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Abstract: A strain gradient was produced in an AZ31B magnesium alloy through a plastic deformation
of pure torsion at a torsional speed of π/2 per second. Compared with the base material and with the
alloy processed by conventional severe plastic deformation, the magnesium alloy provided with a
strain gradient possesses high strength preserving its ductility. Microstructural observations show
that strain gradient induces the formation of an inhomogeneous microstructure characterized by
statistically stored dislocation (SSD) density gradient and geometrically necessary dislocation (GND).
GNDs and dislocation density gradient provide extra strain hardening property, which contributes to
the improvement of ductility. The combination of SSD density gradient and GND can simultaneously
improve the strength and ductility of magnesium alloy.
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1. Introduction

Magnesium alloys are a product in great demand in the automotive field due to their high
strength-to-weight ratio [1,2]. The poor ductility limits the room temperature formability of magnesium
alloys and the relatively low strength leads to the large dimension structure. Magnesium alloys with
high strength and high ductility can be in demand in engineering. High strength can be achieved in
magnesium alloys by means of well-known methods, e.g., grain refinement [3], element addition [4,5],
and work hardening [6]. Due to the insufficient number of operative slips in hexagonal close packed
(HCP) crystal structure [7], improving the strength usually accompanies with the poor ductility in
magnesium alloys. Strength and ductility are contradictory in magnesium alloys. Trading off the
strength and ductility of magnesium alloys is a promising research direction in materials science.

Severe plastic deformation (SPD) has been proved to be an effective method for improving the
mechanical properties of magnesium alloys [8–10]. Equal channel angular pressing (ECAP) [11], high
pressure torsion (HPT) [12], and accumulative roll bonding (ARB) [13] are widely employed SPD
techniques. Ultrafine-grained magnesium alloys ZK60 and AZ31 were respectively produced by
one-step ECAP and two-step ECAP [14,15]. Superplastic ductility at the temperature of 473 K was
achieved in magnesium alloy by means of HPT [16]. ARB was used to process magnesium alloy AZ31
with the mean grain size of 3 µm [17]. Magnesium alloys with a bimodal grain size distribution were
obtained by SPD [18,19]. A modified ECAP called C-shape ECAP was developed to improve the
hardness of AZ31 [20]. Another modified ECAP combining ECAP and twist extrusion was developed
to improve the strength and elongation of magnesium alloys AZ61 [21]. Magnesium alloy AZ91 with
high mechanical properties was processed by ECAP and subsequent low temperature rolling [22].
The strength and fatigue performance benefit strongly in magnesium alloy ZX40 by warm ECAP and
subsequent room temperature rotary swaging [23]. Recently, inhomogeneous microstructures were
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introduced into magnesium alloys to improve their mechanical properties. Nanoparticle addition
was used to change the recrystallization behavior during extrusion, which improves the strength of
magnesium alloy [24]. Combining machining and extrusion, Tekumalla et al. strengthened magnesium
alloy AZ91 without compromising ductility by producing fine-grained structures and SPDed grains [25].

The former works focus on the effect of uniform prior plastic strain on the mechanical properties
of magnesium alloys. However, this study shows that prior plastic strain gradient can result in gradient
hierarchical microstructure in steel [26]. The gradient microstructures inspire us to investigate the role
of strain gradient in improving the mechanical properties of magnesium alloys. Here, magnesium
alloy AZ31B was respectively processed by ECAP without strain gradient and pure torsion with
strain gradient. Compressive tests were conducted to illustrate the difference of mechanical property
between AZ31B with strain gradient and without strain gradient. Microstructural characterizations and
theoretical models were employed to reveal the effect of the strain gradient on the mechanical properties.

2. Materials and Methods

An AZ31B magnesium alloy bar with the diameter of 4.8 mm was used. The bar whose chemical
composition is shown in Table 1 was annealed at the temperature of 618 K for 60 min to obtain a
homogeneous coarse grain (CG) microstructure. To reveal the microstructure of the base material,
the bar was mechanically polished and then etched in a 5 g picric acid + 10 mL water + 10 mL acetic
acid + 100 mL ethanol solution for ~10 s. The etched surface was observed by the optical microscope
(Olympus BX51M, Tokyo, Japan). Figure 1 shows the initial microstructure and grain size distribution
of the base material. The mean grain size of initial workpiece is ~50 µm.

Table 1. Chemical composition of magnesium alloy AZ31B.

Elements Mg Al Zn Mn Si Cu Ca

Wt% balance 3.0 1.0 0.2 0.1 0.05 0.04
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Figure 1. (a) Initial microstructure of AZ31B; (b) grain size distribution of initial AZ31B.

The initial AZ31B bar was deformed by using two types of deformation mode. Figure 2 shows the
schematics of the two deformation modes. In Figure 2a, the initial AZ31B bar was processed by means
of equal channel angular pressing (ECAP) where the inner angular Φ is and the outer angular ϕ is π/3.
Using the strain estimation Equation [11], the effective plastic strain of 0.6 was imposed in workpiece
after one pass of ECAP. In Figure 2b, the initial AZ31B with the length of 150 mm was torqued by the
radian of 10π. The effective plastic strain is calculated by 200πr/3

√
3, where r is the distance departing

from the center of bar. Figure 2b illustrates the effective plastic strain distribution in the cross-section.
The strain gradient during torsion is 200πr/3

√
3 1/m.
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Figure 2. Schematics of two deformation modes: (a) equal channel angular pressing (ECAP);
(b) pure torsion.

The initial workpiece, the specimen processed by ECAP, and the sample after torsion were tested
by using material test system. All samples were prepared with a gauge length of 9 mm and a diameter
of 4.5 mm. Each test was repeated at least three times for statistical analysis. Quasi-static compressive
tests were conducted on Instron E10000 (ITW, Boston, MA, USA) with a strain rate of 5× 10−4 s−1. The
stress strain curves were recorded at the frequency of 10 Hz until the samples fractured. In order to
reveal the effect of strain gradient on the microstructural evolution, transmission electron microscope
(TEM) observation was carried out on JEM 2010 (JEOL, Tokyo, Japan) with the operating voltage
of 200 kV. The samples for TEM were polished down to ~70 µm. To get thin area, the solution of
30 mL nitric acid and 70 mL alcohol was employed at the current of 130 mA and the temperature of
243–253 K. Along the radius direction, three zones were chosen for TEM observation, i.e., the center of
bar, the middle zone and the outer zone. The corresponding selected area electron diffraction (SAED)
pattern was obtained during TEM observation. Based on the TEM images, the dislocation density of
the observed region was measured by means of image analysis technology. The detailed descriptions
on the measurement of dislocation density are given in Appendix A.

3. Results

3.1. Mechanical Property

Figure 3 shows stress-strain curves of AZ31B under compressive loading. The 0.2% yield strength
of AZ31B processed by ECAP or pure torsion is higher than that of initial workpiece. The ductility
of AZ31B processed by ECAP is less than that processed by pure torsion. Compared with the initial
workpiece, AZ31B processed by pure torsion possesses higher yield strength but no sacrifice of ductility.
The comparisons of mechanical properties are shown in Figure 4. The 0.2% yield strength, ultimate
strength and fracture strain of initial workpiece are respectively 105 MPa, 433 MPa and 15.5%. For
AZ31B processed by ECAP, yield strength increases by 72.4%, but ultimate strength and fracture
strain respectively decrease by 6.7% and 35.5%. As for AZ31B processed by pure torsion, yield
strength increases by 71.4%, but ultimate strength and fracture strain are nearly the same as those of
initial workpiece.
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3.2. Microstructural Observation

The bright-field TEM images of AZ31B are illustrated in Figures 5–8. As shown in Figure 5, few
dislocations appear in initial workpiece. There is no distinct difference for TEM images at position
b, c and d in Figure 5. After ECAP, severe plastic deformation was imposed on AZ31B. Statistically
stored dislocations (SSDs) resulting from plastic strain accumulate in AZ31B. SSDs are observed in
Figure 6b–d. Due to the homogeneous shear deformation during ECAP [11], dislocation densities
are the same in different regions. High density dislocations are visible at positions b–d. There is no
gradient of dislocation density in AZ31B after ECAP. The microstructures in Figure 6 were characterized
by high density dislocations and sub-boundaries. These dislocations were blocked and piled up at
sub-boundaries, contributing to the strengthening. This clearly explains the improvement of 0.2%
yield strength in AZ31B after ECAP (Figure 3).
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Figures 7 and 8 present the bright field TEM micrographs of AZ31B magnesium alloy processed
by pure torsion. Because of strain gradient in pure torsion, plastic deformation increases from the
center to the outer side. Small plastic deformation results in low density dislocations in Figure 7b.
Medium density dislocations accumulate between center and outer zone (Figure 7c). High density
dislocations are observed in outer region (Figure 7d). Detailed TEM images in Figure 8 show that
dislocation networks and dislocation glides are the typical microstructures in outer region of AZ31B bar
processed by pure torsion. Dislocation networks help to improve the yield strength. Dislocation glides
resulting from strain gradient can suppress the localization of plastic deformation. The combination
of dislocation networks and dislocation glide explains the high yield strength and high ductility of
AZ31B processed by pure torsion (Figure 3).
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4. Discussion

The dislocation density and strain hardening rate are directly related with the mechanical
properties of metallic materials. As for metals undergoing plastic deformation, the evolution of
dislocation density is determined by Kocks–Mecking–Estrin (KME) model [27–30]:

dρ
dε

= M
( 1

bΛ
+ k1

√
ρ− k2ρ

)
. (1)
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In Equation (1), ρ is the dislocation density, ε is the effective plastic strain, Λ is typically in the
order of the grain size, M is the Taylor factor, k1 and k2 are, respectively, the dislocation storage rate
and dynamic recovery rate. The initial dislocation density for ε = 0 is assumed to be ρ0, and then the
dislocation density in AZ31B after ECAP ρE is determined by integrating Equation (1) from 0 to 0.6.
The TEM images in Figure 6 indicate the accumulation of dislocation density ρE. Based on Taylor
Equation [31,32], the yield stress of AZ31B after ECAP σE is given by:

σE = σ0 + βMGb
√
ρE, (2)

where σ0 is the yield strength of initial workpiece, β is a constant of dislocation interaction, b is Burgers
vector, and G is the shear modulus of initial workpiece. According to Equation (2), the additional
dislocation density ρE improves the yield strength of AZ31B after ECAP. Equation (2) explains the
improvement of yield strength in Figure 3.

In the case of pure torsion, the strain along radius direction is a variable:

ε(r) =
200π

3
√

3
r, (3)

where r is the distance departing from the center of bar. The SSD ρS(r) resulting from plastic strain
ε(r) is a variable:

ρS(r) =
∫ ε(r)

0
M

( 1
bΛ

+ k1
√
ρ− k2ρ

)
dε. (4)

The mean SSD ρTS in the crossing section after pure torsion is calculated by:

ρTS =

∫ d/2

0

8rρs(r)
d2 dr, (5)

where d is the diameter of AZ31B bar.
The strain gradient is 200π/3

√
3 1/m during torsion, so that geometrically necessary dislocation

(GND) density ρG is determined by [33]:

ρG =
200π

3
√

3b
. (6)

Based on the experimental observations in Figures 7 and 8, both SSDs and GNDs appear in AZ31B
processed by pure torsion. The total dislocation density is sum of SSD density and GND density.
Referring to Taylor Equation [31,32], the yield stress is determined by the total dislocation density.
Using Equations (5) and (6), the yield stress of AZ31B after pure torsion is given by [33]:

σT = σ0 + βMGb
√
ρTS + ρG. (7)

In Equation (7), the additional SSD density ρTS and GND density ρG improve the yield strength
of AZ31B after pure torsion. By deriving Equation (7) by strain ε, the strain hardening rate Θ of AZ31B
after pure torsion is composed by two parts:

Θ =

(
∂σT

∂ε

)
SSD

+

(
∂σT

∂ε

)
GND

. (8)

The term
(
∂σT
∂ε

)
SSD

in Equation (8) is forest dislocation hardening. The other term
(
∂σT
∂ε

)
GND

in
Equation (8) results from back stress hardening. According to the experimental observations [34],
some sub-boundaries can be crucified to geometrically necessary boundary (GNB) which plays as
obstacles to dislocation-slip like a grain boundary. GNBs help to the improvement of strength. Because
the constraint and mechanical incompatibility [35] between different layers are produced in AZ31B
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with gradient dislocation density, the GNDs are associated with the back stress hardening [36]. The
additional strain hardening property delays the deformation localization during tensile deformation.
This explains the enhanced fracture strain of AZ31B after pure torsion (Figure 3).

Substituting the values of material parameters (Table 2), referred to [19,37], into Equations (1)–(6),
the dislocation density distributions for AZ31B processed by different deformation modes can be
obtained. The effective plastic strain field is homogeneous distribution in AZ31B bar processed by
ECAP [11]. Using Runge-Kutta method [38], ordinary differential equation (ODE) (1) can be solved in
the following forms: 

ρi+1 = ρi +
h
6 (K1 + 2K2 + 2K3 + K4)

K1 = M
(

1
bΛ + k1

√
ρi − k2ρi

)
K2 = M

[
1

bΛ + k1

√
ρi +

hK1
2 − k2

(
ρi +

hK1
2

)]
K3 = M

[
1

bΛ + k1

√
ρi +

hK2
2 − k2

(
ρi +

hK2
2

)]
K4 = M

[
1

bΛ + k1
√
ρi + hK3 − k2(ρi + hK3)

]
. (9)

In Equation (9), h is the increment step size of effective plastic strain. N is defined as the number
of total calculation steps. Variable i ranges from 1 to N − 1. For ECAP, ε1 = 0, εN = 0.6, ρ1 = ρ0, and
ρN = ρE. Here, N was chosen to be 10,000 to reduce the calculation error. The increment step size of
effective plastic strain h is equal to 6 × 10−5. Based on Equation (9) and the initial values, the dislocation
density of AZ31B processed by ECAP ρE is shown as blue dash line in Figure 9.

According to Equation (3), the effective plastic strain is related with the distance departing from
the center of bar. The radius of 2.4 mm is assumed to be divided into n − 1 equal parts. Variable j
ranges from 1 to n. r1 and rn are, respectively, equal to 0 and 2.4 mm. Then, variable r j is equal to
2.4 ( j− 1)/(n− 1). Based on Equation (3), the effective plastic strain ε j in the position with the radius
of r j is as follows:

ε j =
160π( j− 1)
√

3(n− 1)
. (10)

It is derived from Equation (10) that ε1= 0 and εn = 160π/
√

3. The effective plastic strain field is
gradient distribution in AZ31B bar processed by pure torsion. Equation (1) illustrates that SSD density
after pure torsion is directly determined by the effective plastic strain ε j. Runge–Kutta method [38]
was employed again to solve Equation (1) in the condition of the effective plastic strain ε j. The number
of total calculation steps N is also 10,000. For pure torsion, ε j

1 = 0, ε j
N = ε j, ρ j

1 = ρ0, and ρ j
N = ρS(r).

The corresponding increment step size of effective plastic strain h j is given by:

h j =
160π( j− 1)
√

3(n− 1)N
. (11)

The SSD density in AZ31B bar processed by pure torsion can be calculated by the
following equations: 

ρ
j
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In Equation (12), i ∈ [1, N] and j ∈ [1, n]. Combining Equations (11) and (12), SSD density in AZ31B,
processed by pure torsion ρS(r), is obtained by calculating ρ j

N. ρS(r) plus ρG gives the dislocation
distribution in AZ31B processed pure torsion, which is illustrated by the red line in Figure 9. The
dislocation density of AZ31B processed by ECAP is higher than that of the initial workpiece. This
explains the higher yield strength in Figure 3. As for AZ31B processed by pure torsion, the strain
gradient induces the gradient of dislocation density. Compared with the initial workpiece, AZ31B
processed by pure torsion possesses higher mean dislocation density and the dislocation density
gradient. The high yield strength and high ductility of AZ31B in Figure 3 are attributed to the
combination of high dislocation density and dislocation density gradient.

Table 2. Material parameters for AZ31B.

Parameters Notation Value Source

Shear modulus G 17 GPa Literature from [19]
Initial dislocation density ρ0 5 × 1013 m−2 Literature from [19]

Taylor factor M 3.06 Literature from [19]
Magnitude of Burgers vector b 1.29 × 10−10 m Literature from [19]

Dislocation storage rate k1 1.4 × 108 m−1 Literature from [19]
Dynamic recovery rate k2 8.6 Literature from [19]
Grain size of workpiece Λ 50 µm Experiment in Figure 1a

Yield stress of workpiece σ0 105 MPa Experiment in Figure 3
Diameter of bar d 4.8 mm Materials in experiments

Coefficient in Equation (2) β 0.5 Literature from [37]
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The beginning of deformation localization under compression is predicted well by the work
hardening coefficient γ [39]:

γ =
∂σ
σ∂ε

, (13)

where σ is the compressive true stress and ε is the compressive true strain. If γ > 1, deformation
localization happens during the compression loading process. Based on the experimental data in
Figure 3, the compressive true stress vs. compressive true plastic strain curves are shown in Figure 10a
and the corresponding work hardening coefficients are illustrated in Figure 10b. The strain for flow
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localization of AZ31B processed by ECAP is less than that of initial AZ31B. The strain for flow
localization of AZ31B processed by pure torsion is nearly the same as that of initial workpiece. As
shown in Figure 10b, the good work hardening property can lead to the large fracture strain. According
to Equations (7) and (8), the method of imposing strain gradient on materials is valid to improve the
ductility of magnesium alloy.
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Figure 10. (a) Compressive true stress vs. compressive true plastic strain curves for AZ31B processed
by different deformation modes; (b) work hardening coefficient vs. compressive true plastic strain
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5. Conclusions

In this work, magnesium alloy AZ31B bars were processed by two types of plastic deformation
technology, i.e., equal channel angular pressing (ECAP) at the effective plastic strain of 0.6 and
pure torsion at the radian of 10π. The mechanical properties of AZ31B bars processed by different
deformation modes were compared. The microstructures were characterized to reveal their effects on
the mechanical properties. The following conclusions can be summarized:

(1) Compared with the initial workpiece, AZ31B processed by ECAP possesses higher yield strength
but less ductility; however, AZ31B processed by pure torsion has a higher yield strength with no
sacrifice of ductility.

(2) Microstructural observations show that the high strength and high ductility of AZ31B processed
by pure torsion can be attributed to the inhomogeneous microstructures, i.e., the gradient of
dislocation density combined with dislocation glide and dislocation networks.

(3) Theoretical analyses reveal that plastic deformation leads to the accumulation of statistically
stored dislocations (SSDs) and geometrically necessary dislocations (GNDs) result from strain
gradient during pure torsion. SSDs help to improve yield strength and GNDs can enhance
the ductility by introducing extra work hardening. The combination of SSD and GND can
simultaneously improve the strength and ductility of magnesium alloy.
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Appendix A

Here, a method based on the literature [40] was used to measure the dislocation density. The
projected length of dislocation lines (lp) in TEM image was measured by means of image analysis
technology. Assuming the dislocations are randomly oriented, the dislocation density is given by:

ρ =
4lp

Atπ
. (A1)

In Equation (A1), ρ is dislocation density, the volume of observed region is determined by
multiplying the area (A) by the sample thickness (t). In TEM image of Figure A1a, at least five different
regions were chosen to measure the dislocation density. Substituting the length of dislocation lines
(lp) measured in Figure A1c into Equation (A1), the dislocation density was obtained. The mean
dislocation density of at least five different regions was calculated to determine the dislocation density
of Figure A1a.
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