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Abstract: This paper presents the microstructural and mechanical properties of low and medium 
carbon advanced high-strength forging steels developed based on the third generation advanced 
high-strength sheet steels, in conjunction with those of conventional high-strength forging steels. 
Hot-forging followed by an isothermal transformation process considerably improved the 
mechanical properties of the forging steels. The improvement mechanisms of the mechanical 
properties were summarized by relating to the matrix structure, the strain-induced transformation 
of metastable retained austenite, and/or a mixture of martensite and austenite. 
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1. Introduction 

Conventional high-strength forging steels (CFSs) are necessary for the production of automotive 
powertrain and chassis parts. Most of the CFSs are generally subjected to the heat-treatment of 
quenching and tempering (Q&T) after cold- or hot-forging to increase the yield stress, impact 
toughness, fatigue strength, etc. Because the Q&T treatment is expensive, modified V-microalloying 
precipitation hardening ferritic/pearlitic (PHFP-M) steels and bainitic steels subjected to hot-forging 
and then controlling cooling were developed to eliminate the additional Q&T treatment [1–4]. 
Although both the steels are applied to the automotive powertrain and chassis forging parts, their 
mechanical properties are inferior to those of Q&T steels. Recently, non-heat-treated forging steels 
with further high mechanical properties are required to achieve the weight reduction and size-down 
of the automotive parts [3,4]. 

In the past decades, the following first, second, and third generation advanced high-strength 
steel (AHSS) sheets shown in Figure 1 have been developed for the weight reduction and the 
improvement of crush safety of the automotive body. 

(I) First generation AHSS: ferrite–martensite dual-phase steels, transformation-induced plasticity 
(TRIP)-aided steels [5] with polygonal ferrite matrix structure, and complex phase steels [6–8]. 

(II) Second generation AHSS: twinning-induced plasticity (TWIP) high Mn steels [7–10]. 
(III) Third generation AHSS: TRIP-aided steels with bainitic ferrite, bainitic ferrite–martensite, and 

martensite matrix structures (TBF, TBM, and TM steels, respectively) [11–16], quench and 
partitioning (Q&P) steels [7,8,17–19], nanostructured bainitic (Nano-B) steels (or carbide free 
bainitic steels) [3,4,7,8,20–23], dual-phase type and martensite type medium Mn (M-Mn) steels 
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[7,8,24–26], and maraging-TRIP steels [7,27]. 

The third generation AHSS sheets are the most needed steel sheet grade in the future by the 
automotive industry. In the third generation AHSS sheets, a product or combination of tensile 
strength and total elongation higher than 30 GPa% is made the target (Figure 1). Low and medium 
carbon TBF [8,11,12], TBM [11–15], and TM steels [12–16] are produced by a similar heat-treatment 
process to low and medium carbon Q&P, Nano-B, and martensite type M-Mn steels, except Q&P steel 
subjected to a two-step Q&P process. For the TBF, TBM, and TM steels, isothermal transformation 
(IT) processes at temperature (TIT) above the martensite-start temperature (MS) [11,12], between MS 
and the martensite-finish temperature (Mf) [11–15] and lower than Mf are conducted after 
austenitizing or annealing [12–16], respectively. Recently, low and medium carbon TBF [28–30] and 
Q&P steels [31] were applied to the automotive body and seats because their steels possess a superior 
combination of tensile strength and cold formability. 

 
Figure 1. Relationship between the product of tensile strength and total elongation (TS × TEl) and 
initial volume fraction of austenite or retained austenite (fγ0) in the first, second, and third generation 
advanced high-strength steel (AHSS) sheets. Mar.: conventional martensitic steel, DP: ferrite–
martensite dual-phase steel, TPF, TBF, TBM, and TM: transformation-induced plasticity (TRIP)-aided 
steels with polygonal ferrite, bainitic ferrite, bainitic ferrite–martensite, and martensite matrix, 
respectively, Q&P: one-step and two-step quenching and partitioning steel, Nano-B: nanostructured 
bainitic steel, M-Mn: dual-phase type and martensite type medium Mn steel, TWIP: twinning-induced 
plasticity steel, Aus.: austenitic steel. This figure was modified based on Ref. [24]. 

The advanced high-strength forging steels (AFSs) which were developed based on the third 
generation AHSSs are also very attractive to apply to the automotive hot-forging parts because they 
bring on the especially high yield stress and tensile strength, large elongations and high impact 
toughness, high fatigue strength and high delayed fracture strength [32–37]. It is well known that the 
improved mechanical properties are associated with refined microstructure and improved retained 
austenite characteristics [32–36]. 

This paper introduces the microstructural and mechanical properties of the prospective low and 
medium carbon AFSs with bainitic ferrite and/or martensite matrix structure and metastable retained 
austenite, along with the low and medium carbon CFSs. In addition, the improvement mechanisms 
of the mechanical properties are detailed by relating to the matrix structure, the strain-induced 
transformation of metastable retained austenite and/or a mixture of martensite and austenite (MA). 
Unfortunately, this paper does not include various properties of dual-phase type M-Mn [24,25] and 
maraging-TRIP steels [27], because heat-treatment process and chemical composition of both the 
steels are great different from those of the other AFSs. 

2. Classification of Hot-Forging Process for Low and Medium Carbon Steels 

The hot-forging process of various low and medium carbon forging steels is classified as Table 
1. The forging process can be divided into three categories such as conventional hot-forging, 
controlled hot-forging (or semi-hot-forging), and ausforming. Conventional hot-forging 
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temperatures are between 1000 °C and 1200 °C above the recrystallized temperature (TR). Controlled 
forging temperatures are between TR and Ac3. Ausforming temperatures are lower than Ac3 
corresponding to a metastable austenite region. The lower the forging temperature, the finer the 
microstructure. For every forging, post cooling rates decide the type of matrix structure, namely, 
quenching, rapid cooling, and moderate cooling resulting in martensite, bainite, and ferrite-pearlite 
matrix structures, respectively. Microalloying of V, Ti, and/or Nb contributes to the refining of prior 
austenitic grain and the precipitation strengthening of the matrix structure by V,Ti,Nb(C,N)-
carbonitrides [8,38–45]. Microalloying of Cr, Mo, Ni, B, etc. increases the hardenability and resultantly 
enhances the yield stress and tensile strength of the forging products. 

Table 1. Classification of hot-forging process for low and medium carbon steels. PHFP steel: V-
microalloying precipitation hardening ferritic-pearlitic steel, PHFP-M steel: modified PHFP steel, 
Q&T steel: quenching and tempering steel, TBF steel: TRIP-aided bainitic ferrite steel, Q&P steel: 
quenching and partitioning steel, Nano-B steel: nanostructured bainitic steel, TBM steel: TRIP-aided 
bainitic ferrite-martensitic steel, TM steel: TRIP-aided martensitic steel, M-Mn steel: medium Mn steel, 
TR: recrystallized temperature. 

Designation 
 

Forging 
Temperature 

Phase on 
Forging 

Steel Type after Hot-Forging 

Diffusion 
Transformation 

Non-Diffusion 
and Diffusion 

Transformation 

Non-Diffusion 
Transformation 

Conventional 
hot-forging 

>TR austenite PHFP steel, 
PHFP-M steel, 

bainitic steel, TBF 
steel, one-step 

Q&P steel, Nano-
B steel 

Two-step Q&P 
steel, TBM steel 

Q&T steel, TM 
steel, Martensite 
type M-Mn steel 

Controlled 
hot-forging  TR − Ac3 austenite 

Ausforming <Ac3 
metastable 
austenite 

3. Conventional High-Strength Forging Steels; CFSs 

Figure 2 shows the typical hot-forging and subsequent controlling cooling diagrams of the CFSs 
such as Q&T, PHFP-M, and bainitic steels [46]. In this case, the temperature, reduction strain, and 
reduction strain rate on hot-forging and post cooling rate are important hot-forging parameters 
controlling the microstructure and mechanical properties of the steels. The PHFP-M and bainitic 
steels [44,45] have made great achievements for weight reduction of hot-forging components in the 
project “Lightweight Forging Initiative” performed in Germany [1,2]. The mechanical properties and 
typical steel grade of the PHFP-M and bainitic steels are summarized as follows, together with Q&T 
steels. 

 
Figure 2. Conventional hot-forging, controlled hot-forging, and ausforming process followed by 
controlling cooling for the CFSs such as Q&T, bainitic, and PHFP-M steels. TR: recrystallized 
temperature. Tempering is carried out after quenching in Q&T steel. (The figure of Ref. 46 is modified). 
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3.1. Q&T Steels 

Conventional Q&T steels used in many hot-forged parts achieve great mechanical properties 
such as high yield stress, high tensile strength, large uniform and total elongations, and high impact 
toughness, as well as high fatigue strength, although the Q&T treatment is expensive. When the 
tensile strength and impact toughness are compared with those of other CFSs, Q&T steel possesses 
the highest tensile strength and impact toughness (Figure 3) [3,4,47]. Typical Q&T steel grade DIN-
25CrMo4 and 42CrMo4 are applied to bolts and screws [4,48,49], which must be strong and tough to 
undergo the cyclic load. If low-cost is required for the materials, DIN-36CrB4 without Mo is replaced 
for the DIN-42CrMo4 [48,49], also with regard to applications such as crankshafts and shafts. Fully 
substituting Mo by Mn results in reduced low temperature impact toughness values [48]. 

Ausforming of metastable austenite is an important forging technique enhancing both the 
strength and impact toughness due to prior austenitic grain refining. A martensitic METT100 steel 
(0.07C−3.2Mn−0.6Cr−0.2Mo, in masss%) [50] has been developed by Q&T treatment after ausforming. 
The METT100 steel has high buckling strength two times that of DIN-S40VC 
(0.40C−0.2Si−1.0Mn−(0.1–0.2)V). The increased yield stress, tensile strength, and impact toughness 
are caused by the increased dislocation density without cell structure and refining of martensite lath 
and block, as well as prior austenitic grain refining [50]. The METT100 forging steel is expected to be 
applied to actual automotive components such as connecting rod, crank shaft, driveshaft differential, 
constant velocity joint, wheel carrier, suspension, etc. 

 
Figure 3. Relationship between Charpy V-notch impact energy (Ev) and yield stress (YS) at room 
temperature in various steel groups, mainly used for hot-forgings in the automotive industry [3,4,47]. 
Q&T, PHFP, PHFP-M, Nano-B, and M-Mn are quenching and tempering steel, V-microalloying 
precipitation-hardening ferritic-pearlitic steel, modified PHFP steel, nanostructured bainitic steel, and 
dual-phase type medium Mn steel, respectively. 

3.2. PHFP-M Steels 

PHFP-M steels developed as alternative materials of Q&T forging steels are characterized by 
low production cost due to the elimination of an additional Q&T step. The PHFP-M steels are 
achieved by reduction of the ferrite fraction, the decrease in the pearlite lamellae spacing, and the 
addition of the microalloying elements Nb and Ti, which results in additional precipitates besides the 
V(C,N) [3,38−40,45,51,52]. However, the PHFP-M steels possess lower yield strength, lower tensile 
strength, and lower Charpy V- notch impact energy compared to the Q&T steels, although the 
yield stress and tensile strength are higher than those of the PHFP steels with 0.1 to 0.4 mass% V 
(Figure 3). The typical steel grade is DIN-38MnVS6 [41,48] and 46MnVS5 [53] for connecting rods. 
The fine V,Nb,Ti-carbonitrides which were precipitated by fast cooling to about 600 °C followed by 
holding at the temperature [4] effectively increase the yield stress and tensile strength, with the 
decreased elongations and impact toughness. 

Controlled hot-forging increases the yield stress and tensile strength of the PHFP-M forging steels 
due to the prior austenitic grain refining (and refining of ferritic and pearlitic structures), although 
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the ferrite fraction increases [46]. In this case, forging temperatures are between 800 °C and 1000 °C. 
The controlled hot-forging is applied to produce METT75 steel (0.38C−0.25Si−1.0Mn−0.2Cr−0.2V) and 
METT80 steel (0.35C−0.25Si−1.0Mn−0.2Cr−0.3V) [54]. These steels are produced via air cooling after 
hot-forging, resulting in very fine VC precipitates in the ferrite phase. The non-heat-treated METT80 
steel achieves high yield strength 1.6 times that of conventional S40VC steel [54]. For applications to 
powertrain components, ultrahigh-strength PHFP-M steel (Vanard Ultra: 
(0.4−0.5)C−(0.3−0.8)Si−(1−1.5)Mn−(0.15−0.25)V−(0.01−0.025)N) is also developed by Clarke et al. [55]. 

3.3. Bainitic Steels 

Bainitic steels have an impact on the toughness−yield stress relationship intermediate between 
Q&T and PHFP-M steels (Figure 3) [49,56–61]. The bainitic steels with the different bainite 
morphologies such as acicular, upper, and lower bainites can be formed simply by controlling the 
post cooling rate immediately after hot-forging (Figure 2). One bainitic steel grade DIN-20MnCrMo7 
is commercially available for applications to common rail and injector body [48,53,56,60]. The desired 
bainitic structure is achieved by adding Mn, Cr, and some Mo. Likewise, DIN-16MnCrV7-7, which is 
a cost-effective steel grade, achieves an attractive strength level without additional heat-treatment 
[48]. An important aspect of the bainitic steels is their machinability. For DIN-20MnCrMo7 with 0.15 
mass% S, Biermann et al. [58] compared the machinability with that of Q&T steel DIN-42CrMo4. The 
bainitic steel is more difficult to machine, mainly due to its higher hardness. 

Sourmail et al. [59,61] design the medium carbon bainitic forging steel grade DIN-
38MnCrMoVB5 and 40MnSiCrMoB4. The benefit of the bainitic steels against Q&T steel DIN-
42CrMo4 is obvious since the materials never require heat-treatment after hot-forging [48]. To further 
improve the mechanical properties of the bainitic steels, the development of Si bearing Nano-B steels 
with high ductility and high toughness continues [3,4,16,40,53,62] (Figure 3). Simultaneously, many 
researchers are developing dual-phase type M-Mn steels with a large amount of metastable retained 
austenite. Unfortunately, the toughness of the M-Mn steels is lower than bainitic steels [47,53,62] (see 
M-Mn steel in Figure 3). The details of the Nano-B steels are described in the following Section 4. 

4. Advanced High-Strength Forging Steels; AFSs 

Recently, 980−1960 MPa grade AFSs such as TBF, Nano-B, one and two-step Q&P, TBM, TM, 
and martensite type M-Mn forging steels with bainitic ferrite and/or martensite matrix structure have 
been developed for weight reduction of automotive powertrain and chassis [32–36]. These 
prospective AFSs contain Si and/or Al higher than 0.5 mass% to suppress the carbide formation and 
promote a predominant formation of carbon-enriched retained austenite [32–37]. In addition, IT 
process at TIT higher than MS, between MS and Mf and lower than Mf immediately after hot-forging 
must be conducted to the AFSs (Figure 4). The heat-treatment of two-step Q&P steel exceptionally 
consists of quenching to temperature (TQ) between MS and Mf and subsequent partitioning at 
temperature (TP) higher than MS. In some cases, Cr, Ni, Mo, B, etc. are microalloyed to increase the 
hardenability of the AFSs. Further, V, Ti, and/or Nb are added to refine the prior austenitic grain. The 
microstructures of the AFSs are classified into three types as illustrated in Figure 5. Metastable 
retained austenite in all AFSs plays an important role in enhancing the ductility and fracture strengths 
such as fatigue strength, impact toughness, and delayed fracture strength [63,64]. In the following, 
the microstructural and mechanical properties of three types of AFS are detailed. 
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Figure 4. Hot-forging processes of low and medium carbon AFSs such as TBF, one-step and two-step 
Q&P, Nano-B, TBM, TM, and martensite type M-Mn steels. TR: recrystallized temperature. 

 
Figure 5. Illustration of typical microstructure of various AFSs. (a): TBF, Nano-B, and one-step Q&P 
steels, (b): two-step Q&P, TBM, and Nano-B steels, (c): TM and martensite type M-Mn steels.  αbf, αm, 
αm*, γR, θ, and MA represent bainitic ferrite, soft martensite, hard martensite, retained austenite, 
carbide, and a mixture of martensite and austenite, respectively. 

4.1. TBF, One-Step Q&P, and Nano-B Steels (TIT > MS) 

TBF steels are produced by IT process at TIT higher than MS immediately after hot-forging in 
austenite region, in the same way as one-step Q&P and Nano-B steels (Figure 4). The microstructure 
mainly consists of bainitic ferrite matrix structure, filmy retained austenite along the bainitic ferrite 
lath boundary, and a negligible amount of MA phase (Figure 5a). 

Hot-forging with a reduction strain higher than 40% refines the prior austenitic grain, bainitic 
ferrite structure, retained austenite phase, and MA phase (Figure 6b) [37]. Also, the hot-forging 
increases the volume fraction and mechanical stability of the retained austenite. Microalloying of Cr 
and Mo is effective to increase the volume fraction and carbon concentration of the retained austenite, 
as well as an increase in hardenability [32−34]. Controlled hot-forging and ausforming followed by 
IT process is also further effective to refine the microstructure and improve the retained austenite 
characteristics [34]. 

Hot-forging with a reduction strain of 50% achieves an excellent combination of yield stress of 
700−1000 MPa and Charpy impact absorbed value of 110–130 J/cm2 in 
0.20C−1.52Si−1.50Mn−0.05Nb−0.0018B and 0.42C−1.47Si−1.51Mn−0.50Cr−0.20Mo−0.48Al−0.05Nb TBF 
steels subjected to IT process at TIT above MS (Figure 7) [35,65], as well as a good balance of yield 
stress and total elongation. The yield stress−impact toughness balance exceeds so much that of a hot-
forged 0.3C−0.26Si−1.0Mn−0.2Cr−0.3V PHFP-M steel [55] and an ausformed 0.13C−0.26Si−2.7Mn 
Q&T steel [50] (see Figure 7). A similar result is also obtained by El-Din et al. [66]. From the 
examinations of microstructure and retained austenite characteristics, it is revealed that the excellent 
balance of TBF steel is mainly caused by (i) refined bainitic ferrite matrix structure, (ii) refined prior 
austenitic grain, and (iii) a large amount of refined metastable retained austenite. The retained 
austenite suppresses the crack initiation or the void formation and subsequent void coalescence 
during impact tests via the plastic relaxation of localized stress concentration and an increase in 
carbon-enriched hard martensite fraction resulting from the strain-induced transformation [32,33]. 
Ultra-fast heating before hot-forging is also effective for grain refining [67]. 
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Figure 6. Phase maps (a,b) and orientation maps (c,d) of EBSP of 0.42C−1.47Si−1.51Mn−0.50Cr−0. 
20Mo−0.48Al−0.05Nb TBF steel subjected to IT process at TIT = 350 °C immediately after (a,c) 
austenitizing and (b,d) hot-forging at a reduction strain of 50% and a strain rate of 0.5/s. In (a,b), αbf, 
γR and MA represent bainitic ferrite (yellowish green), retained austenite (red), and martensite-
austenite phase, respectively [32,33]. (a,c): fγ0 = 20.0 vol.%, (b,d): fγ0 = 21.2 vol.%. 

 
Figure 7. Charpy impact absorbed values (CIAV) as a function of yield stress or 0.2% offset proof 
stress (YS) in hot-forged low and medium carbon TBF and TM steels and heat-treated JIS-SCM420 
and JIS-SCM440 steels [33,35,65]. Charpy impact and tensile tests were carried out at room 
temperature. ☆: 0.2C−1.5Si−5Mn martensite type M-Mn steel [26], ◆: 0.3C−0.26Si−1.0Mn−0.2Cr−0.3V 
PHFP-M steel [55], ★: 0.13C−0.26Si−2.7Mn ausformed Q&T steel [50]. R: reduction strain, open marks: 
steels without hot-forging, solid marks: steels hot-forged at a reduction strain of 50% and a strain rate 
of 0.5/s. 

Sugimoto et al. [63,68] report that a low carbon TBF steel achieves the excellent balance of 
mechanical properties as shown in Figure 8. Wirths et al. [69] find out an interesting result which hot-
forged 0.18C−0.97Si−2.50Mn−0.2Cr−0.1Mo−0.0018B Nano-B steel exhibits a significant cyclic 
hardening, differing from 42CrMo4 Q&T steel showing a large cyclic softening, in the same way as a 
0.17C−1.41Si−2.02Mn TBF steel [63]. The Nano-B steel also exhibits a balance of tensile strength and 
Charpy impact absorbed value higher than that of Q&T steel DIN-42CrMo4. Buchmayr [4] and 
Caballero et al. [23] also report that low carbon Nano-B steels achieve an excellent balance of yield 
stress and total elongation. 
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Figure 8. Comparison of various mechanical properties of DIN-22MnB5 Q&T steel and 0.2C-1.5Si-
1.5Mn TBF and TM steels subjected to heat-treatment without hot-forging. This figure was modified 
based on Refs. [63,64]. 

4.2. Two-Step Q&P (Mf < TQ < MS, TP > MS) and TBM Steels (Mf < TIT < MS) 

Two-step Q&P process consists of direct quenching to temperature (TQ) between MS and Mf and 
subsequent partitioning at temperature (TP) higher than MS after austenitizing [17] (green dotted line 
in Figure 4). On quenching, a certain amount of soft martensite transforms first. The soft martensite 
fraction (fαm) can be estimated by the following empirical equation proposed by Koistinen and 
Marburger [70]. 

fαm = 1 − exp {−A (MS − TQ)B} (1) 

where A and B are material constants. During partitioning, carbide-free bainite transformation 
results from austenite, accompanied with carbon migration from soft martensite to the remaining 
austenite. The resultant microstructure consists of a dual-phase structure of soft martensite and 
bainitic ferrite and a large amount of metastable retained austenite (Figure 5b). In some cases, a small 
quantity of MA phase is formed [71]. It is noteworthy that fine martensite in the MA phase is a very 
hard phase because it is carbon-enriched to the same extent as retained austenite. A small amount 
of carbide is formed only in the soft martensite lath structure when the quenching temperature is 
slightly higher than Mf [72]. A simplified route with direct cooling in the quenching bath for making 
hot-forged parts using a Q&P process is illustrated in Figure 9 [45]. 

The two-step Q&P process brings out a balance of tensile strength and total elongation higher 
than one-step Q&P process [17]. Gao et al. [73,74] report that the two-step Q&P process enhances the 
Charpy impact absorbed values in low carbon Si–Mn steels. According to Bagliani et al. [72] and 
Somani et al. [75], the two-step Q&P process lowers the ductile–brittle transition temperature of 
Charpy impact absorbed value in a 0.28C−1.41Si−0.67Mn−1.49Cr−0.56Mo steel and 
(0.19−0.22)C−(0.55−1.48)Si−(1.50−2.04)Mn−(0−1.06)Al−(0.52−1.20)Cr−(0−0.21)Mo−(0−0.79)Ni steels, 
respectively. Also, De Diego-Calderón et al. [76] confirm that the two-step Q&P process increases the 
fracture toughness of a 0.25C−1.5Si−3Mn steel. 

 
Figure 9. Simplified route with direct cooling in quenching bath for making forged parts using a two-
step Q&P process (Reprinted with permission from [44], Copyright IRED 2014). 
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Sugimoto et al. [32,65] also reported that excellent ductility and impact toughness are obtained 
in hot-forged low and medium carbon TBM steels. They propose that the excellent mechanical 
properties are associated with (i) a refined dual-phase matrix structure of soft martensite and bainitic 
ferrite, (ii) refined prior austenitic grain, and (iii) a large amount of refined metastable retained 
austenite. The dual-phase structure plays a role in decreasing the fracture facet size and consequently 
lowers the ductile–brittle transition temperature. In addition, the dual-phase structure produces a 
compressive internal stress in the bainitic ferrite structure. A similar study using a 
0.15C−1.41Si−1.88Mn−1.88Cr−0.36Ni−0.34Mo Nano-B steel subjected to ausforming and then IT 
process at TIT between MS and Mf is reported by Zhao et al. [77]. The roles of the above (ii) and (iii) 
are the same as those of TBF steels. 

Although there are no data comparing the mechanical properties of hot-forged two-step Q&P 
steels with those of hot-forged TBM steels, the mechanical properties of the hot-forged two-step Q&P 
steels are supposed to be the same extent as those of the hot-forged TBM steels [64] because their 
microstructures are nearly the same as each other. 

4.3. TM and Martensite Type M-Mn Steels (TIT < Mf) 

TM steel can be produced by IT process at TIT lower than Mf immediately after hot-forging of 
austenite, as well as direct quenching to room temperature (Figure 4) [12–16]. If the TIT is near room 
temperature or direct quenching to room temperature is conducted, partitioning at TP lower than MS 
is added. The microstructure is characterized by a dual-phase structure of soft martensite matrix 
structure and hard MA phase (Figure 5c). Most of a small amount of retained austenite is included in 
the MA phases [12–16]. Only a little carbide is developed only in the soft martensite, in the same way 
as two-step Q&P quenched to TQ just higher than Mf and TBM steel subjected to IT process at TIT just 
higher than Mf. Final partitioning promotes carbon-enrichment into the retained austenite and 
softening of both martensites without additive carbide formation [35–37]. 

Hot-forging at a reduction of 50% brings on an excellent combination of tensile strength of 1500 
to 2000 MPa (or yield stress of 1200 to 1560 MPa) and Charpy impact absorbed value of 35 to 80 J/cm2 
in 0.3C- and 0.4C-TM steels when the partitioning process was added after the IT process (Figure 7) 
[35]. The combination exceeds so much those of the commercial Q&T steels such as JIS-SCM420 and 
SCM440 steels in a range of YS > 1200 MPa [35,65], although the combination is slightly inferior to 
that of TBF steels. The ductile–brittle transition temperatures, however, are much lower than those 
of TBF steels [64]. Also, TM steels possess higher tensile strength, delayed fracture strength, fracture 
toughness, and notched fatigue strength than TBF steel. As shown in Figure 7a, 0.2C–1.5Si–5Mn 
martensite type M-Mn steel without hot-forging exhibits the same combination of yield stress and 
Charpy impact absorbed value as 0.3C-TM steel, but lower combination than 0.2C- and 0.4C-TBF 
steels [26]. 

According to Kobayashi et al. [78], MA phases in the TM steel play an important role in 
suppressing void formation and preferential void growth at the MA phase/matrix interface (Figure 
10a). Furthermore, the MA phases also inhibit the initiation and propagation of cleavage cracking 
(Figure 10b), through the block effect and the plastic relaxation that occurs as a result of the strain-
induced transformation of the metastable retained austenite. With this is in mind, the excellent impact 
toughness of TM steel is mainly caused by (i) refined dual-phase structure of soft martensite and MA 
phase and (ii) refined prior austenitic grain [35,36]. The (i) also generates a high long range 
compressive internal stress in the soft martensitic matrix. A small quantity of metastable retained 
austenite and the decreased carbide fraction may make a contribution to the impact toughness. 
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Figure 10. Illustrations showing (a) a ductile fracture and (b) a brittle fracture of TM steel appeared 
on impact tests [78,79]. Lc: Quasi-cleavage length affected by the MA phase located on prior austenitic, 
packet, and block boundaries. 

5. Summary 

In this paper, the hot-forging process and mechanical properties of CFSs were first stated, as 
well as typical steel grade and various automotive applications. Next, the microstructural and 
mechanical properties of HFSs were shown and compared with those of CFSs. 

Hot-forged AFSs achieved much better mechanical properties than hot-forged CFSs. The 
excellent mechanical properties, especially impact toughness, were mainly caused by the following 
microstructural properties in TBF steel (and one-step Q&P and Nano-B steels), two-step Q&P steel 
(and TBM steel), and TM steel (and martensite type M-Mn steel). 

(1) TBF, one-step Q&P, and Nano-B steels: refined bainitic ferrite matrix structure, refined prior 
austenitic grain, and a large amount of refined metastable retained austenite. 

(2) Two-step Q&P and TBM steels: refined dual-phase structure of soft martensite and bainitic 
ferrite, refined prior austenitic grain, and a large amount of refined metastable retained 
austenite. 

(3) TM and martensite type M-Mn steels: refined dual-phase structure of soft martensite and MA 
phase and refined prior austenitic grain. 

For impact toughness, two types of dual-phase structure play roles in enhancing a compressive 
internal stress in soft structure and decreasing the fracture facet size. A large amount of refined 
metastable retained austenite suppresses the crack initiation or the void formation and subsequent 
void coalescence or crack growth via the plastic relaxation of localized stress concentration resulting 
from the strain-induced transformation of the retained austenite. The strain-induced hard martensite 
also plays a role in the block effect of crack growth, as well as MA phase. Although TM steel includes 
a small quantity of retained austenite, the metastable retained austenite makes a contribution to high 
impact toughness, as well as the decreased carbide. 

The AFSs can be expected to enable the weight reduction and size-down of the automotive 
powertrain and chassis parts. In order to apply the AFSs to the automotive hot-forging components, 
however, other mechanical properties such as fatigue strength, delayed fracture strength, and wear 
properties of hot-forged AFSs must be systematically investigated in the future. In addition, it is 
desired that their mechanical properties are compared to those of CFSs and the other AFSs such as 
dual-phase type M-Mn steels [52,80,81] and TWIP steels [7–10]. 

To further enhance the wear resistance and fatigue strength of the AFSs, a surface layer shell 
hardened up to 60 HRC is needed [48,79]. Many engineers also want to know such mechanical 
properties of case-hardened AFSs. 

Finally, authors want to emphasize that the AFSs may be applied to not only automotive 
powertrain and chassis parts but also the forging parts of other engineering structures such as 
construction machinery, airplanes, marine machinery, etc. The applications will increase many 
fracture strengths and resultantly bring about a great increase in reliability. 
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