

Article

Efficient Synthesis of Alkali Borohydrides from Mechanochemical Reduction of Borates Using Magnesium–Aluminum-Based Waste

Thi Thu Le ¹, Claudio Pistidda ^{1,*}, Julián Puszkiel ^{1,2}, Chiara Milanese ³, Sebastiano Garroni ⁴, Thomas Emmler ¹, Giovanni Capurso ¹, Gökhan Gizer ¹, Thomas Klassen ^{1,5} and Martin Dornheim ¹

- ¹ Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht GmbH, Max-Planck-Strasse 1, D-21502 Geesthacht, Schleswig-Holstein, Germany; thi.le@hzg.de (T.T.L.); claudio.pistidda@hzg.de (C.P.), julianpuszkiel1979@gmail.com (J.P.); thomas.emmler@hzg.de (T.E.); giovanni.capurso@hzg.de (G.C.); goekhan.gizer@hzg.de (G.G.); thomas.klassen@hzg.de (T.K.); martin.dornheim@hzg.de (M.D.)
- ² Department of Physical chemistry of Materials, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Centro Atómico Bariloche, Av. Bustillo km 9500 S.C. de Beriloche, Argentina; julianpuszkiel1979@gmail.com (J.P.)
- ³ Pavia H₂ Lab, C.S.G.I. & Department of Chemistry, Physical Chemistry Section, University of Pavia, 27100 Pavia, Italy; chiara.milanese@unipv.it (C.M.)
- ⁴ Department of Chemistry and Pharmacy and INSTM, University of Sassari, Via Vienna 2, 07100. Sassari, Italy; sgarroni@uniss.it (S.G.)
- ⁵ Helmut Schmidt University, University of the Federal Armed Forces Hamburg, D-22043 Hamburg, Germany; thomas.klassen@hzg.de (T.K.)
- * Correspondence: claudio.pistidda@hzg.de; Tel.: +49-4152-87-2644

Received: 23 August 2019; Accepted: 24 September 2019; Published: date

Figure S2. The Mg–Al-based waste as received from the workshop.

Thermodynamic calculations

Reaction: LiBO₂ + 2.5Mg-Al-based waste under 70 bar H₂

Table S1 shows the calculated amounts (mol%) of the equilibrium species obtained from the mechanochemical synthesis of LiBH₄(s) from LiBO₂(s) and Mg–Al-based waste under 70 bar H₂. The mechanochemial synthesis leads to the formation of LiBH₄(s) and MgO(s). Moreover, the impurities in the Mg waste remain after the milling process, the main reaction based on the initial composition of the Mg–Al-based waste material and the calculated equilibrium composition can be described according to the thermodynamically favored reaction as shown in Figure S3 and Table S2.

Table S1. Calculated amounts (mol%) of equilibrium species. Conditions: 25-40 °C and 70 bar H2 and	d
25–40 °C and 1 bar H ₂ . The amount of H ₂ (s) is not take into account in the calculated amounts.	

Species	Starting Compositions	After Milling (25–40 °C and 70 bar H2)
LiBO ₂ (s)	28.57	-
Mg (s)	59.10	-
Al (s)	9.51	9.69
Ca (s)	0.03	0.03
Cu (s)	0.04	0.04
Mn (s)	0.04	0.05
Nd (s)	0.06	0.06
Zn (s)	2.48	2.53
Y (s)	0.05	0.05
Ag (s)	0.12	0.13
LiBH4 (s)	-	29.14
LiH (s)	-	-
MgO (s)	-	58.28

Figure S3. ΔG vs. T.

Fable S2. Reaction under 70	bar H ₂ condition.
------------------------------------	-------------------------------

Reaction Equation											
$2Mg + LiBO_2 + 2H_2(g) = LiBH_4 + 2MgO$											
Reaction Data											
T ΔΗ ΔS ΔG Κ Ιοσ Κ											
°C	kJ		LC	ig K							
25,000 -374,441 -250,558 -299,737 3,290 x 10 ⁵² 52,517											
30,000	-374,489	-250,716	-298,484	2,723 x 10 ⁵¹		51	,435				
35,000	35,000 -374,531 -250,855 -297,230 2,443 x 10 ⁵⁰ 50,388										
40,000	-374,570	-250,979	-295,976	2,366 x 1049		49	,374				
			Speci	es Data							
Formula	Μ	Conc.	Input Amounts	g	Volume	Unit	Extrapolated From T (K)				
	g/mol	wt%	mol								
Mg	24,305	47,474	2000	48,610	27,937	mL	-				
LiBO ₂	49,751	48,588	1000	49,751	35,613	mL	-				
$H_2(g)$	2016	3938	2000	4032	44,827	L	-				
LiBH4	21,784	21,275	1000	21,784	32,708	mL	-				
MgO	40,304	78,725	2000	80,609	22,516	mL	-				

Reaction: NaBO₂ + 2.5Mg-Al-based waste under 70 bar H₂

Table S3 shows the calculated amounts (mol %) of the equilibrium species obtained from the mechanochemical synthesis of NaBH₄ (s) from NaBO₂ (s) and Mg–Al-based waste 70 bar H₂. The mechanochemial synthesis leads to the formation of NaBH₄ (s) and MgO (s) and the impurities in the Mg waste remain after the milling process. The main reaction based on the initial composition of the Mg–Al-based waste material and the calculated equilibrium composition can be described according to the thermodynamically favored reaction as shown in Figure S4 and Table S4.

Species	Starting Compositions	After Milling (25–40 °C and 70 bar H2)
NaBO ₂ (s)	28.57	-
Mg (s)	59.10	-
Al (s)	9.51	9.69
Ca (s)	0.03	0.03
Cu (s)	0.04	0.04
Mn (s)	0.04	0.05
Nd (s)	0.06	0.06
Zn (s)	2.48	2.53
Y (s)	0.05	0.05
Ag (s)	0.12	0.13
NaBH4 (s)	-	29.14
MgO (s)	-	58.28
Al ₂ O ₃ (s)	-	-
NaH (s)	-	-
B (s)	-	-
Na (s)	-	-
MgB ₂ (s)		
$M \sigma B_4(s)$	-	-

Table S3. Calculated amounts (mol %) of equilibrium species. Conditions: 25–40 °C and 70 bar H₂. The amount of H₂(s) is not take into account in the calculated amounts.

Figure S4. ΔG vs. T.

Fable S4. Reaction under 70 bar H ₂ conditio	n.
--	----

Reaction Equation 2Mg + NaBO2 + 2H2(g) = NaBH4 + 2MgO										
	Reaction Data									
T °C	ΔH kJ		Log K							
25,000	-416,189	-244,675	-343,239 1378 x 10 ⁶⁰			60,139				
30,000	-416,250	-244,878	-342,016	8638 x 10 ⁵⁸	58,936					
35,000	-416,308	-245,065	-340,791	5922 x 1057	57,772					
40,000	-416,361	-245,239	-339,565	4421 x 10 ⁵⁶	56,646					
			Spe	ecies Data						
Formula	М	Conc.	Input Amounts			Extrapolated From T(K)				
	g/mol	wt%	mol	g Volume	Unit					

Mg	24,305	41,041	2000	48,610	27,937	mL	-
NaBO ₂	65,800	55,555	1000	65,800	26,704	mL	-
H2 (g)	2016	3404	2000	4032	44,827	L	-
NaBH ₄	37,833	31,942	1000	37,833	35,226	mL	-
MgO	40,304	68,058	2000	80,609	22,516	mL	-

Reaction: NaBO2·4H2O (s) + 7.25Mg-Al-based waste under 1 bar Ar

The results of the thermodynamic equilibrium calculations for NaBO₂·4H₂O (s) + Mg–Al-based waste under 1 bar Ar are shown in Table S5. The calculations hint that the formation of NaBH₄(S) is thermodynamically favored under an Ar atmosphere and with the 1 NaBO₂·4H₂O (s) + 6Mg (total amount of Mg–Al-based waste: 7.25 mol). The products shown in Table S5 suggest the total conversion to NaBH₄ (s) and the formation of MgO (s) and H₂ (g) as byproducts. In Figure S5 and Table S6, the free energy as a function of the temperature and the reaction parameters are shown, respectively.

Species	Starting Compositions	After Milling (25–40 °C and 1 bar Ar)
NaBO2·4H2O	12 11	
(s)	12,11	_
Mg (s)	72.72	-
Al (s)	11.70	9.43
Ca (s)	0.03	0.03
Cu (s)	0.05	0.04
Mn (s)	0.05	0.04
Nd (s)	0.07	0.06
Zn (s)	3.05	2.46
Y (s)	0.06	0.01
Ag (s)	0.15	0.12
NaBH ₄ (s)	-	9.76
$H_2(g)$	-	19.51
$Al_2O_3(s)$	-	-
MgO (s)	-	58.54

Table S5. Calculated amounts (mol %) of equilibrium species. Conditions: 25–40 °C and 1 bar Ar.

Figure S5. Δ G vs. T.

Figure S6. ΔG vs. T.

Figure S7. ΔG vs. T.

Figure S8. ΔG vs. T.

Table S6. Reaction under the milling conditions.
--

Reaction Equation											
	NaB	O2•4H2O +	+ 6Mg = NaB	8H₄ + 6Mg	$O + 2H_2(g)$						
	Reaction Data										
Т	ΔH	ΔS	ΔG	1	К		ΙοσΚ				
°C	kJ	J/K	kJ				LUGIC				
0000	-1627,585	80,724	-1649,635	1000	x 10 ³⁰⁸		308,000				
5000	-1626,559	84,445	-1650,048	1000 :	x 10 ³⁰⁸		308,000				
10,000	-1625,517	88,159	-1650,479	3169>	x 10 ³⁰⁴		304,501				
15,000	-1624,459	91,864	-1650,929	1990 :	x 10 ²⁹⁹		299,299				
20,000	-1623,385	95,558	-1651,398	1894	1894 x 10 ²⁹⁴		894 x 10 ²⁹⁴		94 x 10 ²⁹⁴ 294,277		294,277
25,000	-1622,297	99,239	-1651,885	2678 :	2678 x 10 289		8 x 10 ²⁸⁹ 289,428		289,428		
30,000	-1621,196	102,900	-1652,390	5510 :	5510 x 10 ²⁸⁴		284,741				
35,000	-1620,083	106,540	-1652,914	1621 :	1621 x 10 ²⁸⁰ 280,210		280,210				
40,000	-1618,960	110,156	-1653,455	6700 :	6700 x 10 ²⁷⁵ 275,826		275,826				
			Species E	Data							
Economia	Μ	Conc.		Input Am	ounts		Extrapolated				
Formula	g/mol	wt-%	mol	g	Volume	Unit	From T(K)				
NaBO2·4H2O	137,861	48,595	1000	137,861	0000	mL	-				
Mg	24,305	51,405	6000	145,830	83,810	mL	-				
NaBH ₄	37,833	13,336	1000	37,833	35,226	mL					
MgO	40,304	85,243	6000	241,826	67,549	mL	-				
H ₂ (g)	2016	1421	2000	4032	44,827	L	-				

Table S7. Energy transferred to powder during milling.

Metals 2019, 9, 1061; doi:10.3390/met9101061

System	F (rad/sec)	ΔE (J)	$ ho_p$ (kg/m³)	$oldsymbol{arphi}_b$	Δ <i>E</i> * (J)	P (W)	Milling Time (h)	<i>P</i> * (Wh/g)
							1	6.34753
LiBO2+2.5Mg-Al	28.125	0.04372	1953	0.9217	0.04030	31.7376	12	76.17031
							24	152.34062
							36	228.51094
							1	6.35285
NaBO2+2.5Mg- Al	20 125	0.04272	2092	0.9225	0.04034)34 31.7643	12	76.23422
	20.125	0.04372					24	152.46845
							36	228.70267

Figure S9. An inset of NMR spectra in range of 10 ppm to -10 ppm.

The Extraction Process

The synthesized borohydrides (LiBH₄ and NaBH₄) can be completely separated from the byproducts (mainly MgO) by an extraction process. There are several solvents that can be used for extraction processes, i.e., isopropylamine (boiling point: 31–35 °C), ethylenediamine (boiling point: 116 °C), tetrahydrofuran (boiling point: 66 °C), ethylenglycoldimethylether (boiling point: 85 °C), 1,3– cyclohexanedione (boiling point: 105 °C), and diethylther (boiling point: 35 °C). In this study, it would be appropriate to use diethylether for LiBH₄ extraction and isopropylamine (or diethylether) for NaBH₄ extraction. The extraction process can be carried out by using a comercial device (Soxhlet extractor) (Figure S10). Once LiBH₄/and or NaBH₄ is extracted from the side-products (mainly MgO), subsequently the evaporation is performed to completely remove the solvents. Then, the purity of borohydrides is determined via hydrogen evolution apparatus (Figure S11).

Figure S10. Schematic diagram of a Soxhlet extractor.

Figure S11. Schematic diagram of a hydrogen evolution apparatus.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).