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Abstract: Thermal stability of different types of metallic glasses and partially crystalline alloys
stored for at least 15 years at ambient conditions was tested in the present work by differential
scanning calorimetry in comparison with that of the original alloys tested in the as-cast state in the
earlier works. The structure of the naturally aged alloys was also studied by X-ray diffractometry.
The structure of a couple of selected alloys was also tested by transmission electron microscopy.
Most of the alloys retained their initial structure and showed only a moderate decrease in the
crystallization temperature. Only those alloys which showed visible surface oxidation (Cu-Zr-system
based) were partly transformed into a crystalline state forming micron-scale Cu particles in air at
ambient conditions.
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1. Introduction

Glassy alloys/metallic glasses [1] as well as bulk (volumetric) metallic glasses (BMGs) [2,3] are
metastable at room temperature and crystallize on heating above the temperature (Tx) which, as well
as the glass-transition temperature (Tg) (measured as an inverse glass-transition from a glassy state to
a supercooled liquid one on heating) depends on the heating rate used [4,5]. Some of glassy alloys
(usually called amorphous alloys) crystallize directly on heating [6] while others upon fast enough
heating initially transform to a supercooled liquid which crystallizes at a higher temperature. In some
alloys such a transition drastically affects the crystallization reaction which changes from an eutectic
one below Tg to a primary one above it [7]. The glassy alloys with a low Tx crystallize even at room
temperature [8,9] but for the majority of glassy alloys the process is very slow [10,11].

The time-temperature-transformation (TTT) diagrams created in the isothermal mode (or under
continuous heating) are useful for comparison of the thermal stabilities of different glasses against
devitrification and for selection of the heat treatment regimes. Such diagrams have been created for
various metallic glasses, for example, Zr- [12], Au- [13] and Pd-based [14,15]. Comparison of the
long-term thermal stabilities of different metallic glasses was also performed using continuous heating
transformation (CHT) diagrams [16]. Early transition metals: Ti-, Zr- and Hf-based metallic glasses
were found to have a similar time-temperature gradient of the curves related to the beginning of
crystallization independently from those initial devitrification products (crystal or quasicrystal) and
transformation mechanism. Metalloid-rich Si- and Ge-based glasses exhibited quite high long-term
thermal stability. Late transition metals: Cu- and Ni-based metallic glasses showed high thermal
stability at a short time scale. CHT diagrams were also recalculated from the isothermal TTT ones [17]
using a method similar to that used in Reference [18]. These calculations predict lifetime temporal
stability of metallic glasses at room temperature if those Tx values are at least ~200 K above that [19]
and no other factors except for temperature are taken into account. In the past thermal stability of
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metallic glasses was usually tested on heating. In the present work we test long-term thermal, and
partly chemical stability, of different metallic glasses at ambient conditions.

2. Experimental Procedure

Ingots of the studied alloys were prepared by arc-melting the mixtures of pure elements
>99.9 mass% purity in an argon atmosphere (99.9995%) while the ingots of Mg-based alloys were
produced by induction melting. From these alloys, ribbon samples of about 0.02 mm in thickness and
1.0 mm in width were prepared by rapid solidification of the melt on a single copper roller at the wheel
surface velocity of 42 m/s. All samples were stored in air placed in a zipped plastic box to avoid drastic
contamination with organic dust for at least 16 years at ambient conditions.

The phase composition of the glassy ribbon samples was studied by conventional X-ray
diffractometry (XRD) using D8 Advance Diffractometer (Bruker Co., Karlsruhe, Germany) with
a monochromatic CuKα radiation. The thermal stability was tested by differential scanning calorimetry
(DSC) using Seiko Exstar SII 6300 calorimeter (Seiko Instruments & Electronics Ltd., Tokyo, Japan)
heat-flux type machines at a heating rate of 0.67 K/s in a high-purity Ar atmosphere containing more
than 99.9995% of Ar. The calorimeter was calibrated using pure Sn in the low temperature range and
using Al in the high temperature one. Each sample was measured twice up to complete crystallization.
The data of the second run were used as a baseline for each measurement.

Transmission electron microscopy (TEM) investigations of two selected samples were carried
out using a JEM 2010F microscope (JEOL Co. Ltd., Tokyo, Japan) operating at 200 kV. Bright-field,
dark-field, and high-resolution TEM (HRTEM) images, as well as selected area electron (SAED) and
nanobeam diffraction (NBD) patterns were obtained. The microstructure of the naturally oxidized
samples was examined by a HITACHI S-4800 scanning electron microscope (SEM) (Hitachi Co. Ltd.,
Tokyo, Japan) carried out at 15 kV equipped with an energy dispersive X-ray (EDX) spectrometer.

3. Results

Table 1 shows chemical compositions of the studied alloys, the literature reference number, the
number of years passed after preparation, the temperatures obtained by DSC, and the calculated
temperature differences such as ∆Tg = Tg

i
− Tg

a, ∆Tx = Tx
i
− Tx

a and ∆Tr
x =∆Tx/Tx

i as indicated in
the table. The original (initial) DSC traces were obtained earlier [20–29]. A few selected DSC traces
(both of initial and aged samples) are shown in Figure 1a. As one can see, although the crystallization
temperature (Tx) is slightly reduced after more than 15 years of aging the reduction is only a few
Kelvin even for the alloys with rather low Tx. It is in line with high room temperature thermal
stability of metallic glasses predicted by the extrapolation of the high-temperature part of CHT and
TTT diagrams [16,19].

The glass-transition temperature (Tg) as a result of room-temperature aging is either decreased or
increased even in the case of similar alloys. For example, see the ∆Tg values for the Cu55Zr30Ti10Au5

and Cu55Zr30Ti10Pd5, as well as Ni55Zr30Ti10Pd5 and Ni55Zr30Ti10Pt5 alloys, respectively, (Table 1)
which exhibited the opposite changes in Tg. It is likely connected with the baseline instability close to
Tg owing to heat release during structural relaxation.

Three independent measurements were performed for the naturally aged Ti50Ni22Cu25Sn3 alloy
and the resulted DSC curves are shown in Figure 2b. Tx defined by the intersection of two tangents
to the curve before and after the inflection point for each measurement is 754 K which leads to the
standard error value below 1 K. Tg values of 695, 697, and 700 K lead to the average value of 697 K
with much larger uncertainty compared to Tx. The standard error is ±1.5 K while if the Student’s
criterion is taken into account owing to small number of measurements (low degree of freedom) then
the confidence interval (C.I.) is ±3.4 K. Thus, the heat release during structural relaxation shields glass
transition, which makes measurement of Tg much less accurate.

The Al85Ni5Co2Y6Pd2 alloy having amorphous + nanoscale Al structure is also quite stable against
the room-temperature aging (even though Al-based glass-forming liquids are very fragile [30]) as well
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as the Si45Al20Fe10Ge10Ni5Gr5Zr5 one containing nanoscale precipitates of a solid solution of Si in
cF8 Ge. The nanoparticles also exhibit high stability at room temperature. ∆Tr

x for all alloys studied,
except for those affected by corrosion (see the notes below Table 1), is less than 1%.

The X-ray diffraction patterns of typical alloys are shown in Figure 2. Most of the studied alloys
retained those initial glassy (Figure 2a) or partly crystalline (Figure 2b) structure as well as the original
silver metallic color. The diffraction patterns of partially crystalline samples also correspond to those
of the as-cast samples studied earlier. No visible changes in the X-ray diffraction patterns are found.
Transmission electron microscopy observation also confirmed preservation of the glassy structure
even in an alloy with rather low crystallization temperature (Figure 3a) and in a partly crystalline
one (Figure 3b). No traces of crystallinity are seen within the glassy area even when studied using
nanobeam diffraction with the probe size of 1 nm.

Table 1. Chemical compositions of the studied alloys in the as-prepared state (marked as initial) and
after room-temperature aging for some time (marked as aged), the reference number (Ref), the number
of years passed after preparation (NY) and the related temperatures as well as temperature differences
absolute (∆Tg and ∆Tx), and relative (∆Tr

x).

Alloy Ref NY ∆Tg ∆Tx
∆Tr

x

× 100

Initial Aged

Tg
i (K) Tx

i (K) Tg
a (K) Tx

a (K)

Al85Gd8Ni5Co2 20 19 4 3 0.52 554 575 550 572
Al85Sm8Ni5Co2 21 18 1 2 0.35 557 575 556 573
Mg86Mm4Ni10 22 17 - 3 0.66 - 456 - 453

Mg86Y2Mm2Ni10 22 17 - 1 0.22 - 451 - 450
Cu55Zr30Ti10Au5 23 17 3 3 0.38 744 787 741 784
Cu55Zr30Ti10Pd5 24 17 −6 2 0.26 735 784 741 782

Cu57.5Ni2.5Zr30Ti10 25 18 3 1 0.13 705 749 702 748
Ni55Zr30Ti10Pd5 26 16 −4 0 0.00 787 811 791 811
Ni55Zr30Ti10Pt5 26 16 5 3 0.36 816 845 811 842
Ni60Zr30V10 * - 18 −2 4 0.47 812 852 814 848

Ti50Ni22Cu25Sn3 * - 20 0 4 0.53 697 758 697 754
Ti50Ni20Cu25Sn5 * - 20 6 4 0.52 702 767 696 763
Ti50Ni20Cu20Sn10 * - 20 4 3 0.39 731 774 727 771
Ti50Ni22Cu22V6 * - 19 - 3 0.41 - 733 - 730

Zr65Al7.5Ni10Cu12.5Y5 ** - 19 - 1 0.15 - 665 - 664
Si45Al20Fe10Ge10Ni5Cr5Zr5 *** 27 22 - 2 0.27 - 752 750

Al85Ni5Co2Y6Pd2 **** 28 19 - 0 0.00 - 523 - 523
Cu60Zr30V10 ***** - 18 - 12 1.52 - 790 - 778

Zr50Cu50 ***** 29 17 - 54 8 675 742 - 688

* unpublished yet results; ** amorphous+crystalline Zr; *** amorphous+nanoscale Ge; **** amorphous+nanoscale
Al; ***** initially amorphous but oxidized and partly crystallized forming micron scale Cu crystals.
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Figure 1. (a) DSC traces of some glasses and a partly crystalline material as indicated in the initial 
(as-cast) and naturally aged state. (b) A series of independent measurements for the Ti50Ni22Cu25Sn3 
alloy after the aging at room temperature for 20 years as indicated in Table 1. 
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alloys retained those initial glassy (Figure 2a) or partly crystalline (Figure 2b) structure as well as 
the original silver metallic color. The diffraction patterns of partially crystalline samples also 
correspond to those of the as-cast samples studied earlier. No visible changes in the X-ray 
diffraction patterns are found. Transmission electron microscopy observation also confirmed 
preservation of the glassy structure even in an alloy with rather low crystallization temperature 
(Figure 3a) and in a partly crystalline one (Figure 3b). No traces of crystallinity are seen within the 
glassy area even when studied using nanobeam diffraction with the probe size of 1 nm. 

Figure 1. (a) DSC traces of some glasses and a partly crystalline material as indicated in the initial
(as-cast) and naturally aged state. (b) A series of independent measurements for the Ti50Ni22Cu25Sn3

alloy after the aging at room temperature for 20 years as indicated in Table 1.
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Figure 2. XRD patterns of the glassy (a) and partly crystalline alloys (b) after room-temperature 
aging as indicated in Table 1. bZr denotes beta Zr solid solution. 
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Figure 2. XRD patterns of the glassy (a) and partly crystalline alloys (b) after room-temperature aging
as indicated in Table 1. bZr denotes beta Zr solid solution.
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Figure 2. XRD patterns of the glassy (a) and partly crystalline alloys (b) after room-temperature 
aging as indicated in Table 1. bZr denotes beta Zr solid solution. 
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Figure 3. Cont.
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demonstrate brown color on both sides. The surface layer consisting of Cu and the oxide is so deep 
that no signal from the amorphous phase was detected. The initial exothermic reaction likely 
related to the growth of pre-existing Cu crystals started at 438 K instead of 790 K shown in Table 1 
for the as-cast alloy. The second peak related to crystallization of the glassy matrix below the oxide 
phase started at 778 K, which is 12 K lower than that for the initial as-prepared sample. 

The Zr50Cu50 sample was prepared and initially studied in 2002 while the results were 
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solidification is dark silver metallic while the side which was in contact with a copper wheel and 
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Cu60Zr30V10 sample and a strong enough broad peak from the amorphous phase is obtained 
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Figure 4. XRD patterns of the Zr50Cu50 sample naturally aged for 17 years. Brown (upper one)—from 
brown side, black (lower one )—from silver side of the ribbon. 

Figure 3. HRTEM images of (a) the Al85Gd8Ni5Co2 glassy alloy and (b) of the glassy area in the
Zr65Al7.5Ni10Cu12.5Y5 alloy naturally aged for 17 years. The inserts in (a) are typical nanobeam
diffraction (NBD) and selected area electron (SAED) patterns (left and right side, respectively).

Cu-based alloys are not oxidized if they contain at least Ti. It is connected with good protective
properties of the surface films containing both Ti and Zr oxides [31,32]. However, the binary Zr50Cu50

(Figure 4) and ternary Cu60Zr30V10 (Figure 2b) alloys are severely oxidized. The Cu60Zr30V10 ribbon
samples are deeply oxidized forming a nanocrystalline tetragonal (Z,V)O2 oxide and demonstrate
brown color on both sides. The surface layer consisting of Cu and the oxide is so deep that no signal
from the amorphous phase was detected. The initial exothermic reaction likely related to the growth
of pre-existing Cu crystals started at 438 K instead of 790 K shown in Table 1 for the as-cast alloy.
The second peak related to crystallization of the glassy matrix below the oxide phase started at 778 K,
which is 12 K lower than that for the initial as-prepared sample.
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Figure 4. XRD patterns of the Zr50Cu50 sample naturally aged for 17 years. Brown (upper one)—from
brown side, black (lower one )—from silver side of the ribbon.

The Zr50Cu50 sample was prepared and initially studied in 2002 while the results were published
in 2007 together with these for the Zr-Cu-Al alloys [29]. The Zr50Cu50 metallic glassy ribbon samples
have two sides of different color. Free side which was in contact with air on rapid solidification is dark
silver metallic while the side which was in contact with a copper wheel and has a rougher surface
is brown. However, in this alloy the oxide layer is thinner than in the Cu60Zr30V10 sample and a
strong enough broad peak from the amorphous phase is obtained between 32 and 45 degrees of 2
theta (Figure 4).



Metals 2019, 9, 1076 7 of 11

Here, as well as in the case of the Cu60Zr30V10 alloy, nanocrystalline oxides (orthorhombic ZrO2

and tetragonal Cu4O3 one) are formed while Cu crystallized on the surface (see Figure 4). Larger,
micrometer-scale particles are formed on the rough ribbon surface, which was in contact with Cu wheel
though Cu oxide, is also formed. The Zr50Cu50 sample was studied by SEM on both sides (Figure 5).
Rough micron-scale crystals are seen on the brown surface while the dark silver metallic surface was
smooth. EDX spectral analysis showed that the micron-scale particles are Cu crystals (Table 2).
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4. Discussion

Most of the metallic glasses stored at ambient conditions for more than 15 years studied in
the present work retained the original silver metallic color and their initial either glassy or partly
crystalline structure. The X-ray diffraction and transmission electron microscopy observations
confirmed preservation of the glassy structure. Although the crystallization temperature is slightly
reduced after natural aging the reduction is only a few Kelvin (from 1 to 4 K depending on composition
(Table 1)) which is negligibly small from the viewpoint of industrial application. It confirms high
room-temperature stability of metallic glasses suggested in the earlier works [17,19]. The reduction
of the crystallization temperature is likely connected with natural structural relaxation of the glassy
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phase, a minor surface oxidation and contamination with the organic substances, which can enhance
surface induced crystallization by activating heterogeneous nucleation [33].

Table 2. Chemical composition in at% of both sizes of the Zr50Cu50 glassy ribbon naturally aged for
17 years, SEM, EDX.

Area Side Cu Zr

Smooth area silver 52.6 47.4
Smooth area silver 52.6 47.4
Smooth area silver 51.1 48.9

Average - 52.1 47.9
C.I. * - ±1.2 ±1.2

Smooth area brown 57.1 42.9
Smooth area brown 58.4 41.6

Average - 57.75 42.25
Particle area brown 67.4 32.6

* confidence interval.

Precipitation of micron-scale Cu crystals at room temperature found in some Cu-rich glasses
requires long-range diffusion. It was reported [34] that although oxidation of the Zr50Cu50 alloy on
heating at 500–700 ◦C starts from preferential oxidation of zirconium copper forms Cu51Zr14 phase
at the metal/oxide interface. Cu-enriched layer was also found to form at the metal/oxide interface
in subsequent research works [35,36]. Moreover, the alloy did not oxidize noticeably below 400 ◦C.
Nevertheless, oxidation on heating takes place in rather dry environment while air humidity alters the
oxidation mechanism at room temperature leading to electrochemical corrosion, and thus, enhanced
surface diffusivity of Cu.

Crystallization [37,38] and electrochemical corrosion [39,40] of the Zr50Cu50 glassy alloy were
studied extensively. A recent work particularly reflected its complicated crystallization behavior [41].
Higher Cu content causes an increase in the passivation current of Cu-Zr glassy alloys [42]. The
competition between oxidation of Zr atoms forming ZrO2 film owing to its high formation enthalpy
with oxygen and the oxidation-induced segregation of Cu atoms plays an important role in the
electrochemical behavior of the Zr-Cu glassy coatings [43].

According to the Ellingham diagrams [44] there is a large difference in the Gibbs Free Energy
change on the formation of zirconium and copper oxides. Even at very low concentrations of zirconium
in a copper melt containing oxygen, copper oxide formation is thermodynamically unlikely [45]
because Zr acts as a flux. Thus, Cu is repulsed from ZrO2 matrix and clustered as pure Cu. Although
nanocrystalline Cu was formed on the surface of Zr70Cu30 metallic glass stored for eight years [33]
here we show the formation of microcrystalline Cu at room temperature at ambient conditions.

An open question is why no intermediate Cu-Zr intermetallic compounds are formed on the
surface of Zr50Cu50 and Cu60Zr30V10 alloys in accordance with the Cu-Zr phase diagram but pure
Cu? Although the glassy phase rather easily forms in the alloys containing as much as 70 at% Cu and
more [46] formation of Cu51Zr14 (hP65) phase with high thermal stability as well as Cu9Zr2 (tP24)
or Cu8Zr3 (oP44) should be possible [47] at an intermediate state when the glassy phase becomes
gradually diluted in Zr. A reasonable explanation is connected with difficulties in bypassing the energy
barrier for nucleation of these phases at room temperature.

It is also known that Zr-Cu-based glassy alloys are, in general, predisposed to show clustering
of Cu near the surface. For example, a homogeneous Zr-Al amorphous oxide film was formed in
several munities on the surface of the Cu47Zr45Al8 metallic glassy alloy while Cu segregated at the
metal/oxide interface [48]. The Cu2O nanoparticles were also formed within the Zr-Al amorphous
oxide film. Moreover, pure Cu precipitated within the Zr-Cu glassy layers on annealing [49]. Cu-rich
layer was also formed on the surface of Zr-Cu-Fe-Al and Zr-Cu-Ni-Al metallic glasses subjected to
cryogenic cycling treatment [50].
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5. Conclusions

Most of the studied metallic glasses stored at ambient conditions for more than 15 years retained
the original silver metallic color and initial either glassy or partly crystalline structure. No visible
changes in the X-ray diffraction patterns are found. Transmission electron microscopy observation also
confirmed preservation of the glassy structure in two alloys. Although the crystallization temperature
is slightly reduced after more than 15 years of natural aging the reduction is only a few Kelvin.
The results directly confirm high room-temperature stability of metallic glasses.

The aged Cu-based alloys are not oxidized (only a native thin film is observed) if they contain at
least Ti. However, the binary Zr50Cu50 and ternary Cu60Zr30V10 alloys are severely oxidized. Moreover,
precipitation of micron-scale Cu crystals was found in both alloys at room temperature as a result of
surface oxidation at natural humidity indicating fast surface diffusion.
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