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Abstract: The isothermal tensile test of medium carbon steel material was conducted at deformation
temperatures varying from 650 to 950 ◦C with an interval of 100 ◦C and strain rates ranging from
0.05 to 1.0 s−1. In addition, the scanning electron microscopy (SEM) procedures were exploited to
study about the surface morphology of medium carbon steel material. Using the experimental data,
the artificial neural network (ANN) model with a back-propagation (BP) algorithm was proposed
to predict the hot deformation behavior of medium carbon steel material. For model training and
testing purpose, the variables such as deformation temperature, strain rate, and strain data were
considered as inputs and the flow stress data were used as targets. Before running the neural network,
the test data were normalized to effectively run the problem and after solving the problem, the
obtained results were again converted in order to achieve the actual data. According to the predicted
results, the coefficient of determination (R2) and the average absolute relative error between the
predicted flow stress and the experimental data were determined as 0.999 and 1.335%, respectively.
For improving the model predictability, the constrained nonlinear function based optimization
procedures was adopted to obtain the best candidate selections of weights and biases. By evaluating
each test conditions, it was found that the average absolute relative error based on the optimized
ANN-BP model varied from 0.728% to 1.775%. Overall, the trained ANN-BP models proved to be
much more efficient and accurate by means of flow stress prediction against the experimental data for
all the tested conditions. These optimized results displayed that an ANN-BP model is more accurate
for flow stress prediction than that of the conventional flow stress models.

Keywords: isothermal tensile test; medium carbon steel; surface morphology; neural network;
back-propagation; flow stress

1. Introduction

Medium carbon steel materials are generally employed for a wide range of engineering
applications due to their vital mechanical properties such as wear resistance and weldability [1].
It is obvious that most of the automobile components are manufactured by causing the plastic
deformation in the work material and also the manufactured components experience the plastic
deformation in real time applications. To explain the material mechanics at thermal processing,
the constitutive relationship, which describes the flow stress by relating it to strain, strain rate, and
deformation temperature, is commonly employed [2–4]. Therefore, it is important to understand the
work material deformation behavior in hot working involving high deformation temperatures and
strain rate conditions. Moreover, the constitutive mathematical equations, which developed from
experiment observations, will be helpful for the numerical modeling of the metal forming process
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like forging, ring rolling and stamping process; also the computational simulations can reduce time
and cost required for modeling the experiments at development stages. To describe the material
behavior, several number of mathematical models are proposed, but the available flow stress models
such as Johnson–Cook (JC), modified Johnson–Cook (MJC), modified Zerilli–Armstrong (MZA), and
Arrhenius-type constitutive (AC) models displayed a low accuracy on the flow stress prediction in
some tested materials [5–9]. The researchers found that it is because most of the existed constitutive
models are constructed from the regression models; it is because the factors associated with the flow
stress are highly nonlinear and very complex. In recent years there has been considerable attention on
the neural network model to develop the flow stress models during hot working conditions. Based on
our previous [8,9] research experiences, the aim of our research work was further extended to propose
a mathematical model using neural networks for evaluating the work material flow behavior.

In order to describe the material behavior under hot deformations, for past decades, a considerable
number of research articles have been published using existed flow stress models such as JC, MJC,
MZA, and AC models. Li et al. [10] researched about T24 steel material flow behavior under elevated
temperatures and high strain rates using JC and MJC models. They stated that the proposed MJC model
results agreed well with experimental observations rather than the original JC model. He et al. [11]
studied the effects of strain, strain rate and temperature in 20CrMo alloy steel material to predict the
hot deformation behavior using JC, MJC, and AC models. Among the developed models, MJC and
AC models showed better agreement with the experimental data, whereas the traditional JC model
had worked well only under reference test conditions. Samantaray et al. [12] did comparative study on
JC, MZA, and AC models to describe the flow behavior of modified 9Cr—1Mo steel material and they
observed that the conventional JC model displayed inadequate results against the real data, but other
models provided a good description of flow behavior. Li et al. [13] did the isothermal uniaxial tensile
tests under elevated temperatures (20–900 ◦C) and high strain rates (0.01–10.0 s−1) for four kinds
of boron steel B1500HS material and investigated the problem using modified AC and MJC models.
They concluded that from comparison with a computational data, the constitutive equations provided
better correlations against the experimental measurements.

Li et al. [14] built comparative study on MJC, MZA, and AC models to explain hot deformation
behavior in 28CrMnMoV steel under hot working conditions. They concluded that MJC and MZA
models showed good agreement against the experimental data except at low strain rates, however,
overall strain-compensated AC displayed better correlation with the real data than others. Lei et al. [15]
conducted constitutive analysis to describe high temperature flow behavior of 3Cr–1Si–1Ni ultra-high
strength steel and proposed an AC model that accounted strain compensation showed much capability
in describing the material behavior at hot working conditions. He et al. [16] verified existing flow
stress models capability to capture the flow behavior in Ti2AlNb-based alloys and the constitutive
equation displayed a more precise description against the experimental data. Yang et al. [17] and
Li et al. [18] researched the advantage of using the strain-compensated AC equation to establish the
flow stress model for super-austenitic and Nb-contained 316LN stainless steel materials during hot
working, respectively. They claimed that the modified AC equation provided a high accuracy in
flow stress predictions. Aforementioned flow stress models require much time to do fitting equations
for the estimation of material constants, model development, evaluation and verification against the
experimental observations. Therefore, constructing flow stress model in terms of the analytical model
that provides an accurate prediction outcome based on the relationship between the experimental
input conditions and the observations will be more helpful.

In recent years, for this purpose, the artificial neural network (ANN) model has been employed
as the model uses mathematical formulations to construct a brain nervous system operation based on
relationships exist between inputs and outputs. Moreover, a countable number of research articles
were published with respect to this topic for the application of flow stress prediction at hot working
conditions [19–23]. Ji et al. [24] and Peng et al. [25] studied about developing constitutive relationship
at elevated temperatures and strain rates test conditions using an AC and ANN models in Aermet100
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steel and as-cast Ti60 titanium alloy materials, respectively. They drew the conclusion that the
back-propagation (BP) ANN model can accurately predict the desired data in the entire working
domain. In addition, the flow stress estimation in a wide range of test conditions associating phase
transformations in as-cast Ti–6Al–2Zr–1Mo–1V alloy was investigated by Quan et al. [26]. They pointed
out that the ANN model can forecast material flow behavior including the metallurgical phenomenon,
and also stated that the model has a capability to capture complex behavior even outside of the
test conditions. Ashtiani et al. [27] and Stendal et al. [28] employed both phenomenological and
ANN models to predict high-temperature deformation behavior in AlCuMgPb alloy and titanium
aluminide alloy (TNM-B1) materials. They also identified that the well trained ANN model can
be able to make accurate predictions than the tested phenomenological equations. Han et al. [29]
proposed a model from an AC and an ANN models for as-cast 904L austenitic stainless steel to predict
the material deformation behavior and results proved that the optimized ANN model has ability to
capture the compressive behavior at high deformation temperatures. From literature survey, recent
studies outcome indicates the importance of ANN model to characterize the material flow behavior at
hot working conditions.

Although there is rapidly growing literature on an ANN model, there are only limited articles
to discuss improving an ANN model accuracy. Huang et al. [30] proposed a modified ANN-BP
based on genetic algorithm (GA) to predict the material behavior in aluminum alloy. They outlined
that an ANN-GA model displayed a more efficient and accurate prediction capacity for the entire
test process. This present research aims to achieve an optimized ANN-BP model for computing the
flow stress of AISI-1045 medium carbon steel at hot working conditions. In order to identify the
suitability of an ANN-BP model, the experiment was conducted under wide range of deformation
temperatures (650–950 ◦C) and strain rates (0.05–1.0 s−1); thereafter, the flow stress data was collected
and arranged eventually. In the network modeling process, the parameters such as strain, strain rate
and temperature were considered as input variables and the flow stress was used as output variable,
respectively. For obtaining optimized random weights and biases, the optimization procedures (OP)
based on constrained nonlinear function were modeled and utilised for training, validating and testing
an ANN-BP model to develop the material flow stress model. Eventually, the computed results from
ANN-BP and ANN-BP/OP models are tested against experimental measurements and constructed
model verification’s are discussed using both graphical and numerical validations.

2. Material and Experimental Procedures

In this research work, AISI-1045 medium carbon steel material was used and the chemical
composition (in wt.%) of the work material is summarized in Table 1. The isothermal tensile
tests were modeled at deformation temperatures (T) ranging from 650 ◦C to 950 ◦C and strain
rates (ε̇) varying from 0.05 s−1 to 1.0 s−1, respectively. The samples were prepared according to
ASTM-E8M-subsize standard and all samples were thoroughly checked for dimensional accuracy; and
then used for conducting experiments. The experimental procedures used in this present work
to characterize medium carbon steel material behavior as follows: at first, the specimens were
produced from the water-jet cutting process and three samples were used for each test condition.
Secondly, the load-displacement curves were transformed into true stress (σ)–strain (ε) (SS) curves and
then obtained SS curves were averaged lately as depicted in Figure 1a–d. From Figure 1a–d, the plastic
regions are separated in order to construct the ANN-BP model for establishing the constitutive
relationship of work material. The experimental set-up used in our research work is more detailed in
our previous research papers [8,9].

Table 1. Chemical composition of AISI-1045 medium carbon steel (in wt.%)

C Fe Mn P S

0.42–0.50 98.51–98.98 0.60–0.90 ≤0.04 ≤0.05
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Figure 1. True stress-strain data obtained from hot tensile tests at various temperatures under different
strain rates.

For evaluating micro-structure evolution in AISI-1045 medium carbon steel material, the field
emission scanning electron microscopy (FESEM) (MIRA3 TESCAN, secondary electron detector, Jeju
National University, Jeju-si, Korea) along with the energy dispersive X-ray spectroscopy (EDS) mapping
setup was utilised in this research work. Using the test setup, the deformation temperature (850 ◦C,
950 ◦C) and strain rate (0.05–0.5 s−1) dependent surface morphology, thickness and elemental
identification analysis were observed at the fractured surface for various magnifications as illustrated
in Figure 2. From Figure 2a,e,i, for strain rates at deformation temperature (850 ◦C), it can be seen
that specimen growth and nucleation was found to be coarse at low strain rate and as strain rate
kept increasing, the nucleation and growth transformation was noticed to be finer, uniform, and
homogeneous at a 50 µm scale. As seen in Figure 2b,f,j, the FESEM images are presented with
micro and nanopores, a highly interconnected porous structure observed at 20 µm scale. However,
observation at a higher magnification scale level (5 µm) revealed that a porous and interconnected
structure was found to be discontinuous and irregular as shown in Figure 2c,g,k. In addition, Figure 2i,k
comparisons against Figure 2m,n show that due to temperature changes, a macro porous structure
was formed and furthermore, we observed the apparent growth, nucleation of nanoneedles, and
reduction of pore size. Moreover, the magnified portion (at 5 µm scale) of the sample image confirms
the formation of micro-fibrils and moderate growth of nanoneedles. The reason behind this clear
difference in microstructure is possibly due to slow and strong self-association of grains at low
temperature. Besides, at magnification 100 µm scale, for test conditions (850 ◦C) and (950 ◦C) at strain
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rate (0.5 s−1), the EDS mapping analysis of test specimens proves the presence of iron (Fe) and carbon
(C) elements throughout the scanned surface. The microstructure images of fractured specimens at
500 µm scale, as shown in Figure 2d,h,l,o, confirms the reduction of specimen thickness at the fracture
location at tested conditions. The inset images show the rough surface morphology at fractured surface
(5 µm scale).

Figure 2. Micro-structure mapping images of AISI-1045 medium carbon steel material at deformation
temperature (850 ◦C). (a–d) 0.05 s−1; (e–h) 0.1 s−1; (i–l) 0.5 s−1; (m–o) 950 ◦C/0.5 s−1; observation by
FESEM and EDS on various magnifications.

3. Artificial Neural Network Approach

Machine learning (ML) problems are classified into three sections: supervised, unsupervised,
and reinforcement learning based on the data availability. In supervised learning, the supervisor
already knows the working conditions and its responses in a restricted environment. So by selecting
proper supervised learning algorithms, experimental inputs can be mapped into the outputs that
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have the best solution. On the other hand, with the assumption of much more probability and the
maximum model metrics to its goal, other two problems are devised for achieving the best candidate
solution. An ANN model provides a novel approach to the model prediction of material processing
as it does not need to postulate a mathematical model or identify its parameters. Moreover, ANN
shows a good ability to predict the flow behavior because it is particularly suitable for treating complex
and non-linear relationships between the responses of deformation behaviors of the materials under
elevated temperatures and high strain rates [31–35].

3.1. Flow Stress Modeling of AISI-1045 Steel Using an ANN with Back-Propagation Algorithm

In this research work, a multi-layer feed forward ANN model with supervised learning procedure,
BP algorithm for training, was employed to construct the functional relationship among input and
output variables for predicting flow stress at hot working conditions as shown in Figure 3. As can
be seen in Figure 3, there were three input variables: strain (ε), strain rate (ε̇), and deformation
temperature (T), and one output variable, stress (σ), in the neural network design. The network
training began with initialization of random weights and biases, and then the weight was adjusted
based on the prediction error between computed and experimental observations using BP learning
algorithm. In detail, the process involved two steps: forward and backward pass. At first, the
model inputs were fed into the network with casual weights and arrived at the output layer with
the approximate solution. Thereafter, in a backward pass, the output from the forward pass was
compared against the real data, and then the weights and biases were altered iteratively to minimize
the mean square error (MSE) (Equation (1)) with the help of BP learning algorithm and the process
was continuous for each input–output pair throughout the modeling process [36].

MSE =
1
n

n

∑
i=1

(actuali − predictedi)
2 (1)

In Equation (1), n is the total number of samples used for training the network. After training
the network with each input–output pair, the trained network model c ouldbe tested using unknown
input–output sets for evaluating the performance of the proposed network model.
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Figure 3. Back-propagation artificial neural network (BP-ANN) architecture for flow stress prediction
(supervised learning).

It is obvious that there is no proper ground rule or fixed procedures for selecting initial random
weights, the size of training data set, total number of neurons in the hidden layer, learning algorithm
(weight adjustment) and transfer functions in order to construct the ANN-BP model. In this research
work, from literature survey, the detailed procedures to adopt the hidden layer with the optimum
number of neurons, number of samples, learning algorithms and activation functions are presented.
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Carpenter et al. [37] suggested that in the hidden layer, number of neurons in terms of minimum
counts can be explained using the following expressions:

HN = IN + 1

HN = 3 + 1 = 4
(2)

whereas, in Equation (2), HN and IN are number of neurons in the hidden layer and number of
variables in the input layer, respectively. Accordingly, for this research work, in the hidden layer,
number of neurons varied from 2 to 30 to confirm the capability of Equation (2).

Further, for training the neural network model, a minimum number of required sample data are
estimated as follows [38,39]:

NT = HN ∗ (IN + 1) + NO ∗ (HN + 1)

NT = 4 ∗ (3 + 1) + 1 ∗ (4 + 1) = 21
(3)

In Equation (3), NO and NT are number of variables in the output layer and number of
training data, respectively. It is important to mention here that sample counts are essential in order
to effectively train the network as it has a huge influence on network generations for producing
close predictions. Using Equation (3), the minimum number of samples for one test condition were
estimated as 21 and for all conditions, the total number of samples were calculated as 336. In addition,
for improving performance of network generations and also for capturing a wide range of variations,
the sample counts were increased from 336 to 384 and kept constant throughout the modeling
process. The significant logic behind 384 data selection: in this research work, 16 sets of test conditions
were investigated thorough the real time experiments for capturing material deformation behavior.
From SS curves as shown in Figure 1, the plastic range in terms of strain (ε) was identified as 0.02
to 0.25. Thus, in order to eliminate the inconsistent results from under and over fitting of training
data, the data are evenly considered with the strain increment of 0.01 and eventually, 24 samples were
accounted for each test condition to construct the neural network model.

Before the network training process, entire input and output variables are normalized in order to
obtain a usable form for the network using Equation (4).

XN =
X − 0.95Xmin

1.05Xmax − 0.95Xmin
(4)

where X is the measured experimental data, Xmin and Xmax are the minimum and maximum values
of chosen actual data such as stress (σ), strain (ε), strain rate (ε̇), and deformation temperature (T),
respectively, and XN is the normalized data. The experimental values are normalized between more
than 0 and less than 0.95, because in the end points, the transfer functions showed a slow learning
rate behavior while training the network model [40]. Likewise, data samples (100%) are randomly
partitioned into three sets as training set (70%), validation set (15%) and test set (15%) as listed in Table 2
in order to perform the network training process. Training and validation sets are used for training the
network and monitoring the training process, respectively, whereas the test set is used to examine the
performance of trained network in untrained samples.
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Table 2. Network model instructions used for constructing flow stress model.

Number of samples 384 data (268 (Training) + 58 (validation) + 58 (Testing))
Input layer three variables
Hidden layer functions LOGSIG and TANSIG
Number of neurons two ≤ HNs ≤ 30
Output layer one variable
Output layer function Purelin
network type multi-layer feed-forward
net algorithm back-propagation
Training functions Trainbr and Trainlm
Learning function LEARNGDM
Performance function MSE

The selection of activation functions also influences the performance of the neural
network in terms of capturing the function approximations among input and output variables.
For choosing transfer function in the hidden layer, two most widely used functions such as
tan–sigmoid (Equation (5)) and log–sigmoid (Equation (6)), are adopted, because from Figure 1a–d,
the variations (σ) are noticed to vary continuously but not linearly as changing input variables (T,
ε̇, ε). The reason for choosing sigmoid functions is that it always produces an “S” shape output
as shown in Figure 4e,f; the shape is tends to be linear in the middle and nonlinear towards the
boundaries. From Figure 4e,f, the transfer function, log–sigmoid, was noticed to produce only positive
values, which is not suitable if the network expects to return negative values during the training
process, whereas tan–sigmoid delivered values from positive to negative, which is suitable in any
cases. However, some trail and error calculation procedures were required to select the activation
function, in which the network always contributed the optimal solutions. In addition, among the
available training functions, trainbr (Bayesian regularization) and trainlm (Levenberg–Marquardt)
functions were picked based on their capability to learn to map inputs to outputs within given data-set.
For the output layer, the transfer function was directly selected as purelin (linear function) because the
problem assumed to be linear in the output layer as the model output was proportional to the total
weighted inputs.

tansigmoid function : a =
2

1 + exp(−2n)
− 1 (5)

logsigmoid function : a =
1

1 + exp(−n)
(6)

Using an ANN-BP model informations summarized in Table 2, the network models were trained,
validated, and tested against the experimental observations. Thereafter, the computed results of
MSE and coefficient of determination (R2) are plotted against neurons as depicted in Figure 4a–d.
Figure 4a–d distinctly show that there is little difference between activation functions in terms of
MSE and R2 values. But somehow, there are considerable deviations among the training functions
and trainbr function is found to be the best selection for training the network as it displays steady
improvement in terms of error decrements along with the highest correlation (R2) value. As expected
based on Equation (2), from Figure 4a–d, it is confirmed that the prediction error is significantly
higher value up to four neurons. As listed in Table 3, It is obvious that more number of neurons lead
to higher accuracy, but however, after 18 neurons (trainbr), error sums are fluctuating in a random
manner. This fluctuation conveys that in order to control over-fitting with unknown points, the size of
neurons should be limited to acceptable margin. Therefore, considering the network model complexity,
the error differences are inspected closely from 4 to 30 neurons and identified that the predicted results
are reasonably accurate when the network contains eight neurons in the hidden layer.



Metals 2019, 9, 1315 9 of 19

0 5 10 15 20 25 30 35
−50

0

50

100

150

200

250

300

350

No of neurons

M
ea

n 
Sq

ua
re

d 
E

rr
or

 (
M

SE
)

 

 

trainbr-tansig

trainlm-tansig

(a) MSE/Tansig

0 5 10 15 20 25 30 35
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

No of neurons

C
oe

ffi
c i

e n
t o

f d
e t

e r
m

i n
at

i o
n

trainbr-tansig

trainlm-tansig

(b) R2/Tansig

0 5 10 15 20 25 30 35

0

100

200

300

400

500

600

No of neurons

M
ea

n 
Sq

ua
re

d 
E

rr
or

 (
M

SE
)

 

 

trainbr-logsig

trainlm-logsig

(c) MSE/Logsig

0 5 10 15 20 25 30 35
0.9

0.92

0.94

0.96

0.98

1

1.02

No of neurons

C
oe

ffi
c i

en
t o

f d
et

er
m

in
at

io
n

trainbr-logsig

trainlm-logsig

(d) R2/Logsig

−10 −5 0 5 10
−1.5

−1

−0.5

0

0.5

1

1.5

n

a

 

 

h1
h2
h3
h4
h5
h6
h7
h8
tansig curve

(e) Tansig curve

−10 −5 0 5 10
−0.5

0

0.5

1

1.5

n
a

 

 

h1
h2
h3
h4
h5
h6
h7
h8
logsig curve

(f) Logsig curve

Figure 4. Verification procedures for obtaining accurate ANN-BP models. (a–d) Comparison of training
functions; (e,f): Activation functions.

Table 3. Effect of number of neurons in hidden layer on performance of ANN-BP model.

Neurons

MSE

Neurons

MSE

TANSIG LOGSIG TANSIG LOGSIG

Trainbr Trainlm Trainbr Trainlm Trainbr Trainlm Trainbr Trainlm

2 311.190 314.301 311.187 565.457 18 0.730 12.535 0.705 13.121
4 99.431 42.762 43.316 42.352 20 2.139 14.458 1.874 13.095
6 14.149 15.586 11.079 87.875 22 0.555 6.252 0.486 1.187
8 13.219 20.846 5.767 9.807 24 1.202 9.919 1.383 1.713

10 3.417 10.782 4.128 28.448 26 1.141 23.703 1.078 2.008
12 2.562 4.871 2.361 13.318 28 0.776 2.097 0.642 18.675
14 1.405 17.683 1.504 5.243 30 1.144 9.715 0.930 6.473
16 1.082 8.037 1.066 3.351

Ultimately, an ANN-BP model consists of one hidden layer with eight neurons, trainbr algorithm
as training function, learngdm algorithm as a learning function, and one output layer is chosen for
predicting the flow stress at hot working conditions. Moreover, the network model performance also
depends on learning parameters, such as the number of training epochs and the performance goal,
etc. But in this work, the number of epochs, the learning rate, and the error threshold were fixed to a
certain level based on the literature survey as 1000, 0.05 and 1×10−06, respectively. The MSE quantity
between actual and predicted data was recorded during network model training and using minimized
or converged MSE value, the best models were obtained for both activation functions. Now the
trained ANN-BP model should be verified to make a confirmation that the model implementation was
done correctly. It is obvious that, in machine learning process, the model performance evaluation and
its interpret-ability are the vital procedures for pointing out a solid conclusion about the proposed
ANN-BP model. Here, we exploited some helpful procedures such as quantification and visualization
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methods to comment about the developed flow stress model accuracy in an explicit manner. In addition,
there are a few other possible evaluation checks available like examining the proposed model
in unknown points, technically called as untrained samples, to monitor the model predictability.
These interpretation choices are discussed here in detail, particularly, by both numerical and graphical
validations. Moreover, the evaluation techniques presented in this research work is significantly
sufficient to confirm the model capability, because the prediction outcomes are always tested against
experimental observations. For quantification purpose, three kinds of statistical parameters such as R2,
average absolute relative error (AARE), and root mean square error (RMSE) are utilized. R2 explains
the prediction strength against experimental observations in terms of a quantity ranging from 0 to
1, whereas AARE is employed to quantify the prediction error at overall test conditions against the
experimental data. RMSE is a statistical measure of differences between values predicted by a proposed
model and the values actually measured from the experiments [41].

R2 = 1 −

n
∑

i=1
(σi

e − σi
ANN)

2

n
∑

i=1
(σi

e − σ̄e)2
, (7)

AARE =
1
n

n

∑
i=1

∣∣∣∣∣σi
e − σi

ANN
σi

e

∣∣∣∣∣× 100%, (8)

RMSE =

√√√√√ n
∑

i=1
(actuali − predictedi)

2

n
(9)

where σe, σANN, σ̄e are the experimental data, the predicted flow stress from an ANN-BP model,
and the mean flow stress, respectively, and n is the total number of data points.

Using Equations (7) and (8), the population parameters are computed for each test conditions and
summarized in Table 4. It is clearly seen that both transfer functions in the hidden layer displayed a
significantly better outcome. For tansig activation function, R2 and AARE were estimated as 0.9980
and 1.3348%, respectively, and whereas for logsig activation function, R2 and AARE were determined
as 0.9991 and 1.8059%, respectively. But, in test conditions, 850 ◦C and 950 ◦C, the prediction error was
found to be higher, but it was significantly acceptable as the error value was close to 2.2%. Apart from
the numerical validation, the graphical validation against the experimental observations was plotted
as depicted in Figure 5 for tansig activation function to prove an ANN-BP model capability. Figure 5
displays that the model predictions were scattered closer to the experimental data and it confirms
that the ANN-BP model can provide accurate representation of material flow behavior under hot
deformation conditions. Moreover, the plastic-instability phenomenon also tended to be captured
more effectively than that of available traditional flow stress models [8,9].

Table 4. Computed statistical parameters from an ANN-BP model.

ANN transfer function Test Conditions R2 Overall-R2 AARE (%) Overall-AARE (%)

TANSIG 0.05–1.0 s−1

923 K 0.9918

0.9980

1.6397

1.80591023 K 0.9990 1.4028
1123 K 0.9995 2.1722
1223 K 0.9998 2.0092

LOGSIG 0.05–1.0 s−1

923 K 0.9971

0.9991

0.8637

1.33481023 K 0.9996 0.8927
1123 K 0.9997 1.4321
1223 K 0.9998 2.1507
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Figure 5. Comparison between experimental and predicted flow stress data using BP-ANN model
with TANSIG as a hidden layer activation function .

3.2. Optimization Procedures for Obtaining the Best Trained ANN-BP Model

In the neural network model, the training process is carried out using an iterative process, which
means in each step the model is updated with small weights and biases, for finding an optimum set
of weights and biases to improve the model performance. A general approach for solving the neural
network problem is to restart the training process multiple times with different random initial weights
and biases, and allow the searching algorithm to find distinct candidates for the best trained ANN-BP
model. This process is usually called multiple restarts. In this research work, the multiple restarts
process was modeled by employing hybrid optimization procedures for training a network model
in terms of adjusting weights and biases to predict the flow stress of medium carbon steel material
under hot deformations as shown in Figure 6. The nonlinear programming function, find minimum of
constrained nonlinear multivariable function (fmincon), was utilized considering the interior-point (IP)
algorithm to minimize AARE between an ANN-BP model and the desired flow stress data; the bounds
constrained optimization procedures exploited in this work is also depicted in Figure 7. The IP
algorithm was selected due to its advantage in finding the minimum of a function within the presence
of bounds constraints. Moreover, the benefits of exploiting this fmincon function rather than GA is that
the computational time to solve the problem can be minimized without compromising the accuracy of
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results eventually. Wang et al. [42] stated that in their research, the optimization problem based on
fmincon function immensely reduced the calculation time related with GA, and also they pointed out
that the obtained results was found to be reasonable against the actual results. In general, it is difficult
to mention whether using wide range of bounds are valid or not at the first place. Therefore, at start of
the optimization process, the problem was tested with a small range of bounds and then increased a
little wider for allowing the process to be sampled extensively before selecting a valid candidate for a
better solution. The limits of bounds constraints are selected from the trail experience for solving the
optimization problem; the general form of optimization procedures are expressed below:

Minimize:
x

AARE = 1
n

n
∑

i=1

∣∣∣∣ σi
exp−σi

ANN
σi

exp

∣∣∣∣× 100%,

where, σANN from best ANN-BP model

subjected to


IWlb ≤ x(1) ≤ IWub

LWlb ≤ x(2) ≤ LWub

b1lb ≤ x(3) ≤ b1ub

b2lb ≤ x(4) ≤ b2ub

P|E

Error signal back propagation
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Figure 6. BP-ANN model with an OP for flow stress prediction.
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 Experimental 

data(normalized)
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Initialize weight (Wij) and bias (bij)
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estimate error between experimental 
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constraints,  interior-point 

algorithm

convergence YES

Figure 7. Flow chart of optimization procedures for minimizing network model prediction error.
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At start of the optimization process, the initial points are given randomly in order to begin
optimization. At next step, the fmincon function automatically alters the x0 points strictly between
the bounds constraints. Subsequently, the optimization algorithm searches through a bounds space
of feasible values for the neural network model for a set of weights and biases that results in good
performance on the model outcome. The optimization problem for activation functions is terminated
when there is no improvement in the solution towards feasible directions and also the constraint
tolerance is satisfied within the specified margin. The best candidate solutions for tansigmoid function
in the hidden layer are obtained when the iterations and the function counts are 14 and 183, respectively,
whereas for logsigmoid function, the numbers are computed as 5 and 71, respectively. The optimum
solutions of AARE with transfer functions, tansig, and logsig, are achieved as 1.123% and 1.502%,
respectively. The optimal results computed from the proposed ANN-BP/OP model are tabulated
in Table 5. Tables 4 and 5 are strong evident that the prediction error obtained from the optimized
network model varies from 0.728% to 1.775%, whereas for the basic network model, errors are ranging
from 0.8637% to 2.172%, which states that the optimized ANN-BP model can correlate the material
flow behavior more effectively than the conventional network model. In addition, there was no
considerable differences between tansigmoid and logsigmoid functions with regard to the prediction
error, but somehow, the optimum network model with tansigmoid function looks a little significant as
far as reduction in the prediction error is concerned.

Table 5. Computed statistical parameters from an optimized ANN-BP model.

ANN transfer function Test Conditions R2 Overall-R2 AARE (%) Overall-AARE (%)

TANSIG 0.05–1.0 s−1

923 K 0.9940

0.9989

1.1582

1.12291023 K 0.9997 0.7282
1123 K 0.9998 1.0089
1223 K 0.9999 1.5963

LOGSIG 0.05–1.0 s−1

923 K 0.9960

0.9988

1.0972

1.50171023 K 0.9992 1.3804
1123 K 0.9996 1.7752
1223 K 0.9999 1.7541

As can be seen in Figure 8, most of the predicted data points from the optimized ANN-BP model
were close to the experimental measurements and this finding confirms the capability of the optimized
flow stress model compared to the conventional network model. The correlation between experimental
observations and the predicted is interesting because the computed data points almost followed the
same trend line along the desired values as illustrated in Figure 8. Moreover, Figure 9a shows that the
proposed model displayed a better correlation with respect to the measured data along with a better
correlation coefficient R2 value at 0.9989. In addition, the statistical measurements, R2 and AARE,
were estimated for each test condition using the proposed model as summarized in Table 5 and likewise,
it displays the excellent prediction ability of the proposed network model. Figure 9b,c displays the
random distribution of residuals with respect to zero error line; also, from the histogram plot (inset
images), the distribution of residuals was noticed to be random and the probability distribution was
found to be normal inside the working space. Furthermore, Figure 9c conveys that even after the
optimization process, the residual plot showed a fairly random pattern, which indicates that the
proposed model provided a modest fit to the desired data. In addition, in order to clearly depict the
model performance, the prediction error comparison using an ANN-BP and an ANN-BP/OP was
modeled at different deformation temperatures and strain rates as shown in Figure 10a.
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Figure 8. Comparison between experimental and predicted flow stress data using BP-ANN/OP model
with TANSIG as a hidden layer activation function.
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Figure 9. Graphical validation of network models. (a) Correlation plot; (b) Residual plot of an ANN-BP
model; (c) Residual plot of an optimized ANN-BP model. (inset histogram plots).
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Figure 10. Graphical validation of proposed flow stress models. (a) BP-ANN and BP-ANN/OP models
comparison at various strain rates; (b) Prediction error comparison for proposed phenomenological,
BP-ANN and BP-ANN/OP models.

According to our findings, the developed ANN models can be effectively applied to predict the
material deformation behavior of medium carbon steel. Also the prediction error variations occurred in
the traditional flow stress models [8,9], as shown in Figure 10b, that introduced by the plastic instability
phenomenon can be eliminated. Overall, the presented discussion implies that the proposed ANN-BP
model has more impact to deal with a nonlinear experimental data than that of the conventional flow
stress models in order to approximate the constitutive relationship of medium carbon steel at hot
working conditions.

4. Conclusions

The material flow behavior of AISI-1045 medium carbon steel was developed using an artificial
neural network model with a back-propagation learning algorithm for a wide range of deformation
temperatures (650–950 ◦C) and strain rates (0.05–1.0 s−1). At first, without optimization procedures
the model was developed and the predicted results from the proposed network model displayed a
good agreement with the experimental measurements in terms of better correlation and low prediction
error quantities. Subsequently, a hybrid algorithm was utilized for obtaining the best trained ANN-BP
model to predict the flow stress of medium carbon steel material. The optimization procedures used to
find the model parameters such as weights and biases that result in minimum prediction error when
evaluating accuracy of an ANN-BP model against the experimental observation. From obtained results,
it was found that an optimized BP-ANN with tansigmoid activation function displayed the much
more accurate prediction capability to describe the material hot deformation behavior throughout the
entire tested conditions. Moreover, the statistical measurements such as R2 and AARE, were calculated
as 0.9989 and 1.1229%, respectively. In terms of the statistical parameters outcome, the optimized
ANN-BP model was found to track the material behavior more effectively and also the better flow
stress prediction for an entire temperature and strain rate range was achieved. Moreover, there were
no mathematical model assumptions and physical insight needed to develop an ANN–BP model and
these kind of procedures make it more effective to predict the material behavior than the conventional
constitutive equations. The proposed models were more significant inside the tested conditions, and by
contrast, the model was quiet weak outside the tested conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

JC Johnson–Cook
MJC modified Johnson–Cook
MZA modified Zerilli–Armstrong
AC Arrhenius-type constitutive
ANN artificial neural network
BP back-propagation
SS stress–strain
FE finite element
SEM scanning electron microscopy
FESEM field emission scanning electron microscopy
EDS energy dispersive X-ray spectroscopy
ε strain (mm/mm)
ε̇ strain rate (s−1)
T deformation temperature (◦C)
σ flow stress (MPa)
ML Machine learning
n number of samples
HN number of neurons in hidden layer
IN number of variables in input layer
NO number of variables in output layer
NT number of training data
XN normalized data
X measurements from experiment
Xmin minimum value of experimental data
Xmax maximum value of experimental data
TANSIG Tan-Sigmoid
LOGSIG Log-Sigmoid
R2 coefficient of determination
RMSE root mean square error
MSE mean square error
AARE average absolute relative error
OP optimization procedures
fmincon find minimum of constrained nonlinear multivariable function
IP interior-point
GA genetic algorithm
TOL Tolerance
Wij network weights
bi network biases
IW weights in hidden layer
LW weights in output layer
b1 biases in hidden layer
b2 biases in output layer
trainbr Bayesian regularization
trainlm Levenberg-Marquardt
learngdm Gradient descent with momentum weight and bias learning function
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