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Abstract: Nickel-based superalloys are widely used in aerospace and other fields due to their excellent
properties. In this study, the aging treatment and tensile tests of a GH4169 alloy were carried out.
The effects of the δ phase on the alloy’s mechanical properties and fracture behavior were studied.
The results showed that the appearance of the δ phase changed from a short rod shape to a needle
shape with an increase in aging time. The precipitation method changed from a single mode of
precipitation along the grain boundary to two modes of precipitation along the grain boundary and
direct precipitation inside the grain. The yield strength and ultimate tensile strength of the alloy first
increased and then decreased with an increase in aging time and were related with the microstructure
of the δ phase. The similar Widmanstatten structure was not conducive to the mechanical properties
of the alloy. The distribution of the δ phase led to the generation of inhomogeneous strain and limited
the surface roughening during plastic deformation. The voids initiated at the interface between the δ
phase and the matrix γ phase or directly from the δ phase fracture site.
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1. Introduction

Nickel-based superalloys are widely used in aerospace, nuclear engineering, energy, transportation,
the petrochemical industry, etc., due to their perfect high temperature strength, oxidation resistance,
thermal corrosion resistance, fatigue properties, and fracture toughness [1–5]. The mechanical properties
of nickel-based superalloys are closely related to their microstructures. The δ phase in the GH4169
superalloy is an important precipitation phase. The morphology, distribution, and volume fraction of
the δ phase can affect the grain structure and mechanical properties of the alloy. The morphology of
the δ phase is mainly spherical, lamellar, and needle shaped or short rod shaped. The δ phase generally
precipitates at the grain boundaries or the twin boundaries, resulting in a decrease in the plasticity
of the alloy. Azadian et al. [6] pointed out that the δ phase increased the sensitivity of the thermal
cracking of the alloy. However, the δ phase with an appropriate volume fraction can effectively limit
grain growth during solution heat treatment. The presence of the δ phase at the grain boundaries also
increases the resistance of the grain boundary creep rupture. Therefore, the presence of the δ phase
with a proper volume fraction in the alloy can improve the impact toughness of the alloy [7].

Many studies about the mechanical properties of the GH4169 alloy have been conducted under
different conditions, such as thermal compression, thermal tension, and room temperature tension [8–18].
Lin et al. [9] pointed out that the formation of the δ phase causes the accumulation of dislocations during

Metals 2019, 9, 1153; doi:10.3390/met9111153 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0002-5171-7322
http://www.mdpi.com/2075-4701/9/11/1153?type=check_update&version=1
http://dx.doi.org/10.3390/met9111153
http://www.mdpi.com/journal/metals


Metals 2019, 9, 1153 2 of 13

hot tensile deformation, which leads to an increase in the work hardening rate of the alloy. The peak
stress increased as the volume fraction of the δ phase increased. However, the alloy subjected to a rapid
decrease in flow stress after reaching the peak stress, showed a significant softening phenomenon.
He et al. [10] found that the generation of micro-cavities between the interfaces of the δ phase/matrix
easily occurs with increased δ phases, and the high-temperature tensile properties are obviously
deteriorated. Wen et al. [11] proposed that the dislocations pile up around the δ phase at a low strain,
which would aggravate the strain hardening behavior and further lead to increased flow stress during
hot deformation. Anderson et al. [12] found that the precipitation position of the δ phase has different
effects on the mechanical properties of the GH4169 alloy. The δ phase tended to cause hardening of
the alloy when it precipitated inside the grain, and the forming property of the alloy was improved
when it precipitated at the grain boundary. Rao et al. [13] reported that the δ phase decreases yield and
tensile strength but increases rupture ductility. Similar conclusions were drawn for creep and fatigue
properties [14,15]. Zhang et al. [16] found that as the volume fraction of the δ phase increased, the yield
strength and tensile strength of the GH4169 alloy decreased at room temperature, but the elongation
increased. This result conflicts with most researchers who believe that the δ phase causes an increase
in alloy brittleness. Valle et al. [17] proposed that the yield strength and ultimate tensile strength of the
alloy did not increase significantly as the volume fraction of the δ phase changed. The ductility of the
alloy decreased as the volume fraction of the δ phase increased. Chen et al. [18] found that the volume
fraction of δ phase increased with the amount of rolling deformation, which increased the strength of
the alloy. Although a large number of studies about the effects of the δ phase on mechanical properties
have been carried out, no consistent conclusions have been reached.

The study of the δ phase in the GH4169 alloy occupies an important position. The service
temperature of the GH4169 alloy is between −253 ◦C and 650 ◦C. Research on the tensile properties of
the δ phase to GH4169 alloy at room temperature is still lacking. In the present study, the evolution
behavior of the δ phase was studied. The influence of the volume fraction and morphology of the δ
phase on mechanical properties at room temperature was studied. Moreover, coupling EBSD and laser
confocal microscopy were first used to study the effects of the δ phase on strain evolution and surface
roughening during plastic deformation.

2. Materials and Methods

The GH4169 alloy used in the present study was a cold rolled sheet with a thickness of 200 µm.
Table 1 shows the chemical composition (mass fraction, %) of the GH4169 alloy. The tensile specimens
were machined to a 12 mm gauge length and a 5 mm gauge width (Figure 1). In order to reduce the
impact of the specimen machining, the edges of the tensile specimens were polished with a 2000 grit
SiC paper. To obtain the desirable microstructures, the tensile specimens were first solution treated at
1100 ◦C followed by water cooling (WC) and then aging treated at 900 ◦C for 1 h, 2 h, 4 h, 8 h, 16 h, and
24 h followed by WC. The pole figures (PFs) of the aged specimens were characterized by EBSD with
an accelerating voltage of 20 kV, a working distance (WD) of 15 mm, a scanning step size of 0.5 µm, and
a binning of 4 × 4. The crystallographic texture of an alloy is closely related to its chemical composition,
microstructure, crystallography, as well as its processing conditions [19,20]. Figure 2 showed a set of
(111), (001), and (011) PFs of the aged specimens at different aging times. It can be observed that the
grain orientation in the aged specimens was random, and multiples of a random density (mrd) were
relatively low. This indicates that the influence of the texture caused by sheet rolling was eliminated by
heat treatment.

Table 1. Chemical composition (mass fraction, %) of the GH4169 alloy.

Ni Cr Nb Mo Al Ti C Co Fe

52.80 18.73 5.24 3.02 0.52 0.95 0.03 0.03 18.68
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Room temperature tensile tests with a constant strain rate of 0.01 s−1 were conducted on an 
Instron-5967 universal testing machine (Instron5967, INSTRON, Boston, MA, USA). Each set of 
tensile tests was performed four times to establish reproducibility. 

In order to characterize the evolution of the δ phase by SEM (MERLIN Compact, Carl Zeiss AG, 
Heidenheim, Germany), the aged specimens and fractured specimens were prepared using 
mechanical grinding and polishing methods. Then, the specimens were etched chemically in a mixed 
solution with 5 g CuCl2 + 100 mL HCl + 100 mL C2H5OH. A confocal laser scanning microscope 
(CLSM, OLS3000, OLYMPUS, Tokyo, Japan) was used to detect the surface roughness of the 
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Room temperature tensile tests with a constant strain rate of 0.01 s−1 were conducted on an
Instron-5967 universal testing machine (Instron5967, INSTRON, Boston, MA, USA). Each set of tensile
tests was performed four times to establish reproducibility.

In order to characterize the evolution of the δ phase by SEM (MERLIN Compact, Carl Zeiss AG,
Heidenheim, Germany), the aged specimens and fractured specimens were prepared using mechanical
grinding and polishing methods. Then, the specimens were etched chemically in a mixed solution with
5 g CuCl2 + 100 mL HCl + 100 mL C2H5OH. A confocal laser scanning microscope (CLSM, OLS3000,
OLYMPUS, Tokyo, Japan) was used to detect the surface roughness of the deformed specimens with
an area of 640 µm × 640 µm and a scanning step size of 0.3 µm. The fracture morphologies of the
specimens were characterized by SEM.
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3. Results and Discussion

3.1. Evolution Behavior of δ Phase

Figure 3 shows the microstructures of the δ phase at different aging times. It can be observed that
the morphology and distribution of the δ phase changed significantly after aging treatment for different
times. When the aging time was 2 h, the δ phase exhibited a spherical shape and a short rod shape.
The δ phase mainly precipitated along the grain boundary. When the aging time was 4 h and 8 h, the
needle-shaped δ phase precipitated at the grain boundaries, and the size of the needle-shaped δ phase
increased significantly. When the δ phase precipitated at the grain boundaries, it was discontinuously
distributed around the grain boundaries. Additionally, a small amount of the δ phase, which was
formed by the transformation of the γ′′ phase in the matrix γ phase, was present inside the grains.
The appearance of these δ phases was mostly a small spherical shape. When the aging time was
16 h and 24 h, the precipitation of the needle-shaped δ phase extended along the grain boundary
to inside the grain. The expansion direction of the precipitation of the needle-shaped δ phase was
approximately parallel. Niang et al. [21] also reported this appearance of the δ phase. In addition,
parts of the needle-shaped δ phases appeared to cross each other inside the grain, which is similar to
a Widmanstatten structure. Similar experimental results have appeared in previous studies [12,22].
The reason for these phenomena is that the δ phase at the grain boundaries was combined with the δ
phase, which was formed by the intragranular γ′′ phase transition. Azadian et al. [6] pointed out that
the precipitation of the γ′′ phase occurred before δ phase precipitated in the GH4169 alloy, so there
was a transition between the γ′′ phase and the δ phase at an aging temperature of 900 ◦C. Wei et al. [7]
and Sundararaman et al. [23] also put forward such views.

Metals 2019, 9, x FOR PEER REVIEW 4 of 13 

 

deformed specimens with an area of 640 µm × 640 µm and a scanning step size of 0.3 µm. The fracture 
morphologies of the specimens were characterized by SEM. 

3. Results and Discussion 

3.1. Evolution Behavior of δ Phase 

Figure 3 shows the microstructures of the δ phase at different aging times. It can be observed 
that the morphology and distribution of the δ phase changed significantly after aging treatment for 
different times. When the aging time was 2 h, the δ phase exhibited a spherical shape and a short rod 
shape. The δ phase mainly precipitated along the grain boundary. When the aging time was 4 h and 
8 h, the needle-shaped δ phase precipitated at the grain boundaries, and the size of the needle-shaped 
δ phase increased significantly. When the δ phase precipitated at the grain boundaries, it was 
discontinuously distributed around the grain boundaries. Additionally, a small amount of the δ 
phase, which was formed by the transformation of the γ′′ phase in the matrix γ phase, was present 
inside the grains. The appearance of these δ phases was mostly a small spherical shape. When the 
aging time was 16 h and 24 h, the precipitation of the needle-shaped δ phase extended along the grain 
boundary to inside the grain. The expansion direction of the precipitation of the needle-shaped δ 
phase was approximately parallel. Niang et al. [21] also reported this appearance of the δ phase. In 
addition, parts of the needle-shaped δ phases appeared to cross each other inside the grain, which is 
similar to a Widmanstatten structure. Similar experimental results have appeared in previous studies 
[12,22]. The reason for these phenomena is that the δ phase at the grain boundaries was combined 
with the δ phase, which was formed by the intragranular γ′′ phase transition. Azadian et al. [6] 
pointed out that the precipitation of the γ′′ phase occurred before δ phase precipitated in the GH4169 
alloy, so there was a transition between the γ′′ phase and the δ phase at an aging temperature of 900 
°C. Wei et al. [7] and Sundararaman et al. [23] also put forward such views. 

 
Figure 3. Microstructures of the δ phase at different aging times. (a) 1 h; (b) 2 h; (c) 4 h; (d) 8 h; (e) 16 
h; (f) 24 h. 

Figure 4 shows the volume fraction of the δ phase at different aging times. It can be seen that the 
volume fraction of the δ phase increased with an increase in aging time. As the aging time increased, 
the precipitation method changed from a single mode of precipitation along the grain boundary to 
two modes of precipitation along the grain boundary and direct precipitation inside the grain. The 
appearance of the δ phase changed from a short rod-shaped δ phase to a needle-shaped δ phase with 
an increase in aging time. The distortion strain energy between the δ phase and the matrix γ phase 
was large due to non-coherent precipitation. In order to reduce the distortion strain energy, the 
needle-shaped δ phase extended inside the grain in a specific direction. 
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Figure 4 shows the volume fraction of the δ phase at different aging times. It can be seen that the
volume fraction of the δ phase increased with an increase in aging time. As the aging time increased,
the precipitation method changed from a single mode of precipitation along the grain boundary
to two modes of precipitation along the grain boundary and direct precipitation inside the grain.
The appearance of the δ phase changed from a short rod-shaped δ phase to a needle-shaped δ phase
with an increase in aging time. The distortion strain energy between the δ phase and the matrix γ
phase was large due to non-coherent precipitation. In order to reduce the distortion strain energy, the
needle-shaped δ phase extended inside the grain in a specific direction.
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3.2. Mechanical Properties

Figure 5a showed the engineering stress–engineering strain curves of GH4169 alloy. It can be seen
that the elastic strain of the alloy was small, and the yield of the alloy was reached at a small strain.
The flow stress of the alloy showed a clear upward trend with an increase in plastic strain, which
was due to work hardening during plastic deformation. Figure 5b shows an enlarged view of the red
framed portion in Figure 5a. For a given engineering strain, as the aging time increased from 1 h to
24 h, the flow stress of the alloy first increased, and then the flow stress decreased, which is related to
the volume fraction and morphology of the δ phase (Figure 5c).
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Figure 6a shows the change of yield strength (σs) and ultimate tensile strength (σb) of the alloy
with various aging times. The trends of the changes in σs and σb were consistent with those in the flow
stress—that is, the σs and σb of the alloy increased first and then decreased with an increase in the aging
time. Compared with the σs, the σb changed more significantly. This indicates that the influence of the
δ phase on the σb at room temperature was more distinct. The σs and σb of the sample with the aging
time of 8 h reached maximum values, which were approximately 513 MPa and 1043 MPa, respectively.
The fracture elongation (εf) in Figure 6b gradually decreased as the aging time increased. The εf of the
specimen with the aging time of 24 h reached its minimum value, which was approximately 0.371.
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When the aging time was less than 8 h, the δ phase mainly precipitated along the grain boundary,
and the volume fraction of the δ phase increased with the aging time. The dislocations accumulated
near the δ phase, and the pinning effect of the δ phase was further strengthened due to precipitation
strengthening. The σs and σb of the alloy continued to increase. At an aging time of 8 h, the σs and
σb of the alloy reached their maximum values. This is basically consistent with the results obtained
by reference [24] after an aging treatment of 5–10 h. For the aging treatment of 16 h and 24 h, the
microstructure of the δ phase was similar to the Widmanstatten structure. Lei et al. [25] proposed that
the Widmanstatten structure would reduce the σs, σb, and εf of the alloy. Gil et al. [26] pointed out that
the Widmanstatten structure reduced the εf of the alloy. Therefore, the σs and σb of the alloy decreased
when the aging treatment time was more than 16 h. Additionally, the precipitation of the δ phase
in the matrix γ phase belonged to the non-coherent transition during the aging treatment process.
The precipitation position of the δ phase induced a notable stress concentration. The dislocation
accumulation during the plastic deformation process led to an increase in the strength of the alloy.
However, the local stress concentration was also more profound. Therefore, the plasticity of the alloy
was lowered, causing the εf of the alloy to continuously decrease.

3.3. Strain Evolution

Local misorientation could be used to reveal the strain evolution during plastic deformation in
the deformed materials [27]. Figure 7 shows the Kernel average misorientation (KAM) of the specimen
surface for the aged specimens and fractured specimens at different aging times. KAM is a local
misorientation defined as an average misorientation of a point with all of its neighbours in a grain.
The KAM analysis uses the maximum misorientation of 5 degrees and 0-point kernels to maximum
misorientation. It could be observed that the KAM values (mainly between 0◦ and 0.5◦) were very low
and evenly distributed at the grain boundaries and inside the grains for the aged specimens. However,
the KAM values (mainly between 0.5◦ and 2◦) were very high and not evenly distributed for the
fractured specimens. The average KAM values were higher at the grain boundaries than those inside
the grains for the fractured specimens. This phenomenon was related to the distribution of the δ phase.
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This phenomenon indicates that an obvious plastic strain was produced in the grains after tensile
deformation and that the plastic strain was mainly concentrated at the grain boundaries. Additionally,
it the average KAM value could be seen to obviously increase with aging time. This indicates that the
presence of the δ phase led to an increase in the average KAM value.
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During the plastic deformation process, the roughness of the specimen’s surface changed
significantly, which was closely related to the crystallographic orientation [28]. The crystallographic
orientation with regard to the applied stress controlled the plastic strain, which was produced inside
each grain [29]. The crystallographic orientation could be characterized by the Schmid factor. Grains
with a low Schmid factor were deformed with difficulty, while the greater number of hindrances and
grains with a high Schmid factor were easily deformed due to fewer hindrances. Figure 8 displays the
Schmid factor maps of aged specimens and fractured specimens at different aging times. It can be
observed that the Schmid factor values of each grain in the aged specimens were different (Figure 8a,c,e).
Compared with the aged specimens, the Schmid factor values of the fractured specimens decreased
(Figure 8b,d,f). This indicates that the Schmid factor values of the grains gradually decreased during
plastic deformation, and the deformation of the grains became more and more difficult.
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Figure 8. Schmid factor maps of the alloy at different aging times. (a) Aged specimens with an aging
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8 h; (d) fractured specimens with an aging time of 8 h; (e) aged specimens with an aging time of 16 h;
(f) fractured specimens with an aging time of 16 h.

Grains with a low Schmid factor induced local ridge, and grains with a high Schmid factor
resulted in a local depression on the specimen surface during tensile deformation. Therefore, the
surface roughening phenomena were attributed to the difference in the Schmid factor of the adjacent
grains [30]. The surface roughness of the deformed specimens with various aging times is displayed in
Figure 9. The surface roughness of the deformed specimens under a strain of 0.2 significantly decreased
with an increase in aging time. This is because the grains in the surface layer were more obstructed due
to the presence of the δ phase. This indicates that the δ phase is conducive to reducing the coarsening
of the surface layer grains.
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of a strain of 0.2. (a) 1 h; (b) 2 h; (c) 4 h; (d) 8 h; (e) 16 h; (f) 24 h.

3.4. Fracture Morphology and Fracture Mechanism

Figure 10 shows the morphology of the δ phase near the fracture after tensile deformation at
different aging times. The needle-shaped δ phase broke, and some voids of different sizes appeared at
the fracture position of the δ phase. Additionally, the voids were also formed when the interfaces of
the matrix γ phase and the carbide phase were separated, or the carbides were broken [9]. Figure 11
shows the fracture morphology of the alloy at different aging times. Equiaxed dimples were clearly
visible at the fracture. These dimples were formed by the aggregation of micropores during the plastic
deformation. As the micropores expanded, the alloy finally broke. With an increase in aging time,
the number and size of the dimples gradually decreased, indicating that the plasticity of the alloy
gradually decreased with an increase of aging time. There were also some elongated deep voids in
Figure 11, probably due to the crack expanding along the δ phase, and the δ phase was peeled off from
the alloy at the time of the fracture.
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The matrixγphase contained non-metallic inclusions, precipitates, or brittle phases. The mechanical
properties of these materials were very different from those of the matrix γ phase. When plastic
deformation occurred, the slip would preferentially start along the slip surface of the matrix γ phase.
However, these materials with different phase components in the matrix γ phase hindered the motion
of the dislocations, resulting in the accumulation of dislocations in the vicinity of the non-matrix phase
and resulting in local stress concentration. The voids formed in the vicinity of the δ phase in Figure 10
were caused by the stress concentration due to dislocation accumulation during plastic deformation.
As the plastic deformation of the alloy continued, the stress value at the δ phase was greater than its
own strength or exceeded the interface strength between the matrix γ phase and the δ phase, which
caused a void to form in the matrix γ phase, and the position of the δ phase usually became a void
initiation position. The presence of the δ phase causes a large number of voids to nucleate near the δ
phase, thereby promoting the formation of voids during tensile deformation. Therefore, as the volume
fraction of the δ phase increases, the εf of the material gradually decreases.

4. Conclusions

The microstructure evolution of the GH4169 alloy was analyzed via SEM, EBSD, and CLSM in
this study. The tensile deformation of the GH4169 alloy with various volume fractions of the δ phase
was carried out. The main conclusions are as follows:

(1) As the aging time increased, the short rod-shaped δ phases evolved into needle-shaped δ
phases. The δ phase precipitated not only along the grain boundary but also directly inside the grain.
The volume fraction of the δ phase increased with an increase of aging time.

(2) The σs and σb of the alloy first increased and then decreased with an increase in aging time.
The σs and σb of the alloy reached their maximum values at an aging time of 8 h. The εf gradually
decreased as the aging time increased. The similar Widmanstatten structure was not conducive to the
mechanical properties of the alloy.

(3) The average KAM values were higher at the grain boundaries than those inside the grains for
the fractured specimens, which were related to the distribution of the δ phase. The surface roughness
of the deformed specimens significantly decreased with an increase of aging time. This indicates that
the δ phase was conducive to reducing the coarsening of the surface layer grains.

(4) The needle-shaped δ phase broke and some distinct micropores of different sizes appeared at
the fracture position of the δ phase. When the stress value at the δ phase was greater than its own
strength or exceeded the interface strength between the matrix γ phase and the δ phase, voids formed
in the matrix γ phase, and the position of the δ phase usually became a void initiation position.
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