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Abstract: The strength of brazed joints is of great significance for plate-fin heat exchangers.
Although a lot of research on the strength of brazed joints has been carried out, few studies
have focused on the whole process of the crack propagation of brazed joints under loading, and no
accurate simulation methods have been published. In this paper, the crack propagation of SS304/BNi-2
brazed joints was investigated by both experiments and numerical simulations. The cohesive zone
model (CZM) was applied to simulate the crack propagation. The cohesive energy was obtained by
the T-type brazed joint peeling experiments. The cohesive strength was determined as 30 MPa by
comparing the load–displacement curves from the simulations and experiments. The results showed
that the crack propagation process predicted by the CZM was consistent with the experimental results.
Furthermore, with the increase of displacement applied on the specimen, the rate of crack propagation
of the brazed joints was high at the beginning, and then gradually slowed down in the later stages.
Under displacement-controlled conditions, increasing the thickness and the yield strength of the base
metal could delay the crack initiation, but it would increase the crack growth rate once the crack
was initiated.
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1. Introduction

At present, because of its large heat transfer area and high heat transfer efficiency, plate-fin heat
exchangers are widely used in aerospace, nuclear power and fuel cells, oil engineering, and other
fields [1–3]. A plate-fin heat exchanger is composed of baffle plates, fins, and seals, which are connected
by brazing. Under the influence of the temperature difference and pressure difference between the hot
and cold runner medium, the brazed joint is subjected to constant erosion, and the brazed seam is
easy to crack. Therefore, an investigation on the crack propagation of brazed joints in plate-fin heat
exchangers is of great value in engineering applications.

The reliability of brazed joints against the propagation of pre-existing defects and cracks relies
on the strength of brazed joints. Many researchers have mainly focused on the effects of the brazing
process, temperature, material composition, and surface roughness on the strength of brazed joints [4–7].
In addition, the effect of residual stress on the fracture toughness of brazed joints has been studied
by experiments and finite element simulation [8–10]. At present, the traditional fracture mechanics
method is widely used in the study of crack propagation behavior. However, this method is often
used for the study of macroscopic cracks, and it is not suitable for the study of crack initiation [11–13].
Besides, it has been commonly accepted that the single-parameter fracture criterion shows dependency
on the specimen geometry and loading configurations [14]. Therefore, although many experiments
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and simulations on the strength of brazed joints have been carried out, few studies have focused on the
whole process of the initiation and crack propagation of the brazed joints, and no accurate calculation
methods have been published.

The research methods on crack propagation mainly include analytical methods and numerical
simulation methods. As analytical methods have great limitations in engineering applications, it is
of great significance to use numerical methods to simulate the crack propagation accurately and
effectively. The numerical simulation methods can be used to observe the crack propagation process,
calculate the load bearing capacity of the structures with crack defects, put forward measures to prevent
crack extension, and determine the service life of the structure. With the development of computer
technology and deep research, various numerical simulation methods have been developed, such as
the boundary element method [15], element free method [16], extended finite element method [17],
and finite element method [18]. At present, the finite element method (FEM) is the most commonly
used. The grid division of the crack tip in FEM has a great influence on the simulations of the crack
propagation process. There are five methods to implement the fracture mechanics concept in the
finite element method, namely: the node release technique [19], embedded discontinuity model [20],
remeshing techniques [21], virtual crack closure technique [22], and cohesive zone model.

The cohesive zone model (CZM) was first described in the 1960s by Dugdale [23] and Barenblatt [24].
As a two-parameter fracture analysis tool, CZM is capable of interface fracture analysis, and is
independent of geometry and loading. Compared with the traditional fracture mechanics method,
CZM avoids the stress singularity of the crack tip in the linear elastic fracture mechanics [25]. CZM does
not require pre-cracks, so it can not only simulate crack initiation, but also simulate crack growth.
Tvergaard and Hutchinson [26] applied CZM to the fracture simulation of a multi-layer bonded
structure under a monotone load. Yang [27] simulated the fairly large plastic deformation of the type-II
fracture of the adhesive joint using CZM. They successfully simulated the fracture process of adhesive
joints with different geometric shapes with the same cohesion parameters, and proved that CZM
was adapted for the fracture prediction of various joints. Moreover, CZM has achieved popularity
in simulating the fracture process in laminated [28,29], fiber [30,31], and honeycomb [32] composite
material structures, and so on. Ghovanlou [33] studied the crack propagation process in low-carbon
steel brazed joints with copper-filled metal using CZM, and the finite element simulation results
were in good agreement with the experimental data, indicating that CZM has a good applicability
in the crack propagation of brazed joints. However, although CZM has a stronger advantage than
the traditional fracture mechanics method for simulating crack propagation, only a few researchers
adopted CZM to study the crack propagation law of brazed joints.

In this paper, the crack propagation of SS304/BNi-2 brazed joints in the plate-fin heat exchangers
was investigated by both experiments and numerical simulations. CZM based on continuum damage
mechanics was firstly developed to simulate the crack initiation and propagation of SS304/BNi-2 brazed
joints. The validity of CZM was proven by comparing the simulated results with the T-type brazed joint
peeling experimental results. Then, the whole process of crack propagation and the propagation law of
the brazed joint were obtained. Furthermore, the influence of the thickness and the yield strength of
the base metal on the crack propagation of brazed joints was investigated and discussed.

2. Materials and Experiments

2.1. T-Type Brazed Joint Peeling Experiments

In this paper, the materials for the base metal and filler metal were SS304 steel and nickel-based
filler metal BNi-2, respectively. Their chemical compositions are listed in Table 1, where the symbol “-”
means the chemical element is not contained in this material.

At present, there are no relevant standards on the crack propagation experiment of the brazed
joint of plate-fin heat exchangers. Considering that the stress state and crack propagation behavior of
the plate-fin brazed joints are similar to the adhesive structure of T-type joints, we used an adhesive
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T-type brazed joint to study the crack propagation laws of a plate-fin brazed joint. According to the
Standard of the GB/T 2791-1995 adhesive T peeling strength test method, we designed a T-type brazed
joint, as shown in Figure 1a.

Table 1. Chemical composition of SS304 and BNi-2 (in wt %).

Material C Si Mn S P Cr B Ni Fe

304 ≤0.03 ≤1.00 ≤2.00 ≤0.03 ≤0.035 17.0~19.0 - 8.00~11.0 Balance
BNi-2 0.06 4.50 - - - 7.00 3.1 82.34 3.0
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Figure 1. Specimen for a T-type brazed joint: (a) schematic geometry and (b) photograph.

According to the brazing process designed by Jiang [34], two L-type stainless steel plates
(SS304 material) were brazed together by the BNi-2 filler metal, as shown in Figure 1b. The width of
the stainless-steel plate was 20 mm, and the thickness was 1 mm. The brazing seam was located at the
center section of the specimen. The thickness of the BNi-2 filler metal foil was 40 µm, as shown in
Figure 2a. Therefore, two layers of BNi-2 foil were applied to the welded part of the L-type 304 stainless
steel (Figure 2b) in order to obtain an 80 µm thickness of the filler metal. The length of the holding end
was 70 mm, the brazing part was 40 mm in length, and the brazing part and the holding end passed
through a fillet of 2 mm. The notch diameter was 8 mm.
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Figure 2. Brazing joint parts: (a) BNi-2 foil and (b) L-type 304 stainless steel.

In this paper, the tensile crack propagation experiment of the brazed joints was carried out at
room temperature using a creep testing machine; the test device and sample holding are shown in
Figure 3a,b, respectively. The experiments were conducted under a displacement-controlled condition
at a rate of 0.005 mm·s−1. The load and displacement were recorded during the tensile test.
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Figure 3. (a) Testing machine and (b) the clamping of the T-type brazed joint.

2.2. Experimental Results

Three experiments were carried out under the same conditions, and the load–displacement curves
that were obtained are shown in Figure 4. It can be seen that there are some differences in the three
curves, which is mainly due to the differences in the welding quality. However, the difference of the
stable load, which is used to calculate the cohesive energy, is small. The values of the maximum load
and stability load that were obtained by each specimen are listed in Table 2. The average values will be
used in the determination of the critical cohesive energy.
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Table 2. Maximum load and stable load for each specimen.

Specimen ID Maximum Load (N) Stable Load (N)

1 1116.6 406.6
2 1018.6 378.3
3 1042.8 423.8

Average value 1059.3 402.9

3. Finite Element Analysis

3.1. Cohesive Zone Modeling

The cohesive zone model defines a traction–separation relationship in order to account for the
progressive damage and fracture mechanisms along a fracture surface. Various cohesive models, such as
the bilinear [35], trapezoid [36], exponential [37], and monotonically decreasing [38] models, have been



Metals 2019, 9, 1031 5 of 18

developed in order to simulate the fracture of different materials. In the standard finite element
method, the cohesive zone model is generally implemented by introducing cohesive contact surfaces.
Prior to the computational simulation, cohesive contact surfaces were inserted between the continuum
elements within a potential crack path, which led to an intrinsic cohesive zone modeling approach.

In this work, for the traction–separation relationship of the cohesive zone model, a bilinear
cohesive model was employed, as shown in Figure 5. According to the fracture process of the material,
the model can be divided into the following three phases: the elastic deformation stage (line OA),
the damage evolvement stage (line AC), and the complete failure stage (line CD). In the elastic
deformation stage, the slope was the penalty stiffness (k), which could defend the cohesive element
surfaces from the separation. In other words, the displacement compatibility between the FEs was
ensured approximately in the elastic stage via a penalty function method. When the effective separation
(δm) was bigger than the effective separation at the damage initiation (δ0

m), the corresponding cohesive
element entered the damage evolvement stage. In this stage, the material began to damage.
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Figure 5. The load–displacement curves.

Once the effective separation, δm, reached the effective separation at complete failure, δ f
m, the two

surfaces of the cohesive element separated from each other completely, and a new surface crack was
formed. The closure of the cracks could be simulated via contact methods in order to deal with the
interaction between the crack surfaces.

From the analysis above, we can find that the cohesive model mainly includes three important
parameters (δm, δ0

m, and δ f
m), which can be utilized to determine the stage of a cohesive element.

The effective separation (δm) is defined as follows:

δm =
√
〈δ1〉

2 + δ2
2 + δ2

3 (1)

where δ1 is the normal separation component, while δ2 and δ3 are the tangential separation components.
The Macaulay bracket (<·>) can be represented as follows:

If δ1 > 0, 〈δ1〉 = δ1; else 〈δ1〉 = 0

The maximum nominal stress criterion is employed to determine whether the material begins to
damage. This criterion can be represented as follows:

max =

 〈t1〉

t0
1

,
t2

t0
2

,
t3

t0
3

 = 1 (2)

where t1 is the normal traction component, while t2 and t3 are the tangential traction components. t0
1 is

the tensile strength in mode I, while t0
2 and t0

3 are the shear strengths in modes II and III, respectively.
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The same penalty stiffness was utilized for modes I, II, and III, and the tractions in the elastic stage
were as follows:

ti = kδi, (I = 1, 2, 3) (3)

t0
i = kδ0

i , (I = 1, 2, 3) (4)

where δ0
1 is the separation component at the initial damage for mode I, while δ0

2 and δ0
3 are those for

modes II and III, respectively.
When a cohesive element enters the damage evolvement stage, its stiffness monotonously

decreases. The stiffness degradation coefficient (D) is defined as follows:

D =
δ

f
m(δ

max
m − δ0

m)

δmax
m (δ

f
m − δ

0
m)

(5)

where δ0
m = σmax,0/k and δ

f
m = 2Gc/σmax,0. The cohesive strength (σmax,0) is the maximum traction

attained with the fracture process zone at the onset of the damage initiation, and the cohesive energy (Gc)
is the work needed for the full material separation per unit area of the crack extension. The maximum
value of the effective separation during the loading history (δmax

m ), is defined as follows:

δmax
m = max

{
δmax

m , δm
}

(6)

In the damage evolvement stage, the normal and tangential tractions were as follows:

ti = (1−D)kδi, (I = 1, 2, 3) (7)

3.2. Finite Element Model

In this work, the crack propagation process of the T-type brazed joints was modeled using the
commercial finite element software ABAQUS. The geometric dimensions of the model were the same
as the size of the sample in the experiments, as shown in Figure 1a. A two-dimensional finite element
model was built. The initial constitutive thickness of the cohesive elements was set equal to the joint
clearance of 80 µm.

The critical cohesive energy, initial stiffness, and the cohesive strength of the brazed joint will be
studied in the next section. The hardening behavior of the base metal was taken from the tensile tests,
and the corresponding stress values versus the plastic strains are provided in Table 3.

Table 3. The stress values versus the plastic strains for the base metal.

Plastic Strain (mm/mm) 0 0.01 0.02 0.03 0.04 0.06 0.08 0.09 0.10

Stress (MPa) 208 260 281 300 315 342 366 375 386

In the simulation, a general static analysis step was applied, and a geometric nonlinear analysis
was adopted. The FE model of the T-type specimen and its boundary conditions are shown in Figure 6.
In order to make the simulation closer to the experimental value, it is necessary to set the boundary
conditions to be the same as the test conditions. Considering the limiting effect of the clamp on the
specimen during the experiments, the upper and lower ends of the specimen model were divided
into regions with the same length as the clamp. The lateral displacements of the regions in the X
direction were limited. The lower end of the T-type specimen was fixed. An upward displacement
with a loading rate of 0.005 mm·s−1 was applied on the end face of the upper end.
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3.3. Mesh Convergence Study

Studies show that it is more reasonable to use one base metal element to correspond to 2~5 cohesive
elements [39,40]. Therefore, one base metal element corresponding to four cohesive elements will
be used in this work. In the simulation, the two-dimensional cohesive element type was COH2D4,
with four nodes and two integration points. The brazed joint interlayer was divided into a single row
of cohesive elements along the thickness direction. The surrounding base metal regions were meshed
by a four-node bilinear plane strain quadrilateral, reduced integration, hourglass control element,
and CPE4R. The finite element meshing of the T-type brazed joint is shown in Figure 7.
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Figure 7. Finite element meshing of the brazed T-type specimen.

A mesh convergence study was carried out in order to obtain the suitable size of the cohesive
element (LCZM). Four different sets of finite element meshes were divided, and the sizes of the
base metal element were 0.4, 0.2, 0.1, and 0.04 mm, and the corresponding sizes of the cohesive
elements were 0.1, 0.05, 0.025, and 0.01 mm, respectively. The load–displacement curves obtained with
different cohesive element sizes are shown in Figure 8. It can be seen that before the load reached the
maximum, the resulting curves of the different cohesive element sizes almost overlapped. However, the
maximum loads diverged. The detail results are shown in Table 4. It is shown that when the mesh
size reached 0.025 mm, the maximum loads were convergent and almost unaffected by the mesh
sizes. Therefore, 0.025 mm can be regarded as the critical mesh size of the cohesive elements, and was
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determined as the cohesive element size in this work. Accordingly, the size of the base metal elements
is 0.1 mm. Finally, the FE model consisted of 23,180 elements and 26,890 nodes, as shown in Figure 7.
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Table 4. Maximum loads and errors for different cohesive element sizes.

No. (i) Cohesive Element
Sizes (mm)

Number of
Elements

Number of
Nodes

Maximum
Load Pi (N)

Error (e = (Pi+1
− Pi)/Pi) %

1 0.1 2006 2938 1018.02 -
2 0.05 6180 8038 1046.62 2.81
3 0.025 23,180 26,890 1059.19 1.20
4 0.01 139,250 148,522 1060.33 0.01

3.4. Determination of Critical Cohesive Energy and Cohesive Strength

The peeling test was a popular test method for measuring the peeling energy between flexible
laminates [41,42]. For the brazed joint, the total input energy (G) in the test was related to the stable
peeling load (P), the width (b) of the specimen, and the peeling angle (θ), which are shown in the
following formula:

G =
P
b
(1− cosθ) (8)

The sample was brazed by two L-type peeling arms of 304 stainless-steel, each with a peeling
angle of θ = π/2, so the formula (8) can be simplified as follows:

G =
P
b

(9)

The total input energy (G) includes the critical cohesive energy (Gc) and the plastic dissipation
energy (Gd) consumed in the bending of the peeling arm. The critical cohesive energy (Gc) is a
“characteristic” property of the material, independent of the thickness (h) of the peeling arm and the
peeling angle (θ). However, the value of Gc may be affected by the loading rate and temperature.

Georgiou [43] and Kawashita [44] deduced the calculation method of plastic dissipation energy (Gd)
from the theory, and obtained the formula of the critical cohesive energy (Gc), given by the following:

Gc = θ0
2G2

σyh
+
σ2

y

2E
(10)

where E is the elastic modulus, σy is the yield strength of the peeling arm, and θ0 is the root rotation.
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The value of θ0 is determined by the characteristic length of the deformation (∆), as shown in
Figure 9, and is defined by the following:

θ0 =
∆
h

(11)

The value ∆/h is related to the geometrical and elastic modulus of the specimen, as shown in
Formula (12), where Ec is the elastic modulus of the solder, hc is the filler metal thickness. It should
be noted that Formula (12) is actually obtained under the assumption of a linear stiffness curve [43].
So, the function of this formula is just to give an estimate value of Gc in this work.(∆

h

)4
=

1
6

E
Ec

(1 +
2hc

h
E
Ec

) (12)

The cohesive energy obtained from the experiment was assigned to the cohesive elements.
The cohesive zone stiffness, which is equal to the slope of the linear elastic part of the traction–separation
law, is defined by the following [45]:

k =
Ec

hc
(13)

The values of the material parameters, geometrical dimensions of the base material, the brazing
filler metal, and the critical cohesive energy obtained by the calculations are listed in Table 5.
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Table 5. Results of the tensile testing of T-type SS304/BNi-2 brazed joints.

Base Metal Filler Metal Total Energy Plastic Dissipated Energy Cohesive Energy

E/MPa σy/MPa h/mm Ec/MPa hc/mm G/mJ·mm−2 Gd/mJ·mm−2 Gc/mJ·mm−2

199,000 208 1 205,000 0.08 40.29 29.84 10.45

Another important parameter in the simulation was the cohesive strength. The method used
in this paper was to simulate the crack propagation of the brazed joint by assuming different values
of cohesive strength, and comparing the simulated load–displacement curves with the experimental
curves, then seeking the optimum value. Figure 10 shows the load–displacement curves obtained
with different cohesive strength values. It can be seen that the final loads increased with the cohesive
strength values. Table 6 shows the comparison of the maximum load and final load by the experiments
and simulations with different cohesive strength values. The errors between the experimental and
simulated results were at a minimum when the cohesive strength was 30 MPa. The error between the
maximum load and the test value was 0.08%, and the error between the final load and the test value
was 1.32%. Therefore, the value of the cohesive strength in this paper was determined as 30 MPa.
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Table 6. Comparison of the maximum load and final load by the experiments and simulations.

Category Maximum Load (N) Fractional Error (%) Final Load (N) Fractional Error (%)

Experimental value 1059.33 512.01

Simulation value

σmax = 20 MPa 928.97 12.36 485.05 5.27
σmax = 25 MPa 998.95 5.76 503.19 1.72
σmax = 30 MPa 1059.19 0.08 518.75 1.32
σmax = 35 MPa 1110.62 4.78 532.34 3.97
σmax = 40 MPa 1155.83 9.04 544.45 6.34

4. Results and Discussion

4.1. Crack Propagation Law Analysis

The crack growth results obtained by the simulations and experiments are shown in Figure 11.
The experimental results showed that the crack grew through the joint filler metal region, and no
delamination occurred at the steel interface. It has been proven that it is correct to set the cohesive
element in the brazing seam. The deformation of the base metal and the crack length of the brazed
joint obtained by the simulations were close to the experimental results, which further showed that
the bilinear cohesive zone model can predict the crack propagation of the brazed joint accurately.
Furthermore, with the loading of the displacement, there was plastic deformation of the base metal,
which consumed a lot of energy. This could explain why the cohesive energy of Gc = 10.45 mJ·mm−2

was less than the total energy of G = 40.29 mJ·mm−2.
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The damage of the first element at the edge of the brazing seam is plotted in Figure 12. It can be
seen that before displacement reached Point A, the damage was zero. With the increase of displacement,
the rate of the damage growth was high at first and then slowed down. When the displacement reached
Point B, the damage reached one. The crack initiation time was defined as the calculated time needed for
the damage to change from zero to Point B in the simulation. Figure 13 shows the traction distribution
along the edge of the brazing seam at different damage stages of crack initiation. The first cohesive
element located at the initial crack tip had the largest traction, and the traction decreased gradually
to zero along the weld seam, as shown in Curve 1. When the traction reached a cohesive strength of
30 MPa (Point A in Figure 12), the damage initiated and increased nonlinearly. A further increase in
the separation resulted in the gradual degradation of the damage-initiated cohesive elements along
the interlayer. Accordingly, the traction dropped below the cohesive strength of 30 MPa (Curve 2).
When the loading displacement reached 0.85 mm, the damage accumulated to one (Point B in Figure 12),
and the traction reached zero for the first fully damaged cohesive element (Curve 3). The cohesive
element was deleted to simulate the crack initiation when its damage accumulated to one and its
traction reached zero in the simulation.
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crack initiation.

The stress distributions of the brazing joint with different crack lengths are shown in Figure 14a–d.
Correspondingly, the damage and traction distribution of the cohesive elements along the brazing
seam are shown in Figure 15a,b and Figure 16. As the figures show, the seam can be divided into
three stages, namely: crack section, damage accumulation section, and undamaged section. In the
cracked section, the cohesion unit damage reached one, and the corresponding traction was reduced to
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zero, which lad to the disappearance of the cohesion element, and the crack extended to the deeper
position of the brazing seam. It can be seen from the damage magnification diagram that the damage
near the tip of the crack reached more than 0.999, which caused this part to experience failure under a
little separation.
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Figure 17 shows the simulated crack length curve in comparison with the experimental results.
The experimental crack lengths were measured by the direct current (DC) method. The simulated crack
lengths were calculated by multiplying the element length by the number of the deleted elements. It can
be seen that the trend of the simulated curve is similar to that obtained by the experiment, which shows
that it is feasible to simulate the crack propagation of the brazed joint by CZM. However, the value of
the crack length measured by the experiment was slightly larger than that of the simulation. This is
because the brazed joint in the experiment had some defects during the brazing process, which were
not considered in the simulation. Furthermore, the difference in the crack length definition between
the experiments and simulation could be another reason.
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4.2. Effect of Thickness of Base Metal on Crack Propagation

In order to study the effect of the thickness of the base metal on the crack propagation of the
brazed joint, the thickness of the 304 stainless steel was set to 1, 2, 3, and 4 mm, respectively. The other
parameters (E and σy) remained the same, as listed in Table 5. The thickness of the filler metal remained
80 µm. The displacement applied on the end of the brazed joint was also 6 mm. The effects of the
base metal thickness on the load–displacement curve and crack initial time are shown in Figure 18a,b.
It shows that the load that the brazed joint can bear increased, and the crack initiation time of brazed
joint became longer with the increase of the base metal thickness. Therefore, increasing the thickness
of the base metal can slow down the crack initiation of the brazed joint.

Figure 19a shows the effect of the base metal thickness on the crack length. The crack growth
rate of the brazed joint increased with the increase of the base metal thickness. With the displacement
increasing, the length of the crack became longer. This is because with the increase of the base metal
thickness of the T specimens, the cross section of the stripping arm increased, resulting in an increase
in the stiffness of the material and a decrease of the elastic deformation. When the same displacement
was applied, the joint was easier to tear in a larger area. Therefore, although increasing the thickness
of the base metal can slow down the crack initiation of the brazed joint, the crack growth rate of the
brazed joint will increase with the base metal thickness, once the crack is formed. The relation between
the crack length and the base metal thickness when the displacement load was 6 mm was obtained by
fitting the points in Figure 19b. It can be seen that the crack growth length had a linear relationship
with the base metal thickness.
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4.3. Effect of Yield Strength of Base Metal on Crack Propagation

It is well known that the yield strength of the same steel material varies greatly with different heat
treatment methods. To study the effect of the heat treatment on the crack resistance of brazing joints,
simulations of the cracking propagation of brazed joints with different yield strengths were conducted.
An elastoplastic constitutive model was adopted for the base metal, but the hardening behavior was
not considered. The thickness of the base metal was set to 1 mm. The other parameters remained the
same as listed in Table 5. The thickness of the filler metal remained at 80 µm. The effect of the yield
strength on the load–displacement and crack initial time of the brazed joint was obtained, as shown in
Figure 20a,b. It can be seen that with the increase of the yield strength of the base metal, the maximum
load and the steady load that the brazed joint can bear increased. Increasing the yield strength of the
base metal can improve the ability of the brazed joint to resist cracking. This is because the total energy
required for the peeling test increased with the increase of the steady load, and the energy consumed
by the plastic deformation of the base metal increased when the critical cohesive energy was constant,
and the time required for the initiation of brazed joints increased.

Figure 21a shows the effect of the yield strength on the crack length. It is shown that with the
loading of the displacement, the crack growth rate of the brazed joint increased with the yield strength.
This is because the greater the yield strength of the metal material, the stronger the ability to resist
plastic deformation, and the smaller the flexibility. When applying the same displacement load,
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a longer crack length was easily formed on the brazed joint of a greater yield strength. When the 6 mm
displacement load was applied, the relationship between the crack length and the yield strength of the
base metal was obtained by fitting the points in Figure 21b. The crack growth length was linear with
the yield strength of the base metal.
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Based on the above analysis, it can be seen that under controlled displacement conditions,
increasing the thickness of the base metal not only slowed down the crack initiation of the brazed joint,
but also increased the crack growth rate of the brazed joint once the crack was formed. When the
thickness of the base metal was a fixed value, increasing the yield strength of the base metal could
improve the ability of the brazed joint to resist cracking, but the crack growth rate of the brazed joint
would also increase in the meanwhile. Therefore, to resist the crack propagation of brazed joints in
engineering applications, a suitable thickness and the necessary heat treatment of the base metal need
to be determined by measuring both the crack initiation and the crack growth rate.

5. Conclusions

In this paper, the bilinear cohesive zone model (CZM), as a two-parameter fracture analysis tool,
has been successfully applied to predict the whole process of the crack propagation of SS304/BNi-2
brazed joints. The following conclusions are drawn from this study:
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(1) The crack propagation experiments of SS304/BNi-2 brazed joint were carried out. The energy
consumed by the plastic deformation of the base metal is eliminated from the total energy input from
the crack propagation by the analytic method. As one of the CZM parameters, the critical cohesive
energy of the brazed joints calculated by the experimental data is 10.45 mJ·mm−2.

(2) The cohesive strength, another important parameter in CZM, is determined by comparing
the simulated results with the experimental results. The crack propagation of the brazed joint with
different values of cohesive strength is simulated using CZM. The load–displacement curves obtained
by simulation were compared with the experimental curves. The cohesive strength with the minimum
error between the simulation and experiment is the optimum value. Finally, the value of the cohesive
strength is determined as 30 MPa.

(3) The predicted results of the crack propagation of the T-type brazed joints are in good agreement
with the experimental results. The agreement shows that CZM can predict the crack propagation of the
brazed joint accurately. The results show that with the increase of the displacement loading, the rate of
crack propagation is high at the beginning, and then gradually slows down in the later stage.

(4) The influence of the thickness and the yield strength of the base metal on the crack propagation
of brazed joints was investigated. The results show that under the controlled displacement condition,
increasing the yield strength or the thickness of the base metal can delay the crack initiation of the
brazed joint, but that it will increase the crack growth rate of the brazed joint once the crack is formed.
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Nomenclature

a crack length t0
2:t0

3 shear strengths in modes II and III
b width of the specimen x loading displacement
D stiffness degradation coefficient δ1 normal separation component
E elastic modulus δ2, δ3 tangential separation components
Ec elastic modulus of the solder δ0

1 separation component at initial damage for mode I
G total input energy δ0

2,δ0
3 separation component at initial damage for modes II and III

Gc critical cohesive energy δm effective separation
Gd plastic dissipation energy δ0

m damage initiation
h thickness of the peeling arm δ

f
m effective separation at complete failure

hc filler metal thickness δmax
m the maximum value of the effective separation

k slope of the linear elastic part of the traction-separation law δi (i = 1,2,3) separation components
LCZM size of the cohesive element ∆ characteristic length of the deformation
P stable peeling load θ peeling angle
t1 normal traction component θ0 root rotation
t2, t3 tangential traction components σy yield strength of the peeling arm
t0
1 tensile strength in mode I
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