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Abstract: In the present work, using Heusler Ni49+xMn36-xIn15 (with x = 0 and 0.5) alloys, it is
shown that the choice of the appropriate measurement protocol (erasing the prior state of the
sample in between experiments) in ∆Tad first shot characterization is crucial for obtaining reliable
results. Unlike indirect measurements, for which incorrect protocols produce overestimates of the
characteristics of the material, erroneous direct measurements underestimate ∆Tad in the region close
to its first order phase transition. The error in ∆Tad is found to be dependent on the temperature step
used, being up to ~40% underestimation, including a slight shift in its peak temperature.
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1. Introduction

Magnetic materials, when adiabatically subjected to magnetic field changes, can undergo significant
adiabatic temperature change (∆Tad) ascribed to the magnetocaloric (MC) effect [1–3]. This effect
constitutes the basis of magnetic refrigeration, an emergent environmental-friendly refrigeration
alternative (50% more energy efficient than conventional systems) [4]. Nowadays, the basic study
and optimization of MC materials and devices is a hot topic for the scientific community [5–7].
The maximum MC response is obtained close to a thermomagnetic phase transition, either first- (FOPT)
or second-order (SOPT), being this a common criterion categorizing the materials. In the former case,
it corresponds to a discontinuity in the first derivative of the free energy (with phase coexistence
during the transition and hysteretic behavior) while a SOPT is associated to a discontinuity in the
second derivative of the free energy (in this case, its resultant phase variation is continuous and
reversible) [8]. To date, there are several promising MC materials being considered. Historically,
Gd was the first material to demonstrate that magnetic refrigeration can serve as a real alternative
to the conventional refrigeration systems though its high price and limited availability impeded
further advances in commercialization of magnetic refrigerators [9]. Nowadays, there are other
well-regarded MC material candidates with large MC responses that can surpass that of Gd, which
include Gd5(Si,Ge)2 [10], MnFe(P,As) [11,12], La(Fe,Si)13 [13,14], or Heusler alloys [15–18]; all of them
belong to the FOPT type.

Hence, the appropriate performance evaluation is crucial for MC materials as that would determine
their suitability for their technological application [19]. For FOPT MC materials, temperature and field
variations are irreversible due to the intrinsic hysteresis of the transition [20,21]. This implies that the
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partial transformation of the sample from previous measurement conditions could persist for subsequent
measurements within its hysteretic range. This has been brought up when performing the continuous
measurements for the indirect MC determination of the isothermal entropy change (∆Siso) as spurious
peaks are found [22,23]. Therefore, it is important to consider the effects of partial transformations
after each measurement and erase them to obtain physically meaningful data (usually termed as
discontinuous protocols). This is made by cooling/heating well below/above the transition before
proceeding to the next measurement. This process is also accompanied with an appropriate value
of the magnetic field (depending on the particular phase to be stabilized). It should be stressed that
these protocols refer to a first shot characterization to obtain information about the material’s nature,
however, it can be also evaluated in cycled conditions to examine the technological capacities [24,25].

In this work, the effect of the different measurement protocols on the direct ∆Tad measurements is
studied for two polycrystalline Heusler alloys (nominal compositions Ni49Mn36In15 and Ni49.5Mn35.5In15)
exhibiting martensitic (FOPT) and Curie (SOPT) transitions (being a good test material for our purpose).
We observe that ∆Tad values can be severely underestimated when using continuous protocols instead
of discontinuous ones, whereby discrepancies as high as up to 40% are observed in the region close to the
martensitic transition. In addition, it is found that the protocol application becomes more crucial with
increasing thermal hysteresis span as compared to the temperature step used in the measurements.

2. Methods

The direct MC effect of the samples was characterized using a direct ∆Tad measurement system,
whereby the sample chamber is maintained in vacuum (10−5 mbar) and its temperature is controlled
by a Lake Shore Cryotronics temperature controller. The variable magnetic field generator is composed
of two concentric Hallbach cylinders with a maximum magnetic field of 1.76 T. The temperature change
of the sample produced by the application/removal of a magnetic field is registered using a type T
thermocouple in differential configuration, with its reference weld located in contact with the sample
holder. Due to their composition, type T thermocouples do not have a magnetic field-dependent
response. The other weld of the thermocouple is located between two pieces of sample with rectangular
shape. The different measurement protocols were automated using our in-house implemented software
with appropriately adjusted PID (Proportional–Integral–Derivative) parameters for the temperature
controller (to avoid thermal oscillations around the selected temperature).

3. Results and Discussion

The chosen alloys exhibit low-temperature martensite transforming to austenite at higher temperatures
from both microstructural and magnetic observations. Further details of their synthesis, structural
characterization, and magnetocaloric properties can be found in References [26,27]. Their temperature
dependence of magnetization is shown in Figure 1a for which various magnetic phase transitions
upon heating can be observed: a martensitic (martensite to austenite) transition (FOPT) followed by
a Curie transition of the austenitic phase at higher temperatures (SOPT). It can be observed that small
compositional changes can significantly affect the martensitic transition (in agreement with literature) [28].
With respect to direct ∆Tad measurements, Table 1 shows the different discontinuous protocols used
in this work to perform the direct measurements. In the case of continuous protocols, the samples are
neither cooled down nor heated up to the end of the transformation after the measurement at a selected
temperature. The protocols have been selected taking into account that the martensitic transition of the
alloys is shifted to lower temperatures under an applied magnetic field (magnetic field stabilizes the
austenitic phase) [15]. It can be noted that the characterization protocols used are in conjunction with
those proposed for indirect MC measurements of FOPT MC materials.
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Figure 1. (a) Temperature dependence of magnetization of Ni49Mn36In15 and Ni49.5Mn35.5In15 samples 
measured at selected fields. (b) Magnetization/demagnetization curves at temperatures close to the 
martensitic transition. 
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Figure 1. (a) Temperature dependence of magnetization of Ni49Mn36In15 and Ni49.5Mn35.5In15 samples
measured at selected fields. (b) Magnetization/demagnetization curves at temperatures close to the
martensitic transition.

Table 1. Heating and cooling discontinuous protocols on erasing the sample′s history used in this work.

Heating Cooling

Set the temperature well below the martensitic
transition at low field

Set the temperature well above the martensitic
transition at high field

Set the desired measurement temperature Set the desired measurement temperature
Measure ∆Tad from low to high field Measure ∆Tad from high to low field
Repeat the steps before measurement

at a different temperature
Repeat the steps before measurement

at a different temperature

The temperature dependence of ∆Tad at 1.76 T while cooling using discontinuous (i.e., erasing
the memory of the sample between measurements) and continuous (i.e., not erasing it) measurement
protocols with a temperature step of 5 K for Ni49.5Mn35.5In15 sample is shown in Figure 2. Two peaks are
clearly observed, which correspond to the martensitic and Curie transitions (around 295 K and 320 K,
respectively). The former response is larger than the second one, although it happens in a narrower
temperature range (as expected from the characteristics of each transition, i.e., an abrupt change
for FOPT and a gradual change for SOPT). A magnetic field sweep rate of 0.5 T s−1 was selected
for both samples. The discontinuous protocol was applied by subjecting the sample to a reset
temperature of 350 K and 1.76 T (which is well above its martensitic transition of ~295 K). Error bars
correspond to the precision of the system (close to room temperature ≈ 0.06 K). The different ∆Tad
results of Ni49.5Mn35.5In15 show slight differences for the two measurement protocols in the region
close to the martensitic transition while in the region close to the ferro-paramagnetic transition there
are no differences. This is further magnified in the inset of Figure 2 using the temperature dependence
of δ∆Tad (where δ∆Tad = ∆Tad (continuous) − ∆Tad (discontinuous)), however, the error bars avoid any
detailed discussion. In addition, similar features are observed for the ∆Tad results using both protocols
while heating (not shown).
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Figure 2. Temperature dependence of the adiabatic temperature change (ΔTad) of Ni49.5Mn35.5In15 
sample using discontinuous and continuous cooling protocols (open and solid symbols, respectively) 
with a temperature step of 5 K. Inset: differences between both ΔTad curves (δΔTad). 
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Figure 2. Temperature dependence of the adiabatic temperature change (∆Tad) of Ni49.5Mn35.5In15

sample using discontinuous and continuous cooling protocols (open and solid symbols, respectively)
with a temperature step of 5 K. Inset: differences between both ∆Tad curves (δ∆Tad).

Figure 3 shows the temperature dependence of ∆Tad at 1.76 T while heating using discontinuous
and continuous measurement protocols with a temperature step of 5 K for Ni49Mn36In15 alloy. In this
case, the heating protocol was used with a reset temperature of 200 K and zero field, well below the
martensitic transition around 260 K. For this sample, significant differences in the two curves with and
without accounting for its history are observed (further magnified by δ∆Tad in the inset of Figure 3).
The ∆Tad values associated to the martensitic transition are underestimated using the continuous
protocol (maximum differences ≈ 20% are obtained around the peak temperature of ∆Tad, Tpk),
while the curves are relatively similar in the region close to the ferro-paramagnetic SOPT. In addition,
the differences between their cooling ∆Tad(T) curves using both protocols are also notable, in agreement
to those observed from the heating protocol. To establish a comparison between both samples,
it is important to note that the mass and shape of both samples are quite similar, in order to avoid
the influence of these parameters in the general conclusions. With respect the hysteretic behavior,
Figure 1b shows the magnetization/demagnetization curves at selected temperatures close to the
martensitic transition for both samples. The hysteresis can be associated with the area enclosed between
magnetization/demagnetization curves, being 50.2 and 9.6 A m2 kg−1 T−1 for the Ni49Mn36In15 and
Ni49.5Mn35.5In15, respectively. According to this, the magnetic hysteresis is larger for the Ni49Mn36In15

sample, explaining why the differences between discontinuous and continuous protocols are more
significant for this alloy (the discussion of the different hysteresis mechanisms is beyond the scope of this
work). Furthermore, in agreement with the previous argument, the observed thermal hysteresis span
between cooling and heating curves is larger for the Ni49Mn36In15 sample than for the Ni49.5Mn35.5In15

one, ≈12 and 6 K, respectively, which in the latter case is quite close to the selected temperature steps.
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Figure 3. Temperature dependence of the adiabatic temperature change (∆Tad) of Ni49Mn36In15 sample
using discontinuous and continuous heating protocols (open and solid symbols, respectively) with
a temperature step of 5 K. Inset: differences between both ∆Tad curves (δ∆Tad).

To evaluate the influence of the temperature step on the direct measurements, a finer temperate
step resolution of 2.5 K was used. It can be observed that the influence of the protocol on ∆Tad while
cooling becomes more significant near the martensitic transition of Ni49Mn36In15 sample (for which the
effects are more evident) with decreasing the temperature step (5 and 2.5 K are used for comparison),
as shown in Figure 4. For the cooling protocol, a reset temperature of 350 K and a magnetic field
of 1.76 T were chosen. The underestimation of ∆Tad peak associated to martensitic transition increases
to ~40% (a two-fold increase in comparison to the 5 K step measurements). With this finer resolution
of the ∆Tad curves, the peak temperature slightly shifts to higher temperatures when using continuous
protocols. In addition, in the case of using discontinuous protocols (either for cooling or heating curves),
the different ∆Tad measured points are independent of the temperature step resolution, as expected.

It should be noted that, in contrast to the case of indirect ∆Siso measurements, wherein an
overestimation of the response is obtained when using continuous protocols, the effect on direct ∆Tad
measurements is a reduction of the response. This difference is due to the application of the Maxwell
relation for determining ∆Siso. The different fraction of phase transformation (due to a temperature
variation) at the initial magnetic field, when compared to the one in an isofield curve, leads to an artificial
increment of the magnetization change that produces a spurious spike in ∆Siso data. In contrast, for ∆Tad
measurements, the deviations are ascribed to the irreversibility of the magnetization/demagnetization
path which leads to a reduction of the transformed para-ferro fraction, reducing the ∆Tad values.
Using a finer temperature step, the differences of the amount of transformed fraction ascribed to the
irreversibility increases as the number of measurements increase (each measurement contributing
to the total amount of transformed phase), magnifying the error of the continuous protocol.
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sample using discontinuous and continuous cooling protocols (open and solid symbols, respectively)
with a temperature step of 2.5 and 5 K. Inset: differences between both ∆Tad curves (δ∆Tad) using
a temperature step of 2.5 and 5 K.

4. Conclusions

To conclude, the effect of the measurement protocols on the direct measurement of ∆Tad has been
studied using Ni49+xMn36-xIn15 Heusler alloys (x = 0 and 0.5). For measurement protocols that do
not take into account the history of the sample (i.e., continuous protocols), underestimations of ∆Tad
values were obtained in the region close to the martensitic FOPT, including a slight shift in its peak
temperature. These errors in the measurement are shown to be highly dependent on the hysteretic
temperature span with respect to the temperature step used for the measurements (discrepancies up
to 40% are observed for the studied sample). Reducing the temperature step, instead of enhancing the
reliability of the results, enhances the problem, which is counter-intuitive and relevant for designing
appropriate characterization methods. This reduction of the experimentally measured ∆Tad when
a continuous protocol is used is in contrast with the overestimation of ∆Siso when the history of the
sample is also neglected. The results presented here clearly illustrate the importance of considering
discontinuous measurement protocols to accurately determine the magnetocaloric response of FOPT
materials even for direct methods.
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