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Abstract: A new method, by directly utilizing original measured data (OMD) of the stress–strain
relation in the Marciniak–Kuczynski (M–K) model, was proposed to predict the forming limit curve
(FLC) of an aluminum alloy sheet. In the groove zone of the M–K model, by establishing the relations
of the equivalent strain increment, the ratio of shear stress to the first principle stress and the ratio
of the second principle stress to the first principle stress, the iterative formula was established and
solved. The equations of theoretical forming limits were derived in detail by using the OMD of the
stress–strain relation. The stretching specimens of aluminum alloy 6016-T4 were tested and the true
stress–strain curve of the material was obtained. Based on the numerical simulations of punch-stretch
tests, the optimized specimens’ shape and test scheme were determined, and the tests for FLC were
carried out. The FLC predicted by the proposed method was more consistent with the experimental
results of FLC by comparing the theoretical FLCs based on OMD of the stress–strain relation and
of that based on traditional power function. In addition, the influences of anisotropic parameter
and groove angle on FLCs were analyzed. Finally, the FLC calculated by the proposed method was
applied to analyze sheet formability in the stretch-forming process, and the predicted results of FLC
were verified by numerical simulations and experiments. The fracture tendency of the formed parts
can be visualized in the forming limit diagram (FLD), which has certain guiding significance for
fracture judgment in the sheet-forming process.
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1. Introduction

Plastic forming of sheet metal keeps an important role in modern industrial production and
is widely applied to the aerospace industry, automobile manufacturing, equipment manufacturing,
and other fields [1–4]. Mechanical properties and plastic-forming abilities of alloy sheet were
studied [5–7], and structural and textural evolutions in plastic forming were analyzed by the view
of microstructure [8,9]. The forming limit is an important performance index and process parameter
in sheet metal forming [10,11]. In the sheet formability evaluation method, the forming limit curve
(FLC) is the most intuitive and widely used [12]. Therefore, predicting FLC accurately and effectively
is worthy of further study and test [13].

To predict the FLC precisely, various related theoretical models have been developed. These
theoretical models include Swift’s theory of dispersion instability [14], Hill’s concentrated instability
theory [15], and Marciniak–Kuczynski’s (M–K) theory based on thickness inhomogeneity assumptions,
as well as the Storen–Rice theory [16] and the modified maximum force criterion (MMFC) theory [17,18].
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At present, the most widely used is the theoretical model proposed by Marciniak and Kuczynski [19],
in which an initial geometrical imperfection is assumed to trigger the occurrence of the localized
necking. The M–K theory can combine different stress–strain relations and yield functions to calculate
the ultimate strains of the sheet metal, and a great deal of research on the FLC by rationally combining
stress–strain relation and yield function has been done [20–22]. To select the optimal combination of
stress–strain relations and yield criteria, Butuc [20] et al. combined the Swift equation and the Voce
equation with the four yield criteria (von Mises, Hill 1948, Hill 1979, and Barlat Yld96) to predict the
FLC of the AA6016-T4, and the successful correlation was observed between the experimental FLCs
and the calculated limit strains when Yld96 yield criterion and the hardening law of Voce equation were
adopted. Yang [21] et al. applied the ductile fracture criterion with the traditional M–K model to study
the FLC of AA7075-O aluminum alloy sheet, and a modified M–K model was proposed. Wang [22]
et al. combined the Swift equation, the modified Voce equation, and the modified Hockett equation
with four yield criteria to analyze the effects of different constitutive equations and yield criteria on
the FLCs. Then, the optimal FLCs were obtained by selecting the suitable constitutive equation and
yield criterion.

The stress–strain relation of materials is a key factor to accurately predict FLC. In previous
studies, the stress–strain curves and the dislocation microstructures were predicted for a wide
range of temperatures and strain rates and the prediction agreed quite well with the experimental
data [23–25]. The experimental stress–strain curves can be explained by employing a small set
of physics-based parameters, and the statistical-thermodynamic dislocation is used to analyze the
experimental observations of adiabatic shear banding in steel [24]. However, the traditional power
approximations were generally used to reflect the stress–strain relation when predicting FLC in the M–K
model. Du [26] et al. introduced the power approximations into the M–K model. The theoretical FLC
was predicted, and theoretically predicted results of forming limits agreed well with the experimental
data. Hou [27] et al. used the curve-fitting method to calculate the strain hardening exponent n
and hardening exponent m of Al5083-O aluminum alloy sheet and predicted the FLC of the material.
Nader [28] used a modified power exponential hardening model to describe the hardening behavior of
aluminum alloy sheets in warm forming, but the theoretical FLCs were not verified by experiments.
Barata Da Rocha [29] carried on the FLC prediction of anisotropic sheets by power approximations,
and found that the initial groove angle had a significant effect on the forming limits under different
strain paths. Li [30] et al. predicted the FLC of the Ti-6Al-4V alloy sheet under the positive-strain path,
however, lacking the prediction of the FLC under the negative-strain path. Chu [31] et al. proposed
the method based on quadratic polynomial describing the true stress–strain curve, and the theoretical
FLCs based on the constitutive model of second order function was significantly more accurate than
that based on power approximations. The ductile fracture behavior of the anisotropic 7050-T7451
aluminum alloy plate was investigated, and a novel damage model was proposed to predict the
fracture behavior of anisotropic materials [32]. In addition, the theoretical forming limit diagram (FLD)
of Al 6061-T6 was acquired and evaluated in an electrohydraulic forming process [33]. The physical
model and numerical simulation of a deep drawing process for a box-shaped product were developed,
and the best combination of yield locus and hardening law was determined [34].

The methodologies for FLD determination have focused on the FLD with different shapes of the
deformed pieces [35]. The widely used method was the Nakazima test, and the different strip-shaped
specimens can achieve different strain paths during the test and the complete FLD can be obtained [36].
Marciniak proposed the method that used two elliptical punches and one round punch to determine
the right-hand side of the FLD [37]. In this paper, based on the numerical simulations results for
specimens with different shapes and sizes, the specimens in different strain paths were tested and the
entire FLD was obtained.

The stretch-forming process has been applied to manufacture aerospace, high-speed train, and
modern architecture, et al. [38–40]. The sheet metal was clamped by a pair of integral rigid clamps in
the conventional stretch-forming process, and the large tensile load was usually adopted in order to
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achieve the complete fit between the sheet metal and the die, so the sheet metal was easily cracked [41].
In order to improve the forming quality, the integral clamps in a conventional stretch-forming process
were replaced by discrete clamps in a stretch-forming process based on loading at multi-positions. Cai
et al. proposed a new design method for a stretch-forming process based on a minimum deformation
path, and which can achieve the manufacture of specified shape parts and the faultless product of large
curvature [42]. In order to explore the optimal moving locus of discrete clamps, a series of numerical
simulations and experiments were carried out by Yang et al. [43], and the results demonstrated that
the strains and stresses of deformed parts presented different distributions when different loading
trajectories were adopted. In this paper, the FLC was used to analyze the stretch-forming process of
sheet metal, therefore, the related tensile test for stress–strain curve and the punch-stretch experiment
for FLC were carried out under the temperature and strain rate similar to those of the stretch-forming
process. The new method for FLC prediction directly uses original measured data (OMD) of the
stress–strain relation to replace power approximations obtained by fitting the stress–strain data. In
addition, the OMD of the stress–strain relation under room temperature was more realistic in the
analysis on sheet formability in the stretch-forming process, because the stretch-forming process was
generally performed under room temperature and the OMD of the stress–strain relation can strictly
indicate the true stress–strain relation of the material. The forming limits by the proposed method
were calculated by the detailed theoretical equations. By comparing the theoretical FLC calculated by
different predicted methods with experiment results, the accuracy and superiority of the proposed
method to predict the FLC of aluminum alloy sheet was verified. Finally, the predicted FLC was
applied to analyze the fracture of the curved part in the stretch-forming process, which provided the
theoretical basis for judging the fracture defects generated in the stretch-forming process.

2. Uniaxial Tensile Tests

To obtain the true stress–strain curves of 6016-T4 aluminum alloy sheet, uniaxial tensile
tests on the specimens in 0◦, 45◦, and 90◦ to the rolling direction were performed in a DNS100
microcomputer-controlled and universal material testing machine, and the direction of 0◦ is the rolling
direction. The specimen had the strain gauge length of 55 mm, the section width of 15 mm, and
thickness of 1 mm. The true stress–strain curves of different orientations were plotted by analyzing
experimental data in Figure 1. It was found that the true stress–strain curves had the same trend in
three directions, and the difference was not particularly significant. So, the average value of the stress
at a certain strain in each direction was the final measured data of stress-strain.

1 
 

 

Figure 1. Measured stress–strain curves under different orientations.

The mechanical properties of 6016-T4 aluminum alloy sheet are shown in Table 1, and the
mechanical properties of the material in different directions were not much different. The anisotropic
parameter (r-values) can be calculated by measuring the gauge length and width of the specimen
before and after deformation. The r-values in three orientations were similar and less than 1, which
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indicated the strain of the sheet metal was greater in the thickness direction than that in width direction.
In engineering, the average value is generally used as the anisotropic parameter of sheet metal [20].

Table 1. Uniaxial tensile properties of 6016-T4 aluminum alloy in different orientations.

Material Properties Orientation

0◦ 45◦ 90◦

Yield stress (MPa) 253.8 242.2 258.8
Ultimate tensile strength (MPa) 318.1 306.0 323.1

Uniform elongation (%) 16.17 15.78 16.36
Anisotropic parameter (r) 0.824 0.803 0.818

Average value of r 0.812

3. M–K Model Based on OMD of Stress–Strain

Marciniak and Kuczynski [13] proposed that necking is usually caused by geometric or structural
imperfection and the original randomly distributed defects of sheet metal are assumed to be the weak
area, i.e., the groove zone, and the thickness inhomogeneity is used to indicate the unevenness of the
sheet metal. As shown in Figure 2, the sheet metal was divided into the uniform zone a and the weak
zone b. The 1 and 2 axes indicate the principal stress directions in zone a, and the 3 axis indicates
the thickness direction of the sheet metal. The normal and the tangential directions of the groove
region are denoted by n and t, respectively. Moreover, the angle between the groove direction and the
2 direction is θ. For simplicity, the superscripts ‘a’ and ‘b’ are used to distinguish the corresponding
variables in zones a and b.
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Figure 2. Geometric model of M–K theory.

In the M–K model, the force in the n direction is transmitted across zones a and b, therefore, the
force equilibrium conditions can be obtained:{

σa
nn = fσb

nn
σa

nt = fσb
nt

(1)

where σnn and σnt are, respectively, normal stress and shear stress in the groove local coordinate system
(n-t coordinate system), and f is the thickness inhomogeneity.

The equation can be obtained from Equation (1):

σa
nn/σa

nt = σb
nn/σb

nt (2)

In addition, the relation of stress components between the n-t coordinate system and principal
axis coordinate system (1-2 coordinate system) can be expressed as follows:{

σnn = σ11 cos2 θ+ σ22 sin2 θ+ σ12 sin 2θ
σnt = (σ22 − σ11) sinθ cosθ+ σ12 cos 2θ

(3)



Metals 2019, 9, 1129 5 of 20

There are not shear stress components in zone a, i.e., σa
12 = 0. Based on Equation (3), the stress

components in zones a and b satisfy: {
σa

nn = Aaσa
1

σa
nt = Baσa

1
(4a)

{
σb

nn = (Ab(αb) + δb sin 2θ)σb
11

σb
nt = (Bb(αb) + δb cos 2θ)σb

11
(4b)

where,
{
αa = σa

2/σa
1

αb = σb
22/σb

11
,
{

Aa = cos2 θ+ αa sin2 θ
Ba = (αa − 1) sinθ cosθ

,
{

Ab(αb) = cos2 θ+ αb sin2 θ
Bb(αb) = (αb − 1) sinθ cosθ

, δb = σb
12/σb

11.

By substituting Equation (4a) and (4b) into Equation (2), the equation can be found:

δb(αb) =
AaBb(αb) − BaAb(αb)

Ba sin 2θ−Aa cos 2θ
(5)

where δb is the function of αb.
In the M–K model, the strain paralleling to the groove in zone b is constrained by the strain in

uniform zone a, so the compatibility condition can be given by

dεa
tt = dεb

tt (6)

Moreover, the relation of strain increments between n-t and the 1-2 coordinates can be expressed
as follows:

dεtt = dε11 sin2 θ+ dε22 cos2 θ− dε12 sin 2θ (7)

There are not shear strain increments in zone a, i.e., dεa
12 = 0. Based on Equation (7), the strain

increments in zones a and b can satisfy:{
dεa

tt = dεa
1 sin2 θ+ dεa

2 cos2 θ

dεb
tt = dεb

11 sin2 θ+ dεb
22 cos2 θ− dεb

12 sin 2θ
(8)

Combining with the plastic flow equation dεi j = dε(∂σ/∂σi j) () and the equivalent stress of Hill

1948 (σ =
√

3(1 + r)/[2(2 + r)]
√
σ2

11 − 2rσ11σ22/(1 + r) + σ2
22 + 2(1 + 2r)σ2

12/(1 + r)), the major and
minor strain increments in zones a and b can be expressed:{

dεa
1 = R1(2−R2αa)dεa/ϕa

dεa
2 = R1(2αa −R2)dεa/ϕa

(9a)


dεb

11 = R1(2−R2αb)dεb/ϕb(αb)

dεb
22 = R1(2αb −R2)dεb/ϕb(αb)

dεb
12 = R1R3δb(αb)dεb/ϕb(αb)

(9b)

where, R1 = 3(1 + r)/[4(2 + r)], R2 = 2r/(1 + r), R3 = 4(1 + 2r)/(1 + r), ϕa = σa/σa
1 =√

2R1(1−R2αa + α2
a), ϕb(αb) = σb/σb

11 =
√

2R1(1−R2αb + α2
b + R3δ2

b/2).
By substituting Equations (8), (9a), and (9b) into Equation (6), the equation can be found:

dεb(αb) =
Ca

Cb(αb)
dεa (10)

where,
{

Ca = [(2−R2αa) sin2 θ+ (2αa −R2) cos2 θ]/ϕa

Cb(αb) = [(2−R2αb) sin2 θ+ (2αb −R2) cos2 θ−R3δb(αb) sin 2θ]/ϕb(αb)
, and dεb is the

function of αb.
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The measured stress–strain curve can be reflected by a series of OMD of stress–strain (εi, σi),
which can be recorded as

σi = F(εi) (11)

When the OMD of stress–strain were recorded as n + 1 nodes and ε0 < ε1 < · · · < εi < εi+1 < · · · <
εn, as shown in Figure 3. For any equivalent strain ε , εi, firstly, determine the strain interval in which
the strain is located, i.e., εi < ε < εi+1, then, the equivalent stress at any ε can be calculated:

F(ε) =
ε− εi

εi+1 − εi
F(εi+1) +

ε− εi+1

εi − εi+1
F(εi) (12)

where the equivalent stress at any equivalent strain can be calculated by OMD of stress-strain.

Metals 2019, 9, x FOR PEER REVIEW 6 of 20 

 

The measured stress–strain curve can be reflected by a series of OMD of stress–strain ( , )i i  , 

which can be recorded as 

( )i iF   (11) 

When the OMD of stress–strain were recorded as n + 1 nodes and 

0 1 1i i n          , as shown in Figure 3. For any equivalent strain i  , firstly, 

determine the strain interval in which the strain is located, i.e., 1i i     , then, the equivalent 

stress at any   can be calculated: 

1
1

1 1

( ) ( ) ( )i i
i i

i i i i

F F F
   

  
   




 

 
 

 
 (12) 

where the equivalent stress at any equivalent strain can be calculated by OMD of stress-strain. 

 1 

350 

True strain 

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 
0 

50 

100 

150 

200 

250 

300 

0 0( , )   

( , )n n   

T
ru

e 
st

re
ss

 (
M

P
a)

 

( , )i i   1 1( , )i i  
 

( , )i i   

1 1( , )i i  
 

0.020 0.025

240

250

( , ( ))F   

 

Figure 3. Original measured data (OMD) of stress-strain. 

In addition, based on the Equations (4a), (4b), and (12), a b
nn nnf   can be transformed to 

( ) ( ) ( ( )( )sin 2 ) ( )a a b b b b b b b aA F f A F           (12) 

where ( )aF   and ( )bF  can be calculated by Equation (12). 

By substituting /b af t t , 0 0 0
b af t t , 0 33exp( )t t  , and Equations (5), (10), and (12) into 

Equation (13), the iterative solution equation can be found: 

( ) ( )
0 33 3( ) ( ) ( ) exp( ( ) )( ( ) ( )sin 2 ) ( )b k a kk k k k k k k k k k

k b a a b b b b b b b b aA F f A F                  (13) 

The detailed steps of the Newton–Raphson method for solving the iterative solution equation 

(14) are described below: 

According to the M–K theory, zone a is loaded proportionally, and the plastic deformation 

conforms to the total plastic theory. Firstly, assume the equivalent strain increment ad   ( is a 

very small constant, such as 0.001  ) in zone a. When solving the iterative equation for the kth 

time, the equivalent stress based on OMD of stress–strain relation can be expressed as: 

0

0

1

( ) ( )

( ) ( )
( )

k
a a

k
k a

b ak k
k b b

F F kd

C
F F d

C

  

  


  



 



 (14) 

where, 0  is the prestrain of the sheet metal. 

In this case, the iteration equation is: 

Figure 3. Original measured data (OMD) of stress-strain.

In addition, based on the Equations (4a), (4b), and (12), σa
nn = fσb

nn can be transformed to

AaF(εa)ϕb(αb) = f (Ab + δb(αb)(αb) sin 2θ)F(εb)ϕa (13)

where F(εa) and F(εb) can be calculated by Equation (12).
By substituting f = tb/ta, f0 = tb

0/ta
0, t = t0 exp(ε33), and Equations (5), (10), and (12) into

Equation (13), the iterative solution equation can be found:

ψk(α
k
b) = AaF(εk

a)ϕ
k
b(α

k
b) − f0 exp(εb(k)

33 (αk
b) − ε

a(k)
3 )(Ak

b(α
k
b) + δk

b(α
k
b) sin 2θ)F(εk

b)ϕa (14)

The detailed steps of the Newton–Raphson method for solving the iterative solution equation (14)
are described below:

According to the M–K theory, zone a is loaded proportionally, and the plastic deformation
conforms to the total plastic theory. Firstly, assume the equivalent strain increment dεa = ς (ς is a very
small constant, such as ς = 0.001) in zone a. When solving the iterative equation for the kth time, the
equivalent stress based on OMD of stress–strain relation can be expressed as:

F(εk
a) = F(ε0 + kdεa)

F(εk
b) = F(ε0 +

k∑
k=1

Ca
Ck

b(α
k
b)

dεa)
(15)

where, ε0 is the prestrain of the sheet metal.
In this case, the iteration equation is:

ψk(α
k
b) = AaF(ε0 + kdεa)ϕk

b(α
k
b) − f0 exp(εb(k)

33 (αk
b) − ε

a(k)
3 )(Ak

b(α
k
b) + δk

b(α
k
b) sin 2θ)F(ε0 +

k∑
k=1

Ca
Ck

b(α
k
b)

dεa)ϕa (16)
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where,


ε

a(k)
3 = −k[(2R1 −R1R2)αa + 2R1 −R1R2]dεa/ϕa

ε
b(k)
33 (αk

b) = −
k∑

k=1
[(2R1 −R1R2)αk

b + 2R1 −R1R2]dε
k
b(α

k
b)/ϕ

k
b(α

k
b)

.

Solving the iteration equation ψk(α
k
b) = 0, Newton’s iteration formula is:

αk+1
b = αk

b −ψk(α
k
b)/ψ

′

k(α
k
b) (17)

in Equation (17),

ψ′k(α
k
b) = AaF(ε0 + kdεa)

∂ϕk
b(α

k
b)

∂αk
b
− [ f0 exp(

∂ε
b(k)
33 (αk

b)

∂αk
b
− ε

a(k)
3 )(Ak

b(α
k
b) + δk

b(α
k
b) sin 2θ)F(ε0 +

k∑
k=1

Ca
Ck

b(α
k
b)

dεa)ϕa+

f0 exp(εb(k)
33 (αk

b) − ε
a(k)
3 )(

∂Ak
b(α

k
b)

∂αk
b

+
∂δk

b(α
k
b)

∂αk
b

sin 2θ)F(ε0 +
k∑

k=1

Ca
Ck

b(α
k
b)

dεa)ϕa+

f0 exp(εb(k)
33 (αk

b) − ε
a(k)
3 )(Ak

b(α
k
b) + δk

b(α
k
b) sin 2θ)

F(εk
b)−F(εk−1

b )

Ca
dεa

Ck
b(α

k
b)

∂Ck
b(α

k
b)

∂αk
b

ϕa]

(18)

Iteratively solve Equation (17) to
∣∣∣αk+1

b − αk
b

∣∣∣ ≤ eps (eps is very small, such as eps = 10−10), when
the iterative equation converges, the unknown quantity αk

b in zone b can be obtained.

Then, calculate δk
b(α

k
b), dεk

b(α
k
b) based upon Equations (5) and (10), and check dεk

b/dεk
a. If

dεk
b/dεk

a ≥ λ (λ is an integer, such as λ = 10), the formulas for calculating the major and minor strains
when the sheet metal is necked are: εa

1(k) = εa
1(k−1)

+ R1(2−R2αa)dεa/ϕa

εa
2(k) = εa

2(k−1)
+ R1(2αa −R2)dεa/ϕa

(19)

Otherwise, continue to solve equations ψk+1(α
k+1
b ) = 0 by using Newton’s iteration method until

the condition of dεk+1
b /dεk+1

a ≥ λ can be satisfied.
Change the groove angle θ, and the major and minor strains at different groove angles can

be calculated separately. Finally, the minimum values of major and minor strains are taken as the
ultimate strains.

Then, change αa (αa ∈ [0, 1]), and the theoretical prediction of the major and minor strains under
different loading paths can be obtained, and the FLC can be drawn.

The detailed steps of the Newton–Raphson method for calculating the ultimate strain are described
below in the corresponding flow chart, as shown in Figure 4.
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4. Experiments’ Determination on FLC

The FLC should include the loading path from uniaxial tension to plane strain to balanced biaxial
tension, so that the complete FLC can be obtained. In previous studies, the numerical–experimental
approach with the specimens of different shapes and widths was employed to calculate forming
limits through uniaxial tensile, plane strain state, and biaxial tensile [44–46]. In this section, the
punch-stretch tests for specimens of different shapes were simulated, then, the optimized specimens’
shape and punch-stretch test scheme were determined. The punch-stretch tests were carried out, and
the experimental results were compared with the theoretical FLCs based on different stress–strain data.

4.1. Numerical Simulations and Experiment Scheme

The numerical simulations were performed by Dynaform. Specimens of different widths and
shapes were used to obtain the forming limits under different strain paths. In the simulation process,
it was considered that the concave die, the blank holder, and the spherical punch were defined as
the rigid body and meshed with R3D4 elements; the sheet metal can be deformed and meshed with
S4R elements. In addition, the mesh size of all parts was 2 mm, and the symmetric constraints were
loaded at the symmetric boundary of parts. The contact state between the contact pairs is decided by a
master–slave algorithm, and the surfaces of the rigid body were defined as the master surface, while
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the surface of the deformed sheet metal was defined as the slave surface. The blanking force of 20 kN
was applied to the blank holder. After the process parameters were set, the numerical simulation task
was submitted for analysis, and the simulation results were analyzed in the post-processing program.

The punch-stretch test was widely used to obtain forming limits. The effective forming area of the
specimen was used to design a rectangular strip, however, the numerical simulation results showed
that the specimen with the small width was easily broken at the blank holder, as shown in Figure 5a.
Since the rectangular specimen was subjected to the large concentrated stress at the blank holder, the
large major strain appeared there, which may eventually result in the reduction of forming limits.
In order to prevent failure from occurring at the blank holder region, the specimen was designed as
dumbbell-shaped in the effective forming area, that is, the intermediate area was designed as the arc,
which can smoothly transit from the center to both sides. The maximum value of the major strain of
the dumbbell-shaped specimen appeared in center region, as shown in Figure 5.
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Figure 5. Major strain distributions of specimens with different shapes. (a) Rectangular and
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width of 60 mm.

Numerical simulation results of specimens with different sizes showed that, as the width of
the specimen increased, the influence of the specimen shape on the simulation result was gradually
weakened. As shown in Figure 5b, when the width of the effective formed area was about 60 mm, the
simulation results of the two kinds of specimens were not much different. Considering the convenience
and feasibility of processing and testing, the specimens with a large width were designed as rectangle.
Therefore, the shape and size of the specimens were finally determined, and the experiment scheme is
as shown in Figure 6 and Table 2, respectively, where h = 90 mm.Metals 2019, 9, x FOR PEER REVIEW 10 of 20 
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Table 2. Specimen sizes.

Dimension 1 2 3 4 5 6 7 8 9

w (mm) 10 15 20 30 40 50 60 70 80
R (mm) 40 37.5 35 30 25 20 * * *
l (mm) 40 42.5 45 50 55 60 * * *

4.2. Analysis of Experiments Results

The punch-stretch tests were carried out. As shown in Figure 7a, the equipment adopted a
two-stage hydraulic stretching and crimping system, which applied uniform blanking force to the
specimens and improved the stability of the punch-stretch process. The ultimate strains of the sheet
were obtained on the ARGUS optical strain gauge produced by GOM. This equipment can obtain the
high-precision 3D full field strain data of the deformed sheet, and the main compositions of the test
equipment are shown in Figure 7b.
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In this experiment, the meshing method used was the circular grid division. The circular grid is
the most widely used, and it is convenient to determine the major and minor strains. At the end of the
deformation of the aluminum alloy sheet, the shape of the circular grid became the elliptical grid, and
the major and minor strains of the sheet metal were calculated by the following formula:{

ε1 = ln(d1/d0)

ε2 = ln(d2/d0)
(20)

where d0 is the original diameter of the circular grid, and d1 and d2 are the long and short axes of the
ellipse grid after deformation, respectively.

According to the designed test scheme, punch-stretch tests of different specimens were carried out.
The deformed specimens are shown in Figure 8. According to the fracture position of the specimen
and the deformation degree of the grid, the deformed regions of the sheet metal were divided into
three categories: Fracture region, critical region, and safety region. It can be seen that the cracking
degree of the specimen and the deformation degree of the mesh were different, so a mass of data needs
to be extracted to predict the FLC of the sheet metal reasonably.
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Figure 8. Deformed specimens of punch-stretch tests.

The ARGUS optical strain gauge can obtain the deformed mesh distribution on the surface of the
deformed specimen. Then, the major and minor strains’ distributions of the deformed specimens can
be further analyzed by the software. The major and minor strain of the specimens with the width of
30 mm and 60 mm are shown in Figure 9. The cracking degree of specimens with different sizes is
different. Therefore, in order to predict the FLC of the 6016-T4 aluminum alloy, the strain data in the
safety and fracture zones of specimens were extracted. It can be found that the major strains of the
fracture zone were significantly larger than those of the safety zone, and the smaller the width of the
specimen, the more likely the minor strain was negative value. The extraction locations of major and
minor strains in the safety and fracture zones are also marked in Figure 9.
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with width of 60 mm. (d) Minor strain distribution with width of 60 mm.
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For the punch-stretch test, the major and minor strains in the safety and fracture zones are
expressed in Figure 10. The strain data in the fracture and safety zones were extracted, and the strain
data distributions were scattered, so it was difficult to present a clear FLC. The majority of strain data
distributed in the fracture and safety zones, and very few strain data were located in the intermediate
critical region. Instead, the FLC band was presented with a certain width. The two curves can be
plotted to limit the dispersed strain points to a certain zone, that is, the critical zone is between the
upper limit curve of the safety zone and the lower limit curve of the fracture zone. The FLC band can
be regarded as the critical zone of fracture.
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5. Results and Discussion

5.1. Comparison of FLCs Calculated by OMD of Stress–Strain and Power Function

Uniaxial tensile tests were carried out in the directions of 0◦, 45◦, and 90◦ with the rolling direction,
and three sets of true stress–strain curves with little differences were obtained. In order to improve
the accuracy of the experiment, the average values were taken as OMD of stress–strain, as shown
in Figure 11. The equivalent stress at any equivalent strain based on OMD of stress–strain can be
calculated by Equation (12). Then, the FLC based on OMD of stress–strain can be calculated by the
theoretical derivation in the third section.Metals 2019, 9, x FOR PEER REVIEW 13 of 20 
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The power function stress–strain curve (σ = Kεn) was obtained by fitting experimental stress–strain
data. The parameters K and n in power function based on fitting the complete stress–strain curve
(including elastic and plastic deformation) were 501.99 MPa and 0.227, respectively. In addition, since
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the fracture occurred in the plastic deformation stage, the power function based on the stress–strain
relation of plastic deformation stage was σ = 412.45ε0.142, as shown in Figure 11. It can be seen that
the power function of the stress–strain curve was restricted by the equation form, which deviated from
the OMD of stress–strain.

The FLCs based on different stress–strain relations were calculated, and shown in Figure 12. It
was found that the theoretical FLCs based on power function of stress–strain curves were higher than
the experimental FLC under the negative-strain path. The left side of FLCs based on power functions
of stress–strain curves was above the critical zone of punch-stretch tests, but the right side of FLC was
in the critical zone measured by punch-stretch tests. Moreover, the theoretical FLC calculated based on
the power function (σ = 412.45ε0.142) was closer to the test value than that based on σ = 501.99ε0.227.
Finally, the theoretical FLC calculated by OMD of stress–strain was between the safety and fracture
zones of punch-stretch tests, that is, the predicted major and minor strains were in the critical zone of
the necking. By comparison, it was found that the stress–strain curves of sheet metal had significant
impact on FLC under the negative-strain path, and the theoretical FLC based on OMD of stress–strain
was more consistent with the experimental results, which verified the accuracy and superiority of the
proposed method in this paper.
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than the experimental FLC under the negative-strain path. The left side of FLCs based on power 

functions of stress–strain curves was above the critical zone of punch-stretch tests, but the right side 

of FLC was in the critical zone measured by punch-stretch tests. Moreover, the theoretical FLC 

calculated based on the power function ( 0.142412.45  ) was closer to the test value than that based 

on 
0.227501.99  . Finally, the theoretical FLC calculated by OMD of stress–strain was between 

the safety and fracture zones of punch-stretch tests, that is, the predicted major and minor strains 

were in the critical zone of the necking. By comparison, it was found that the stress–strain curves of 

sheet metal had significant impact on FLC under the negative-strain path, and the theoretical FLC 

based on OMD of stress–strain was more consistent with the experimental results, which verified 

the accuracy and superiority of the proposed method in this paper. 
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5.2. Influence of Anisotropic Parameter and Groove Angle on FLCs

It is well known that the von Mises yield function considers the anisotropic parameter (r) equals
1, and the Hill 1948 yield function can include a non-zero anisotropic parameter. In Figure 13, PF1
and PF2 represent power functions by fitting the complete (σ = 501.99ε0.227) and plastic deformation
stress–strain curve (σ = 412.45ε0.142), respectively. It was found that the anisotropic parameter had
significant impact on FLC, and the ultimate strains were greater when r = 1 than when r < 1 in three
prediction methods, especially, in the negative-strain path. It can be found from Table 1 that the
aluminum alloy 6016-T4 was anisotropy. It was more reasonable to predict the FLCs by using r <

1. Moreover, the FLCs calculated by the M-K model combining OMD of stress–strain were more
consistent with the punch-stretch test results than those based on power functions.
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Figure 13. Effect of thickness inhomogeneity on FLCs.

From the above analysis, it can be seen that, when the FLCs of the sheet metal were predicted
by the M–K model combining with OMD of stress–strain and power functions, the FLCs under
the negative-strain path were observably influenced by stress–strain relation. The FLCs under the
negative-strain paths were minimized under non-zero groove angles. However, the FLCs under the
positive-strain path were minimized when the groove angle was zero. In order to analyze the effect
of the groove angle on the FLCs, the left side of the FLC was calculated with zero and non-zero
groove angles, as shown in Figure 14a. It can be seen that the FLCs predicted by three methods were
higher in zero angle than in non-zero angle, and the predicted FLCs were closer to the experimental
data in non-zero groove angle. Therefore, in order to accurately predict the FLCs, the FLCs in the
negative-strain paths should be calculated at non-zero groove angles. In addition, when the ultimate
strains take the minimum values, the variations of groove angle with different strain paths are shown
in Figure 14b. It was found that, when the ultimate strain took the minimum value, the groove angle
increased firstly and then decreased when sheet deformations changed from the uniaxial tension to the
plane strain state. The groove angle at the plane strain state was zero with the minimum strain, which
was consistent with the minimum value of the forming limit in the right side when the groove angle
was zero. Therefore, the groove angle had a certain influence on the left side of the FLC.
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Figure 14. Effect of groove angle on FLCs. (a) FLCs under negative-strain paths. (b) Change of groove
angle under different loading paths.

6. Application of FLC in the Stretch-Forming Process Based on Loading at Multi-Positions

The FLC was applied to evaluate whether the three-dimensional curved parts appear in the
fracture defect during the stretch-forming process, and the fracture defect can be predicted by FLC.
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The stretch-forming process is an important method for forming three-dimensional curved parts. It
is widely used to form the skin parts of aircraft and spacecraft, the front of high-speed trains, the
outer plates of ships, and the large-curvature curved parts of modern buildings. The integral clamps
in a conventional stretch-forming process were replaced by discrete clamps based on loading at
multi-positions, as shown in Figure 15. The displacement load was applied at a series of discrete clamps
on the two ends of the sheet metal, and the load of each loading point was controlled in real time, so
that the deformed sheet could actively deform along with the die profile. The discrete clamps made
the sheet metal bend and stretch according to the die surface, and ultimately realized the complete fit
between the sheet metal and the die, forming high-precision surface parts.
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The loading trajectory had a great influence on forming results of a curved-surface part, and stress
and strain distributions of curved parts were different under different loading trajectories. In this
section, numerical simulation and experimental verification were carried out for spherical parts under
different loading paths. Combining with the prediction of sheet metal-forming limits, the fracture
defects of curved-surface parts were predicted by FLC obtained by the proposed method.

6.1. Loading Trajectories for the Stretch-Forming Process Based on Loading at Multi-Positions

It is well known that the loading trajectories of the discrete clamps have great influence on the
forming precision and quality of a three-dimensional curved part. From a geometric point of view,
there are countless loading trajectories from flat sheet to three-dimensional curved parts. In order to
compare and analyze the influence of different loading paths on the forming results of curved parts,
the stretch-forming process based on equal and variable elongation was designed to form curved parts.

Since the influence of the sheet width on the longitudinal strain was relatively small, it was
considered that the sheet metal was composed of several longitudinal strips with the same width as
the discrete clamps, and the corresponding strips were deformed by controlling the displacements
at the loading points. The deformation process of ith longitudinal strip is shown in Figure 16. The
loading trajectory was the moving locus of the end of the material line during the process. It was seen
that the material line changed from its initial length to an intermediate length and finally to the length
corresponding to the arc length of the stretching die. In the stretch-forming process based on equal
elongation (SF-e), it was assumed that the elongation of the longitudinal strip of the sheet metal was
equal, and the displacement of each loading point was calculated separately. In the stretch-forming
process based on variable elongation (SF-v), the elongations of the longitudinal strips of the sheet
metal varied and were determined by cubic functions in the forming process. The details for deriving
the process of equal elongation loading mode and variable elongation loading mode can be found in
reference [43].
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When the sheet length was 400 mm, the sheet width was 300 mm and the spherical part with the
radius of 500 mm was formed in numerical simulations. The loading trajectories of different loading
points in different loading methods (SF-e and SF-v) are shown in Figure 17.
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6.2. Numerical Simulation Results and Experimental Validation

The spherical parts with the radius of 500 mm were formed by two loading methods, and the
major strain distributions of the numerical simulations are shown in Figure 18. It can be seen from
Figure 18 that when different loading trajectories were adopted to form spherical parts of the same
curvature, the major strain distributions in the effective formed region had the same tendency, but
the spherical part in SF-v had more uniform strain distribution than in SF-e. The maximum major
strain of the spherical part in SF-e was 0.4993, which was much larger than 0.1502 in SF-v. Moreover,
the spherical part formed by SF-e had the larger strains in the middle region that was adjacent to the
discrete clamps, and the larger strains may have caused the formation of fracture defect in the region.
The appearance of the fracture defect reduced the accuracy of the curved part and even produced
unacceptable curved parts.
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In order to study the fracture defect under different loading modes, the major and minor strains
of the spherical parts in a critical section of fracture were extracted. It can be seen from Figure 19
that, in SF-e, the strains in a critical section of fracture exceeded the theoretically calculated ultimate
strains and were located in the fracture region measured by experiment. The regions of strain points
above the FLC appeared in fracture defect, and the spherical part in SF-e was prone to fracture in plane
strain state. The fracture defects reduced the accuracy of the formed parts, and the defective parts
were manufactured in SF-e. However, in SF-v, all strain points in the critical section of fracture were
below the FLC and were located in the safe region measured by experiment, which indicated that
the possibility of fracture defect in SF-v was especially small. Meanwhile, it was found that the FLC
predicted by combining the M–K theory and the OMD of stress–strain can quantitatively analyze the
fracture defect, which has certain guiding significance for the sheet-forming process.
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In order to verify the numerical simulation results of the stretch-forming process in different
loading trajectories, the stretch-forming experiments for spherical parts of aluminum alloy 6016-T4 were
carried out on a homemade apparatus by Jilin University, as shown in Figure 15. The critical sections
of fracture of experimental parts are shown in Figure 20. It can be seen that the large deformation was
produced in SF-e, and the severe fracture defect appeared in the center region that was adjacent to
the discrete clamps. However, in SF-v, as indicated by experimental result, the target surface part
was perfectly manufactured without fracture defect. In conclusion, the experiment results verified
the accuracy of the numerical simulation and FLC prediction, and the fracture defect appeared in the
region where the strain points exceeded the theoretically calculated ultimate strains.
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7. Conclusions

In this paper, the new method by directly utilizing OMD of stress–strain relation in the M–K
model was proposed to predict the FLC of an aluminum alloy sheet, and the predicted FLC in this
method was compared with that of the M–K model based on power functions and punch-stretch tests.
In addition, the predicted FLC in the proposed method was used to analyze the sheet formability in
the stretch-forming process. The conclusions of this paper can be summarized as follows:

(1) In this paper, the new method by directly utilizing OMD of stress–strain relation in the M–K
model was proposed to predict FLC of an aluminum alloy sheet, and the detailed theoretical derivations
for calculating forming limits were presented.

(2) The stress–strain curve had significant effect on the FLC prediction of sheet metal. The power
functions were fitted by the OMD of stress–strain, but the true stress–strain relation of the material
was not strictly reflected by power function, which may have affected the prediction results of the
sheet-forming limits. However, the OMD of stress–strain can strictly reflect the true stress–strain relation
of the material, so the FLC prediction results based on OMD of stress–strain can be more accurate.

(3) By comparing the FLCs based on OMD of stress–strain and power functions with experiment
result, it was found that the theoretical FLCs based on power functions were higher on the left side
than the experimental FLC, and the right side of FLC was in the critical zone measured by experiment.
However, the theoretical FLC based on OMD of stress–strain were in the critical zone measured by
experiment. The predicted FLC in the proposed method were more consistent with the experimental
results, and the accuracy and superiority of the proposed method were verified in this paper.

(4) Anisotropic parameter affected the prediction accuracy of FLC, and the groove angle had
significant effect on the FLC under the negative-strain path. The predicted forming limits with zero
groove angle were higher than that when the groove angle was not zero. In this paper, the forming
limits calculated in the conditions of r < 1 and were more consistent with the experimental FLC.

(5) The FLC calculated by the proposed method was applied to analyze sheet formability in the
stretch-forming process, and the predicted results of FLC were verified by numerical simulations and
experiment of the stretch-forming process. The fracture tendency of the weakened region of the formed
parts could be intuitively visualized and quantitatively analyzed in FLD, which had certain guiding
significance for fracture judgment in the sheet-forming process.
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34. Tomáš, m.; Evin, E.; Kepič, J.; Hudák, J. Physical modelling and numerical simulation of the deep drawing
process of a box-shaped product focused on material limits determination. Metals 2019, 9, 1058. [CrossRef]
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