

Article

Crystal Structures of Al₂Cu Revisited: Understanding Existing and Exploring Potential Phases

Sai Wang and Changzeng Fan *

State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; wangsxcmg@163.com

* Correspondence: chzfan@ysu.edu.cn; Tel.: +86-335-805-7047

Received: 5 August 2019; Accepted: 14 September 2019; Published: date

Table 1. Crystal data, data collection and structure refinement details of the pseudo Al₂Cu phase.

Crystal data	Values					
Chemical formula	Alı.97Cu					
M_r	116.77					
Crystal system, space group	Tetragonal, P4/mmm					
Temperature (K)	293					
<i>a, c</i> (Å)	4.279 (2), 2.4337 (13)					
<i>V</i> (ų)	44.56 (5)					
Z	1					
Radiation type	Μο Κα					
$\mu (mm^{-1})$	12.64					
Data collection Diffractometer	Bruker D8 Venture Photon 100 CMOS					
Data ana aosina any amang	APEX3, SAINT and SADABS ^[1] ;					
Data processing programs	SHELXT ^[2] ; SHELXL2014/7 ^[3] .					
Absorption correction	Multi-scan					
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	1283, 51, 50					
Rint	0.068					
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.665					
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.022, 0.050, 1.11					
No. of unique reflections	51					
No. of parameters	8					
Δho max, $\overline{\Delta} ho$ min (e Å ⁻³)	0.53, -1.35					

Table 2. Crystallographic information of all existing Al₂Cu phases (the Owen-, θ -, θ '- and Ω phase) and two proposed potential Al₂Cu phases (M1 and M2 phase) corresponding to the available cif files.

Phase	Space Group		Lattice Parameters			Wyckoff positions				
	Symbol	number	а	b	С	Atom site		x	у	z
Owen	P4/mmm	123	4.28	4.28	2.405	Al1	2 <i>e</i>	1/2	0	1/2
	_					Cu1	1 <i>a</i>	0	0	0
	Fmmm	69	4.96	8.59	8.48	Al1	8h	0	1/3	0
Ω						Al2	8 <i>i</i>	0	0	1/6
						Cu1	8f	1/4	1/4	1/4
θ	I4/mcm	140	6.067	6.067	4.877	Al1	8h	0.1581	0.6581	0
						Cu1	4a	0	0	1/4

θ'	I4/mmm	139	4.04	4.04	5.80	Al1 Cu1	4d 2a	1/2 0	0 0	1/4 0
M1	I4/mcm	140	6.047	6.047	10.052	Al1 Cu1 Cu2	16l 4c 4a	$\begin{array}{c} 0.8405\\ 0\\ 0\end{array}$	0.3405 0 0	0.1355 1/2 1/4
M2	I4/mcm	140	6.008	6.008	15.445	Al1 Al2 Cu1 Cu2	16l 8h 8f 4a	0.3406 0.3320 1/2 1/2	0.8406 0.8320 1/2 1/2	0.3244 1/2 0.9154 3/4
Pseudo	P4/mmm	123	4.275	4.275	2.431	Al1 Cu1	4l 1d	0.3159 1/2	0 1/2	0 1/2

Figure 1. The structural model of the pseudo Al₂Cu phase (The Cu atoms are indicated in brown color balls; Owing to the close Al-Al connections along the edges thus cannot occupied simultaneously, the Al atoms are represented by filled gray and empty white spheres).

Metals 2019, 9, 1037; doi:10.3390/met9101037

 θ'

M1

M2

[010]

θ

M1

Figure 2. Projected simulated single crystal diffraction patterns of all existing and potential phases along [100], [010] and [001] directions.

[1] APEX3, SAINT and SADABS. Software for data reduction, absorption correction and structure solution. Bruker AXS Inc. Madison, Wisconsin, USA. (2015).

[2] Sheldrick, G. M. SHELXT: Integrating space group determination and structure solution. *Acta Cryst.* 2015, A71, 3-8.

[3] Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).