 ± 1
LSC 4 3 344.656 5.5 ± 0.5 10.5 ± 1

Cold Arc 4 3 327.533 5.3 ± 0.5 9.6 ± 1

Figure 6 shows the profile of the weld pool during the transition period of a single molten drop.
The first column of Figure 6 is the surface profiles of the weld pools at the short circuit stage, the second
at the time when the liquid bridge exploded, the third at the arc stage, and the fourth at the short
circuit stage of next droplet transition stage. The weld pools size was shown in Table 2. The area of the
weld pool was measured by the Photoshop software, the border between the liquid and the solid was
outlined manually, which could not be found by the software for tiny gray scale differences. The pool
size can be obtained imprecisely by measuring the image, but the influence trend of waveform control
mode on the pool size can be obtained under the same shooting condition. The results show that there
was no obvious difference in the width of the weld pool, but there was a great difference in the length
of the weld pool. These differences were directly related to the impact of electrical explosion at the end
of short circuit.
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Figure 6. Variation of weld pool profile of short circuit gas metal arc welding (S-GMAW) under different
waveforms (wire feed rate: 3 m/min, thickness of base plates: 4 mm): (a) conventional waveform,
(b) LSC waveform, and (c) Cold Arc waveform.

As shown in Figure 6, strong arc light appeared at the moment of electric explosion. There was
no obvious change in the size of the weld pool before and after the electric explosion, but there was
obvious difference between the surface of different weld pools. The glitters in the blue circles of
Figure 6 were due to backlight and weld pool surface, which was the mirror-like reflection. The weld
pool fluctuation resulted in the change of surface curvature. The more violent the surface fluctuation of
the weld pool, the greater the chance of mirror reflection and the more glitters there were. The surface
of the weld pool with traditional waveform fluctuated the most, which was followed by LSC, and the
weld pool of Cold Arc basically did not change. In the transition period of a single melt droplet, the
energy carried by electric explosion was mainly propagated to the melt pool in the form of momentum,
which changes the flow state of the metal inside the weld pool.

The resistance heat is the main factor that causes the liquid bridge explosion during short circuit
period. Due to the highest resistance at the neck of the liquid bridge, it was the location where the
electric explosion occurred. The instantaneous heat generation power per unit volume of the metal at
the neck of the liquid bridge is calculated, the process is shown as follows:

R =
ρ ∗ dl
πr2 (4)

Ph = I2
∗R = I2

∗ (ρ ∗ dl)/
(
πr2

)
(5)

Pv =
Ph
V

=
I2
∗
ρ∗dl
πr2

πr2 ∗ dl
=

I2
∗ ρ

π2 ∗ r4
(6)

where R is the resistance at liquid bridge neck, ρ is the resistivity of metal at liquid bridge, r is the
radius of liquid bridge neck which was extracted by image processing system which was mentioned
above, dl is the fluid bridge neck differential length, Ph is the thermal power of resistance at neck of
liquid bridge, and Pv is the instantaneous power density of the liquid bridge. The electrical explosion
is caused by overheating of the metal at the neck of the bridge. The diameter of the liquid bridge
changes gently in a small area near the neck constriction whose volume can be replaced by a cylinder
whose diameter is equal with the diameter of the neck of the liquid bridge. V is the differential volume
of the fluid bridge neck length.

The image processing system was used to extract the diameter of the shrinking neck of the liquid
bridge in the short circuit period. Figure 7 are the relationship curves that show the diameter of the
neck of the liquid bridge along with time.
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Figure 7. The diameter of the neck of the liquid bridge as a function of time.

It has been pointed out that the surface tension and electromagnetic pinch force are the main
forces to make droplet transfer which have close relation with formation, destabilization, and break-up
of short circuit liquid bridge. The curves in Figure 7 all showed a process of rapid rise, then stability,
and finally rapid decline. The rapid decline stage of diameter was the process of destabilization and
break-up of liquid bridge. The sharp slumping stage of three curves lasted nearly the same time
as shown in Figure 7. At that time, the current in the welding loop were 280 A, 210 A, and 50 A
in conventional, LSC, and Cold Arc, respectively, as shown in Figure 5. The results showed that
electromagnetic shrinkage force had little effect on the duration of destabilization and break-up of short
circuit liquid bridge. The difference of stability times of liquid bridges was obvious, which indicated
that the rising rate of loop current in the short circuit stage can effectively promote the formation of
neck of liquid bridge and greatly reduce the short circuit stage time.

Figure 8 shows the relationship curves of the instantaneous power density of liquid bridge neck
with time under three waveform conditions. As shown in Figure 8, The curve of the instantaneous
power density of the liquid bridge along with time was acquired by substituting the diameter of the
shrinking neck of the liquid bridge and the current corresponding to it into Equation (6).
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Figure 8. The instantaneous power density of the liquid bridge as a function of time.

It can be seen from Figure 8 that the instantaneous power density of the liquid bridge was
extremely low during short circuit period for most of the time. The energy accumulated in a very short
time before the liquid bridge explosion is the main factor influencing the impact of electric explosion.
Therefore, the instantaneous power density of the liquid bridge during the burst can effectively measure
the magnitude of the electric explosive impact force. The instantaneous power density of liquid bridge
metal in cold arc power supply was relatively small. The instantaneous power density of liquid bridge
metal at the end of short circuit in LSC process was about half of that of traditional process, and the
electric explosion impact force was less than that of traditional process. The impact force of electric
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explosion determines the dynamic characteristics of weld pool. Figure 9 shows the probability density
distribution of oscillation amplitude of weld pool:
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Figure 9. The probability density distribution of oscillation amplitude of weld pool: (a–c) are the
amplitudes of the partial penetration pool of conventional process, LSC, and Cold Arc and (d–f) are the
amplitudes of the full penetration pool of conventional process, LSC, and Cold Arc.

The amplitude of weld pool is proportional to the impact of electric explosion. The probability of
large amplitude of weld pool in traditional process was greater than that of LSC and Cold Arc. The
impact of electric explosion on the weld pool in Cold Arc process was very small, and the liquid level
of the weld pool had no obvious fluctuation.

The results of the statistics of oscillation amplitude are in good agreement with Figure 6. The
amplitude was proportional to the impact of surface traveling wave on the boundary of weld pool.
This can explain the obvious difference in the length of weld pool with little difference in the width of
weld pool. The oscillation amplitude of weld pool was affected by the state of weld pool. The full
penetration pool had larger amplitude of the weld pool was affected by the state of the weld pool;
compared with the partial penetration. When the weld pool was impacted, the bottom of the full weld
pool was liquid metal level, which had little effect on the downward movement of metal flow. As a
result, the amplitude of full penetration pool was larger than that of partial penetration pool under the
same welding parameters.

3.2. Oscillation of Weld Pool

High speed photograph pictures showed that the liquid waves in S-GMA welding were triggered
primarily by the electric explosion, not by the change in the arc pressure during the arc period [15]. The
relationship curves the height of the reference point on the weld pool surface with time were obtained
by using the method described in Section 2.3, as shown in Figure 10.
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The period of droplet transfer cycles fluctuated randomly within a range, and the oscillation curve
of weld pool is a time-varying signal, which causes the oscillation frequency of weld pool change
within a range. The Fast Fourier Transform Algorithm (FFT) could not extract the characteristics of
weld pool oscillation. The Continuous Wavelet Transform (CWT) can analyze time-varying signals
in time domain and frequency domain simultaneously. In this paper, Morlet continuous wavelet
transform was applied to weld pool oscillation signals at different wire feeding speeds. Morlet wavelet
base function is shown in Equation (7):

ψa,b(t) =
√

aexp
(
iω0

(t− b)
a

)
exp

− (t− b)2

2a2

 (7)

In the continuous wavelet transform, the scale vector a is associated with the central frequency
and the support interval of the basis function, and the frequency of weld pool oscillation and its
corresponding time frequency resolution can be obtained at any time. For a particular scale vector, the
signal frequency allowed by the wavelet transform should be close to the corresponding frequency
of the scale vector. Therefore, the continuous wavelet transform can clearly reflect the variation of
oscillation frequency with time. In this experiment, wavelet transform is carried out on the acquired
signal of melt pool oscillation, and the center frequency ω0 of base function was three. The oscillation
frequency range of traditional GMAW weld pool is below 300 Hz [16]. The scale vector a selected in this
experiment was between 50 and 700, and the corresponding oscillation frequency identification range
was 40–600 Hz. b is the duration of signal acquisition. The contour diagram of transform coefficient of
signal reflects the energy density distribution of the signal in the time-scale plane. The energy of the
signal is mainly concentrated around the wavelet-ridge-cure in the time-scale plane, from which the
instantaneous frequency of the signal can be determined. Signal sampling frequency (ƒSampling frequency)
was equal with the fps of high-speed photography, and the corresponding relationship between the
oscillation frequency of weld pool (ƒOscillation frequency) and the scale vector a of wavelet-ridge-cure is as
Equation (8):

ƒOscillation frequency =
ƒSampling frequency·ω0

a
(8)

Figure 10 is the contour diagram of continuous wavelet transform coefficient of weld pool
oscillation signal of traditional S-GMAW process under different wire feeding speeds:

It can be seen from Figure 11 that the oscillation of weld pool of S-GMAW had significant
periodicity. The relationship curve of the oscillation frequency with different wire-feed speeds is shown
in Figure 12. When the wire feeding speed was 2.4 m/min, the weld pool volume was small, resulting
high oscillation frequency of the weld pool. With the increase of wire feeding speed, the volume of
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weld pool increases, the propagation time of travelling wave on the surface of weld pool increased,
and the oscillation frequency decreased.
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Different waveforms and penetration states of weld pool led to different oscillation frequencies.
Figure 13 shows the contour curves of the oscillation wavelet transform coefficients of the fusion and
partial weld pools of three waveforms, and Table 4 shows the oscillation frequency statistics.
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Table 4. The oscillation frequency statistics.

Waveform Partial Penetration Full Penetration

Conventional 100 Hz 75 Hz
200 Hz

LSC 112 Hz 68 Hz
165 Hz

Cold Arc Not available Not available

As can be seen from Figure 13, there was a significant difference in the oscillation frequency
between the partly and fully penetrated weld pools. These pictures at both sides of Figure 13 are the
contour diagram of the distribution of oscillation wavelet coefficients of partly and fully penetrated
weld pool using different waveforms. Only one frequency occurred during the oscillation process of
partly penetrated weld pool, while there were two characteristic frequencies on the oscillation spectrum
of the fully penetrated weld pool. The difference between high frequency and low frequency was
generally about 40 Hz, which indicated that there were two oscillation periods of different frequencies
in the weld pool. Zacksenhouse [17] established a pool analysis model based on the stretch film theory
and studied the oscillation frequency of the full penetration pool. In the full penetration pool, the
vibration frequency is obviously lower than that of the partial penetration pool, and the amplitude of
the oscillation of the fully penetrated weld pool is relatively larger than that of the partly penetrated
weld pool due to the disappearance of the bottom constraint, which was consistent with the Figure 9.

In order to explain the two oscillation frequencies of the full penetration pool, the metal flow
process in the pool should be considered, as shown in Figure 14. With the impact of electric explosion,
the liquid weld pool flowed radially symmetrically with the arc axis. In the full penetration pool,
axial flow occurred for the bottom of the weld pool was no longer supported by any solid material.
The liquid in the middle of the weld pool can move vertically, while the liquid in the periphery of
the weld pool was supported by the solid material and forced to flow laterally. It led to the fact that
although the weld pool was in the state of full penetration, the traveling wave propagation process
was still similar to that of non-molten penetration at the periphery of the weld pool. During travelling
S-GMAW welding process, the penetration position was relatively small compared with the length of
the weld pool, and most of the weld pool metal was still supported by solid metal at the bottom of the
weld pool, the oscillation behavior was similar to partial penetration. Therefore, the full penetration
pool had two characteristic oscillation frequencies: High frequency and low frequency.
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The characteristics of the pool oscillation of three waveforms were different. As shown in Figure 13,
No stable wavelet-ridge-cure occurred in the contour curves of the oscillation wavelet transform
coefficients of Cold Arc, so the weld pools of Cold Arc had no stable oscillation frequency. The Cold
Arc process reduced the current at the end of short-circuit stage, which greatly reduces the impact of
electric explosion on the pool. At the same wire feeding speed, the weld pool oscillation frequency
of LSC was slightly lower than that of conventional process, which was related to the size of weld
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pool and the electric explosive impact force at the end of short circuit, and the surface tension of weld
pool was one of the factors that caused the difference of the frequency. Different waveforms led to
different surface temperature of the weld pool, resulting in different surface tension of the weld pool.
The surface tension of the weld pool metal is also one of the important factors affecting the oscillation
frequency of the weld pool.

3.3. Flow Behavior of Weld Pool

To study the weld pool flow behavior, positions of the camera and backlight source need to be
changed, as shown in position two of Figure 2. 650 nm near infrared filter were installed to obtain
metal flow information of the weld pool. When active gas served as a shielding gas, alloying elements
like silicon and manganese, which were present in the base metal and the wire, had a high affinity
to react with oxygen and form silicon oxide and manganese oxide. These oxides accumulate on the
surface of the weld pool and form slag [18]. the slags have a lower density than the molten metal and
follow the flow pattern of the weld pool. Hence, slag flow pattern and accumulation location can
disclose the weld pool flow behavior [19].

GMAW weld pool consists of the hot part of the weld pool and the cold part of the weld pool [19,20].
The hot part of the weld pool consisted of the area directly under the arc and the surrounding region,
and the cold part of the weld pool is located behind the hot part of weld pool. According to Grong et al.,
the metal oxides in the high temperature zone of the weld pool exists in the form of metal oxide powder,
which cannot aggregate into slags [20,21]. The metal oxides in the cold part of weld pool accumulate
into blocks to form slags. Slag is a poor conductor of heat and prevents the red glow of the weld pool,
which can block the light at a wavelength of 650 nm. The slag flow pattern can be clearly observed by
using 650 nm polaroid as filter.

Figure 15 represented the frames from the high speed video to show the partly penetrated weld
pool flow pattern and the slag accumulation location for conventional process, LSC, and Cold Arc,
respectively. The white powder in the front and middle of the weld pool was the silicon oxide and
manganese oxide particles, which are separated from the weld metal due to the strong turbulence in
the weld pool in this part and pushed to the low temperature area of the weld pool under the action of
the pool flow. The slags flow patterns behaviors of different processes showed significant difference.
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Figure 15. The partly penetrated weld pool flow pattern and the slag accumulation location:
(a) Conventional; (b) LSC; (c) Cold Arc (the slag islands were outlined by white dotted lines).

The weld pool flow in partly the penetrated weld pool is explained with the assistance of Figure 16.
When the weld pool is forced to flow downwards (by the external force), it is blocked by the base metal
and is forced to flow to the back of the weld pool. At the back of the weld pool, the metal liquid flow
will rebound off the solid metal interface and flow to the front of the pool. By the present experiment
results in Section 3.1, the impact of the traditional S-GMAW process on the weld pool is the strongest
of the three, and the bounced metal flow was the strongest which led to the formation of two spinning
large slag islands. The impact of the LSC on the weld pool was smaller than the conventional process.
The dumbbell shaped slag island in LSC was formed with co-extrusion of the bounced metal flow and
the backward flow of metal on the surface of weld pool. Cold Arc process has little impact on the weld
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pool, because the bounced metal strength was negligible, so the metal oxides gathered into a single
round island of slag.
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Figure 16. Schematic diagram of flow of partial penetrated weld pool: (a) inside. (b) surface.

As shown in Figure 17, compared with partial penetrated weld pool, the characteristics of the full
penetrated weld pool flow pattern have the obvious differentiation, the full penetrated weld pools
also have obvious low temperature zone and high temperature zone, but the metal oxides in the cold
part of the weld pool did not gather and form huge slag islands, instead distributed at the back of
the weld pool evenly. The bottom surface of the full penetrated weld pool can expand and contract
with impact, and the energy was absorbed due to the existence of the free surface at the bottom, as
shown in Figure 18. The liquid metal in the hot part of weld pool was not pressed, so the volume and
length of the fully penetrated weld pool was larger than that of partly penetrated weld pool. For the
fully penetrated weld pool, the slag at the end of the pool formed discrete scattered islands and did
not gather into a large slag island, as was observed for the partial penetration case. This change was
simply dependent on the surface wave of the weld pool.
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Since the composition of shielding gas was consistent, the influence of the Marangoni flow can
be excluded. And for the cold part of the weld pool lie on the further from the center of the arc, the
influence of plasma flow force and electromagnetic force can be ignored. The difference observed in
weld pool flow pattern was attributed to the varied degrees-of-freedom of weld pool.
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3.4. Geometry and Microstructure of Weld Bead

The weld geometry often qualifies melting characteristics of base metal, amount of weld deposition,
welding heat input, energy distribution, and regulation of the flow of liquid metal to control its shape at
various parameters [6]. The energy distribution and the metal transfer in the welding process depend
on the waveforms of S-GMAW, which were both the main factors that affects the fluidity of the weld
pool, and further affects the weld microstructure.

3.4.1. Geometry of Weld Bead

The change of waveforms had remarkable influence on weld geometry. It is of great significance to
study the weld bead geometry of S-GMAW under different wave forms. Transverse sections are shown
in Figure 19 for beads on plate deposition which contains partial penetration (the thickness of base
material was 4 mm) as well as fully penetration (the thickness of base material was 2 mm), respectively.
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Figure 19. The geometry of the weld beads with different waveforms (wire feed rate: 3 m/min, voltage:
19 V).

As shown in Figure 19, the area of base metal fusion of Cold Arc was smaller than that of the
other two waveforms. As mentioned in Section 3.1, the average heating powers of LSC and Cold Arc
to the base material were similar. The difference of weld pool behaviors was the main factor caused the
difference of the area of bead deposit.

The oscillation intensified the convection of the weld pool, which led to the metal in the hot
part to flow to the pool boundary, which intensified the melting of the base material. The impact
of the conventional process and LSC on the weld pool was much larger than that of Cold Arc, so
the area of base metal fusion for the Cold Arc was the smallest. Due to the oscillation amplitude of
the fully penetrated pool was larger than that of the partly penetrated pool, as well as the bad heat
dissipation of thin plate, the area of full penetration base metal fusion was much larger than that of the
partial penetration.

The influence of electric explosion on the weld pool changed the depth and width of weld
pool. Figure 20 listed the variation of weld geometry with increasing of wire feed rate. Due to the
narrow range of weld parameters of the full penetration pool, this paper only listed the weld forming
parameters of the partial penetration pool with different wire feed rate.
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Figure 20. Effect of wire feed rate on geometry of fusion (partial penetration) in bead on plate deposition
of S235JR: (a) average welding power; (b) area of penetration; (c) width; and (d) depth.

As shown in Figure 20, the main factor that determined weld geometry was welding heat input.
The influence of weld pool behavior on weld geometry and penetration area was not obvious. Low
wire feeding speed resulted in smaller peak current, lower energy input difference, lower effect of
electric explosion impact on the pool, and more consistent weld formation of three waveforms. The
difference of weld forming was more obvious with the increase of wire feeding speed.

3.4.2. Microstructure of Weld Metals

The waveform of S-GMAW has great influence on the microstructure of weld bead. It determines
the dynamic behavior of the weld pool, which further influences the solidification behavior of the
weld pool. In a large part, solidification behavior determines microstructure of weld metal. This
microstructure of weld metals is probably due to the complex interactions between weld thermal cycle,
cooling rate, and the prior austenite grain size [22]. In this study, the weld metal composition remained
almost constant under the conditions that the same base metal, filler metal, and shielding gas were
used in all experiments, therefore, the change of microstructure is related to the change of arc heat
input and weld pool behavior.

For the same welding condition, the weld pool thermal behaviors between the three waveform
processes were completely different, which resulting in obvious and different weld microstructure, as
shown in Figures 21 and 22. The proeutectoid ferrite (PF) volume fraction precipitated at the initial
austenite grain boundary were related to the welding heat cycle. The lower the cooling rate of weld
bead, the greater the amount of PF formation. Poor heat dissipation can aggravate this phenomenon,
as the full penetration weld was prepared with 2 mm steel plate, which inhibited the heat transfer and
reduced the cooling rate, it caused thicker PF compared with the partly penetrated weld pool.
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The heat input of conventional process was larger than the LSC and the Cold Arc, resulting in
larger PF microstructure. The heat input of LSC was close to Cold Arc, but the oscillating behavior of
the weld pool aggravated the heat exchange between the metal liquid in the high temperature zone
and the low temperature zone, resulting in the slow cooling rate and the precipitation of more PF in
the initial austenite grain boundary.

PF usually precipitates at the initial austenite grain boundary, and the distribution of PF reflected
the initial austenite grain boundary [23]. The directivity of PF structure in partly penetrated weld
bead was obvious, which indicated that most of the initial austenite grain were columnar. In the fully
penetrated weld bead of conventional process and LSC, the structure of PF microstructure no longer
had direction, which indicated that the solidification and growth process of initial austenite grains
could be changed by the oscillation of the weld pool.

In the weld microstructure, acicular ferrite (AF) can effectively increase the mechanical properties
(particularly toughness) of the weld. Therefore, the volume fraction of acicular ferrite in Figure 21 was
measured, image processing software was used to measure the area fraction of different phases in the
Figure. The area fraction of AF and PF phases in the metallographic picture were approximately equal
to their respective volume fractions, and the results were shown in Figure 23. The results show that the
volume fractions of AF were significantly different, due to the change of the weld heat gradient within
the different waveforms. The heat gradient of the weld pool of the fully penetrated weld bead was
smaller than that of the partial penetration, which resulted in a decrease of the volume fraction of AF.
The weld pool oscillated continuously in the traditional process and LSC, the weld pool was agitated
and the thermal gradient declined, resulting in the decrease of AF content. The AF content in the weld
microstructure of the traditional process and LSC was lower than that of Cold Arc.
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Figure 23. Acicular ferrite and proeutectoid ferrite volume fraction in weld deposits: (a) partial
penetration; (b) full penetration.

The AF microstructures of different bead-on-welds as shown in Figure 24 reveal different grain
size. The average grain sizes of AF grain were calculated using intercept method (as per ASTM
E112-10). In general, the grain size of weld metals can be typically correlated with the heat input or the
cumulative effect of weld parameters. As mentioned in Table 3, the heat input of traditional process
was obviously larger than that of LSC and Cold Arc, which caused the grain size of conventional
process was larger than the others. The heat input of LSC was approximately equal with the Cold Arc,
the size of acicular ferrite precipitated in the weld of LSC was larger than that of Cold Arc. In the case
when the heat input was approximately equal, the change in AF size also verified the difference of
thermal gradient of welding pools between different waveforms. The decrease of thermal gradient
resulted in AF grain grow.
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Figure 24. Optical micrographs of acicular ferrite (a) conventional, (b) LSC, and (c) cold Arc.

The weld microstructure of low carbon steel was the result of solidification and solid phase
transformation of the weld pool in non-equilibrium state. The columnar-to-equiaxed transition caused
by the oscillation of the weld pool had not been observed, but the oscillation homogenized the
temperature distribution of the weld pool, reduced the temperature gradient of the weld pool, and
resulted in the coarsening of the weld structure in the process of solid phase transformation.

4. Conclusions

In this paper, the behavior characteristics of S-GMAW weld pool were studied, and the differences
of the pool behavior and weld microstructure were compared under different waveforms. The
conclusions are as follows:

(1) In short-circuit period, the duration of destabilization and break-up of the liquid bridge is mainly
related to the surface tension of the liquid metal, not the loop current. However, the rise rate of
the loop current can effectively shorten the stability time of the liquid bridge and promote the
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formation of the neck of the short-circuit liquid bridge. The liquid bridge explosion is related to
the instantaneous power density of liquid bridge metal.

(2) The weld pool oscillation is triggered by the pressure of the electric explosion. The oscillation of
the weld pool can be monitored visually by high-speed photography imaging. The oscillation of
the weld pool has natural frequencies which decrease with the increase of volume of weld pool.
In the case of partial penetration, only one natural oscillation frequency can be detected. In the
case of full penetration two different oscillation frequencies can be detected.

(3) The shape of slag on the surface of the weld pool and the flow behavior of the weld pool can
reflect the penetration state of the weld pool. The different boundary conditions between the
partial and full penetration cause different flow behavior of the weld pool, which leads to the fact
that the slag tends to aggregate into large blocks in partial penetration, while the slag in the fully
penetrated weld pool cannot aggregate into blocks. Large slag island can be deformed or split
apart with different impact strength of electrical explosions.

(4) Compared with the influence of weld heat input on the size of weld pool, the effect of weld pool
oscillation is not obvious. The oscillation imparts a negative effect on the weld microstructure,
along with the aggravation of the weld pool oscillation, the content and size of proeutectoid
ferrite in the weld microstructure increases, the content of acicular ferrite decreases while the
grain size increases.
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