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Abstract: A quantitative analysis of the microstructure evolution in thermomechanically processed
Si-Al multiphase steel with Nb and Ti microadditions was performed in the study. The tendency of
strain-induced martensitic transformation of retained austenite was analyzed during a tensile test
interrupted at incremental strain levels. Optical micrographs and electron backscatter diffraction
(EBSD) maps were obtained at each deformation step. The quantitative analysis of the martensitic
transformation progress as a function of strain was performed. The results showed that the stability
of retained austenite is mostly related to its grain size and morphology. Large, blocky-type grains
of retained austenite located in a ferritic matrix easily transformed into martensite during an initial
step of straining. The highest mechanical stability showed small austenitic grains and thin layers
located in bainitic islands. It was found that the extent of martensitic transformation decreased as the
deformation level increased.

Keywords: high-strength steel; retained austenite; TRIP effect; strain-induced martensitic transformation;
multiphase microstructure; microalloying

1. Introduction

A microstructure of transformation-induced plasticity (TRIP)-assisted steels typically contain
ferrite, bainite, retained austenite, and sometimes a small fraction of martensite. Retained austenite is a
key microstructural constituent due to its strain-induced transformation to martensite. This enables
obtaining beneficial combinations of strength and ductility. Steels sheets in the automotive industry are
subjected to multi-step forming operations, in which some fraction of retained austenite is transformed
into the martensite. Thus, the total amount of retained austenite available for the transformation
reduces as deformation level increases [1,2]. Therefore, it is important to characterize the microstructure
evolution of TRIP steels during incremental deformation. This enables predicting optimal mechanical
properties of final products and monitoring the amount of available retained austenite in crash
events. The experimental analysis of microstructural changes during straining was reported mostly for
cold-rolled TRIP steels [1,3,4]. Several models describing the kinetics of strain-induced transformation
of retained austenite in TRIP steels have been also developed [5]. Haidemenopoulos et al. [6] fitted a
mathematical model to available experimental data regarding the evolution of martensite as a function
of strain for several TRIP steels. The progressive TRIP effect in hot-rolled sheet steels was investigated
rarely [7,8].
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Generally, an intensity of the TRIP effect depends strongly on the amount and stability of retained
austenite (RA). These steels contain usually 10–15% of γ phase. A chemical composition, an austenite
grain size, a type of surrounding phases, and a stress state are the most important factors affecting
the stability of retained austenite and the progress of strain-induced transformation. It is well known
that carbon content strongly influences the stability of retained austenite. Park et al. [9] observed the
correlation between the austenite morphology and carbon content in this phase. They found that
the blocky-type RA had lower carbon contents than a film-type RA. Therefore, the blocky RA easily
transformed into martensite due to its lower mechanical stability than the film-type RA.

TRIP steels with a ferritic matrix usually contain: ~0.2% C, ~1.5% Mn, and ~1.5% Si or
1.5% Al. Manganese stabilizes the austenitic phase and increases the carbon solubility in ferrite [10].
Sugimoto et al. [11] reported that the addition of 2 wt.% Mn resulted in obtaining a higher fraction of
retained austenite. However, the carbon content in this phase became lower. Silicon addition inhibits
the carbide precipitation during the bainitic transformation and also strongly increases solid solution
strengthening. Silicon can be partially replaced by aluminum due to problems during galvanization,
hot-rolling, and welding. However, TRIP steels with Al additions show lower mechanical properties
and higher Ms temperatures [12–14]. In order to improve the mechanical properties of such Al-alloyed
steels, microadditions of Nb and Ti can be added [8,15–17]. Mo can be also sometimes added to increase
strength due to its strong solid solution strengthening effect [18]. Nb and Ti microadditions improve
mechanical properties of high-strength low-alloyed (HSLA) steels by precipitation strengthening and
grain refinement [8,19–22]. Hausmann et al. [19] reported that the addition of 0.025–0.090 wt.% Nb
reduced the cementite precipitation, while the amount of retained austenite increased. Similar results
were obtained by Pereloma et al. [20] in 0.2C-1.5Mn-1.5Si-0.039Nb steel.

In the literature, there are several reports concerning the effects of Nb and Ti microadditions on
microstructural changes of TRIP steels during straining [1,3,4]. However, most experiments were
conducted only under rupture conditions. A limited number of papers addressed the microstructure
evolution of thermomechanically processed TRIP steels during interrupted straining. Therefore, the
goal of the current work is to characterize microstructural changes of the hot-rolled Si-Al multiphase
steel with Nb and Ti microadditions during the interrupted tensile test.

2. Material and Methods

2.1. Material

Investigations concern the Si-Al-Nb-Ti type steel showing a TRIP effect. The detailed chemical
composition is listed in Table 1. Silicon was partially replaced by aluminum to improve the
manufacturability of the steel sheets. To improve strength, the microadditions of Nb and Ti were
added [8,19–22]. The weldability of automotive steel sheets is also a very important issue. Results of
studies concerning the weldability of steels with Nb and Ti microadditions showed [23,24] that the fast
thermal cycles during welding led to partial dissolution of strengthening phases containing Nb and Ti.
As a result of high cooling rate they can precipitate in an uncontrolled way in a heat-affected zone and
in the joint. Results of our previous study [25] performed on the 0.24C-1.55Mn-0.87Si-0.4Al-Nb-Ti type
steel showed that it is weldable.

Table 1. Chemical composition of the investigated steel, wt.%.

C Mn Si Al Nb Ti P S N O

0.24 1.55 0.87 0.40 0.034 0.023 0.010 0.004 0.0028 0.0006

The investigated steel was prepared by vacuum induction melting. The laboratory ingots were
hot-forged to a thickness of 22 mm. Then, they were hot-rolled to a thickness of 4.5 mm in a temperature
range 1200–900 ◦C. Figure 1 shows the applied thermomechanical rolling conditions. It consisted of
3 passes at deformation temperatures: 1050, 950, and 850 ◦C. The final sheet thickness was ca. 2 mm.
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After the final deformation, the flat specimens were air cooled to 700 ◦C and then more slowly to the
temperature of 600 ◦C within 60 s using a furnace cooling. Then, cooling of the sheets at a rate of
about 50 ◦C/s to the isothermal holding temperature (450 ◦C) at the bainitic transformation range was
applied. The sheet samples were held at 450 ◦C for 600 s to stabilize retained austenite and finally
cooled at a rate of 0.5 ◦C/s to room temperature.
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2.2. Description of Experimental Methods

For the detailed investigation of the strain-induced austenite-martensite transformation, interrupted
tensile tests were carried out at different strain levels. Samples for the tensile test were cut along the
rolling direction from the 2 mm thick sheet. Unidirectional tensile tests were performed to defined
strain values of 5%, 10%, 15%, and the final rupture (25%) at a strain rate of 0.008 s−1 using a standard
tensile test machine Zwick Z/100 (Zwick Roell, Ulm, Germany).

The specimens for optical observations were taken near a fracture area of the deformed specimens
according to the tensile direction. The specimens at the initial state (non-deformed) and after the tensile
tests were mechanically ground with SiC paper up to 1500 grid and polished using a diamond paste.
Then, samples at the initial state were etched in 5% nital and 10% sodium metabisulfite, whereas the
deformed samples were etched using the La Pera reagent to observe microstructural details. This type
of etching allows obtaining the microstructure in which each phase was characterized by a different
color. The 5% nital reagent allows ferrite grains to be revealed, whereas using 10% sodium metabisulfite
caused individual microstructural components to be represented by different colors: retained austenite
(white), ferrite (gray), bainite (black) and martensite (brown). La Pera reagent allows for color-coded
identification of deformed microstructures: ferrite (yellow), retained austenite (light brown), martensite
(dark brown). The optical observations were performed using a Zeiss Axio Observer Z1m optical
microscope (Carl Zeiss AG, Jena, Germany).

For identifying the amount of individual phases observed in the microstructure, the Image-Pro
Plus (version 6.0) software (Media Cybernetics Inc., Rockville, MD, USA) was used. It allows for
stereological parameters of individual microstructural constituents to be determined. Based on the
optical micrographs, changes in an amount of retained austenite for the specimens deformed at the
different strain levels were estimated. Microstructural analysis was performed based on differences
in colors of individual phases. For the analysis, optical micrographs were converted to binary maps.
A total of 10 digital analyses were performed for each state.

For more detailed investigation of the transformation behavior of retained austenite under applied
strain, the tensile specimens were analyzed using an electron backscatter diffraction (EBSD) method.
The amount of γ phase was determined based on the average values of 3 measurements. Specimens
were prepared using standard metallographic procedures. Then they were electropolished for 40 s, at
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an operating voltage of 58 V using a TenuPol-5 device (Struers, Ballerup, Denmark) and A8 electrolyte
by Struers, (Struers, Ballerup, Denmark) to remove the damage of the surface caused by the grinding
and mechanical polishing. The EBSD analyses were conducted at an acceleration voltage of 20 kV and
a sample tilt angle of 70◦ towards normal to an electrooptic beam. EBSD phase maps were recorded
using a high resolution scanning electron microscope FEI Inspect F SEM (FEI, Hillsboro, OR, USA)
and evaluated by the TSL® OIM software (EDAX OIM Analysis™, NJ, USA). The grain size data were
obtained using a grain tolerance angle of 5◦ and the minimum grain size was chosen to be 2 pixels. All
data points with a confidence index (CI) lower than 0.05 were excluded from the analysis.

3. Results

3.1. Initial Microstructure

A microstructure of the investigated steel in the initial state (after hot rolling) is shown in Figure 2.
The steel is characterized by a fine-grained multiphase microstructure consisting of ferrite, bainite,
and retained austenite. A size of ferritic grains is quite various. Both large and small grains can be
observed in the microstructure (Figure 2a). Retained austenite occurs in a form of blocky grains located
in a ferritic matrix or as thin layers and small regular grains located inside the bainitic islands.
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Figure 2. Initial microstructure of the steel: (a) Optical micrograph, (b) digitally processed optical
micrograph, (c) binary map of retained austenite, (d) combined map: ferrite—gray, retained austenite—
white, bainite—blue, grain boundaries—black.

Digital processing of the optical micrograph allowed us to distinguish the fine-grained and
layer-type retained austenite (Figure 2b). A grain area of RA was various, in a range from 0.2 to 42 µm2.
Austenitic grains were elongated according to rolling direction (Figure 2c). In Figure 2d individual
phases are represented by a different color: ferrite—gray, retained austenite—white, bainite—blue,
grain boundaries—black. Figure 3 shows the statistical parameters of retained austenite obtained by
the digital processing of optical micrographs. The relatively large quantity of small RA grains can
be observed (Figure 3a). Their fraction for a given grain size was estimated to ca. 1–1.5%. However,
the largest surface fraction was represented by large grains of RA (Figure 3b). The grains larger than
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10 µm2 constitute 30% of the total amount of γ phase (5% of the surface share). The total amount of
retained austenite was estimated as 14.6%.Metals 2019, 9, 1304 5 of 16 
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3.2. Interrupted Tensile Test

3.2.1. Sample Deformed to 5% Strain

A specimen deformed to 5% strain during the static tensile test shows the microstructure slightly
elongated along to a tensile direction (Figure 4a,b). The largest blocky-type austenitic grains were
transformed into martensite (Figure 4c). One can see that some fraction of large austenitic grains
transformed only partially—the grain boundaries remained untransformed whereas middle areas of
the grains transformed into the martensite (Figure 4d). It can be seen that the amount of small RA grains
became higher. It is related to the fact that the newly-formed martensite partially divided the austenitic
areas (Figure 4c). As a result of the applied tensile stress, about 3% of martensite, characterized by
various sizes, was formed in the microstructure (Figure 4c).

Figure 5 shows the statistical parameters of the retained austenite and martensite obtained by the
digital processing of optical micrographs of the specimen deformed to 5% strain. For the quantitative
analysis of the RA islands which remain stable after deformation, it was assumed that if the martensitic
transformation took place (even only partially) in an austenite grain, such a grain was identified
as transformed. The amount of retained austenite in deformed specimens was compared to the
microstructure at the initial state (100%) in order to assess an amount of austenite transformed into
martensite during straining.
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The quantity and surface fraction of the smallest austenitic grains became higher when compared
to the specimen at the initial state (Figure 5). However, the surface fraction of the largest RA
grains remained significantly higher (Figure 5b). An amount of retained austenite observed in the
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microstructure of the specimen deformed to 5% strain was estimated to be 11.7%. This means that 2.8%
of the total amount of γ phase transformed into martensite (Figure 5b). Figure 6 shows that 70% of
the fraction of austenitic grains larger than 10 µm2 transformed into the strain-induced martensite.
Smaller grains of RA showed the lower tendency to strain-induced transformation. Austenitic grains
smaller than 3 µm2 remained almost stable (Figure 6).Metals 2019, 9, 1304 7 of 16 
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3.2.2. Sample Deformed to 10% Strain

A sample deformed to 10% strain is characterized by grains elongated according to a tensile
direction (Figure 7). The amount of RA grains larger than 4 µm2 significantly decreased (Figure 8).
Almost all austenitic grains larger than 7 µm2 transformed into martensite. The central areas of the
large austenite grains transformed into martensite, while the regions located near the grain boundaries
remained stable (Figure 7d). As a result of microstructure fragmentation, a quantity of small grains of
γ phase increased (Figure 8a). A large amount of small grains (<1 µm2) and layers of retained austenite
located at bainitic islands remained unchanged. The quantity of small martensitic areas was high.
However, the greatest surface area showed the largest martensitic islands (Figure 7c).
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Figure 8 shows the statistical parameters of retained austenite and martensite obtained by digital
processing of 10% strain optical micrographs. Austenitic grains in a size range of 1–7 µm2 were
transformed at different proportions (Figure 8). Statistical calculations showed that small austenitic
grains were dominant in the microstructure of 10% strain specimen. Both the quantity and surface
share of small RA grains (Figure 8a) were greater than for the large grains (Figure 8b). In case of the
specimen at the initial state, the highest surface share showed austenitic grains larger than 10 µm2

(Figure 3b). The amount of retained austenite detected for the specimen deformed to 10% strain was
estimated to about 8%. It means that ~6.6% of the total RA amount transformed into the martensite.

Figure 9 shows that austenitic grains smaller than 1 µm2 remained mechanically stable. Only 15%
of the smallest grains transformed into martensite. It is worth to note that the largest grains, which
only partially transformed into martensite, were also counted as the transformed grains (Figure 7d).
It resulted in a quite inflated amount of calculated γ phase (Figure 9).
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3.2.3. Sample Deformed to 15% Strain and to the Rupture

Microstructural components of the 15% strained sample were elongated according to a tensile
stress direction (Figure 10a). All blocky grains of retained austenite located in a ferritic matrix underwent
the martensitic transformation. Large austenitic grains located at the bainitic islands almost completely
transformed into the martensite. Thin RA layers only partially changed into martensite (Figure 10a).
Amount of small austenitic grains became higher due to the fragmentation of large austenite grains
by the newly-formed martensite. Amount of retained austenite was estimated to about 6%. It means
that more than a half fraction of retained austenite transformed into the martensite during straining
(Figure 3b). A surface share of martensite was ca. 10%. In the deformation range from 10% to 15%,
about 2% of retained austenite transformed into the martensite, which corresponds to ca. 14% of the
total share of the γ phase.
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Figure 10. Binary map of retained austenite (white) and martensite (blue) for the specimens deformed
to: (a) 15% strain, (b) 25% strain (a rupture of the sample).

Figure 10b shows the sample deformed to 25% strain (to rupture). The microstructure was
strongly deformed along a tensile load. Several small, thin layers located at bainitic islands remained
stable. Only the smallest grains and some grain boundaries of RA did not transform into martensite
(Figure 10b). The largest martensitic areas were formed from the largest grains of γ phase. The amount
of retained austenite remained in the microstructure of the sample deformed to rupture is ca. 2.5%.
The martensitic fraction was estimated to ~11.6%. In the deformation range from 15% to 25%, about
3.5% of the retained austenite transformed into strain-induced martensite, which corresponds to about
25% of the total share of γ phase.

3.3. Electron Backscatter Diffraction (EBSD) Results

The microstructure of the investigated steel was also examined by using an EBSD method.
The amount of RA at the initial state was 13.8% [15]. Figure 11a–c provides the selected EBSD maps of
the steel deformed to 5% strain. Figure 11a shows the IQ (image quality) map. Ferrite is represented
by the brightest regions characterized by the best diffraction quality. The retained austenite, bainite,
and grain boundaries are represented by different grey levels. Martensite occurred as the darkest
areas characterized by lowest values of the IQ parameter. The fraction of low-angle boundaries
(misorientation < 15◦) marked as red and green lines was estimated to be 25% (Figure 11b). High-angle
boundaries marked as blue and orange lines (misorientation > 15◦) were dominant. The strain-induced
martensitic transformation occurred inside the largest austenite grains located near ferrite grains
(Figure 11c). The central areas of the large austenite grains transformed into martensite, whereas the
regions located near the grain boundaries remained stable. Retained austenite in form of small grains
and thin layers located at bainitic islands remained unchanged (Figure 11c). The average amount of
RA was estimated to about 10.1%.
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Figure 11. EBSD analysis of steel deformed to 5% strain: (a) image quality (IQ) map, (b) image quality
(IQ) map displaying the boundary character, (c) phase distribution map—retained austenite as green.

Figure 12a shows the IQ map of steel deformed to 10% strain. The amount of regions represented
by the lowest IQ parameter is slightly higher when compared to the specimen deformed to 5% strain
(Figure 11a). It is related to the increase in the amount of martensite, which was characterized by
the lowest value of the IQ parameter. The fraction of low-angle boundaries was estimated to be
about 50% (Figure 12b). The amount of high-angle boundaries was lower when compared to the
specimen deformed to 5% strain (Figure 11b). Dislocations generated during plastic deformation were
reflected as an increase in the number of low-angle boundaries. On the other hand, the newly-formed
martensite-austenite boundaries, as a result of strain-induced transformation, generated new high-angle
boundaries. Therefore, the final distribution between low-angle and high-angle boundaries was a
synergistic result of these two effects. The highest stability showed austenitic grains located at bainitic
islands. However, some fraction of RA at these areas transformed into martensite (Figure 12c). Further
fragmentation of larger RA grains was also observed. The amount of γ phase remained stable was
estimated to about 7.7%. Figure 13a shows the IQ map of steel deformed to 25% strain (a rupture of
the sample). An increase in the amount of areas characterized by the lowest IQ value was observed
when compared to the samples deformed to 5% and 10% strain. The amount of low and high-angle
boundaries was similar (Figure 13b). Austenite grains are strongly fragmented. They were located
mainly at bainitic areas (Figure 13c). The amount of RA was estimated to 3.7%.
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4. Discussion

A volume fraction and stability of retained austenite are essential factors in designing TRIP
steels. Numerous reports concern the stability of retained austenite in TRIP-assisted multiphase
steels [3,4,6,26,27]. Nowadays, researchers are focused on C-Mn-Si-Al TRIP steels with microadditions
such as Nb, Ti, and Mo [4,8,17–21,28]. It is related to the fact, that these microadditions improve the
properties by enhancing the strength and grain refinement [8–19,21]. It is well known that the amount
of retained austenite was decreasing as a result of plastic deformation [1–9]. However, the kinetics of
TRIP effect is a complex issue and it depends on several factors (i.e., chemical composition, morphology,
and grain size of RA). It is especially important to monitor the microstructure evolution during
straining due to the detailed characterization of the tendency of individual RA grains to martensitic
transformation [29]. However, most scientific reports concern the comparison of microstructural
features of a specimen at an initial state (non-deformed) and deformed to rupture [7]. Moreover, the
effects of grain size and morphology on the stability of retained austenite in hot-rolled TRIP grades
were analyzed rarely. Therefore, this problem was discussed in the present study. A quantitative
microstructural analysis of samples deformed gradually in interrupted tensile tests, assessed by
using both digital image analysis and EBSD methods, allowed the tendency of RA for martensitic
transformation, depending on grain type and its size, to be monitored.

An amount of retained austenite decreased as the strain level increased (Figure 14). The highest
relative fraction ofγphase transformed at the lowest strain level (5%). In this case, about 90% of austenitic
grains larger than 10µm2 transformed into martensite. As the deformation level increases, smaller grains
of austenite further transformed. For the deformation level 10% the austenitic grains bigger than 8 µm2

transformed into martensite. It is related to the fact that large blocky-type grains of retained austenite
were characterized by relatively low mechanical stability due to a lower carbon content. Moreover,
blocky-type austenite possesses some fraction of microstructural defects, like dislocations and stacking
faults which constitute the martensite nucleation zones [30]. Some reports [31–33] showed that film-type
of retained austenite located at the bainitic islands is more beneficial due to the higher strength and steel
toughness. However, Xu et al. [34] reported that the most favorable, gradual progress of martensitic
transformation occurred for the microstructure consisting of both blocky and film types of retained
austenite. A neighborhood of soft ferrite also favors the easier transformation into martensite [35].
Carbon content strongly affects the austenite stabilization (decreases the Ms temperature). Retained
austenite characterized by low carbon content can easily be transformed into martensite during plastic
deformation. High carbon content in the austenite caused its excessive stabilization, which also resulted
in ductility reduction [36]. Pereloma et al. [37] reported that the most favorable, gradual TRIP effect
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occurs when retained austenite contains 1.1–1.6% C. The detailed information concerning the X-ray
diffraction analysis of investigated steel, including the estimation of carbon content in the retained
austenite, can be found in our earlier work [38]. The determined carbon content was 1.28 wt.%, giving
the opportunity for the gradual transformation. Increasing the strain level to 15% resulted in the
complete transformation of austenitic grains larger than 6 µm2. In the case of the specimen deformed
to 25% strain (to rupture), austenitic grains larger than 2 µm2 transformed into martensite (Figure 13).
Only thin films and small grains of RA located at the bainitic islands remained stable. As the grain
size of RA decreased, its mechanical stability increased. The new-formed grain boundaries acted as
obstacles to new potential martensitic laths, resulting in inhibiting a further transformation [39].
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Figure 14. Change in the amount of retained austenite for defined grain size as a function of strain level.

An amount of retained austenite estimated by using digital processing of optical micrographs and
EBDS were similar (Table 2). However, the amount of RA estimated by using EBSD method was slightly
lower when compared to the image analysis. It is related to the fact that the image analysis contained
some uncertainty of measurement. Digital processing of optical micrographs was characterized by
lower resolution than EBSD method. Both applied methods confirmed that the large grains of RA were
more prone to martensitic transformation than small grains and thin layers of this phase. Moreover, it
was clearly seen, that γ phase located near grain boundaries remained stable due to a higher carbon
content. Similar results were obtained by Park et al. [9] in 0.2C-2Mn-1Si steel. Additionally, they also
observed that the amount of RA decreased after applying 15% strain; after that, the intensity of the
strain-induced martensitic transformation reduced. Figure 15 shows that the surface share of austenitic
grains larger than 10 µm2 decreased as the deformation level increased. The mount of grains in the size
range from 3 to 10 µm2 was decreasing slowly. The amount of the smallest austenitic grains (<1 µm2)
was increasing, and the deformation level increased. It is related to the fragmentation of large austenite
grains by newly-formed martensite (Figure 15).

Table 2. Change in the amount of retained austenite as a function of strain level estimated by using
image analysis and EBSD method.

Strain Level,
%

Amount of RA
(Image Analysis),%

Standard Deviation,
%

Amount of RA
(EBSD Method),

%

0 14.6 1.3 13.8
5 11.7 1.2 10.9
10 8.0 1.2 7.9
15 6.0 1.0 5.8
25 2.4 0.8 3.9
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Figure 15. Distribution of grain size and the surface share of retained austenite as a function of
strain level.

A correlation between grain size of retained austenite and its tendency for martensitic
transformation as a function of strain level is shown in Figure 16. For the deformation level 5%, mostly
large austenitic grains transformed into martensite. The tendency can be approximated by a linear
function. For the higher deformation levels, the tendency was approximated by a parabolic function
(Figure 16). As the deformation level increased, the intensity of martensitic transformation decreased,
which was related to the lower amount of large austenite grains. A total of 30% of the smallest austenitic
grains and layers transformed into martensite (Figure 16). These areas were characterized by the
highest mechanical stability.
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5. Conclusions

The present study addressed the quantitative analysis of the microstructure evolution in
thermomechanically-processed Nb-Ti-microalloyed Si-Al multiphase steel subjected to interrupted
tensile tests. The main findings of the paper can be summarized as follows:

• Martensitic transformation began in the central area of large blocky-type austenitic grains located
in the ferritic matrix. As the deformation level increased the intensity of martensitic transformation
decreased due to the lower amount of large austenite grains.

• A size of austenite grains which transformed into martensite decreased when deformation level
was increasing.
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• An amount of small austenitic grains increased along with the deformation level due to the
fragmentation of large austenitic grains by newly-formed martensite. The corresponding fractions
of low-angle and high-angle boundaries were a synergistic effect of the dislocation increase due to
straining and new boundaries formed by strain-induced martensite formation.

• Austenitic grains smaller than 1 µm2 and thin layers showed the highest mechanical stability.
It was due to their high mechanical stability related to the relatively high carbon content.

• An amount of retained austenite detected in the specimen at the initial state was ca. 14%. Specimens
deformed up to rupture possessed ca. 2.5% of RA (i.e., ~17% of untransformed retained austenite).
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