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Abstract: A stochastic material point method is proposed for stochastic analysis in non-linear
dynamics of metals with varying random material properties. The basic random variables are
parameters of equation of state and those of constitutive equation. In conjunction with the
material point method, the Taylor series expansion is employed to predict first- and second-moment
characteristics of structural response. Unlike the traditional grid methods, the stochastic material
point method does not require structured mesh; instead, only a scattered cluster of nodes is required in
the computational domain. In addition, there is no need for fixed connectivity between nodes. Hence,
the stochastic material point method is more suitable than the stochastic method based on grids,
when solving dynamics problems of metals involving large deformations and strong nonlinearity.
Numerical examples show good agreement between the results of the stochastic material point
method and Monte Carlo simulation. This study examines the accuracy and convergence of the
stochastic material point method. The stochastic material point method offers a new option when
solving stochastic dynamics problems of metals involving large deformation and strong nonlinearity,
since the method is convenient and efficient.

Keywords: metals; stochastic material point method; non-linear dynamics; stochastic analysis

1. Introduction

The traditional grid methods have been successfully employed for several decades in engineering
practice but has limitations when the considered non-linear dynamics problem of metals involves
large deformation, such as hyper-velocity impact and explosion, due to distortions in the mesh when
implementing a Lagrangian approach. The deformation of the grids can lead to numerical inaccuracies
or even render the calculation impossible [1,2]. To overcome these difficulties, a great number of
meshless methods—such as the smoothed particle hydrodynamics method [3,4], the diffuse element
method [5], the element-free Galerkin method [6,7], partition of unity [8], the reproducing kernel
particle method [9,10], the cracking particles [11], the dual-horizon peridynamics [12,13] and the
material point method (MPM) [14–16]—have been proposed and developed in recent years to solve
non-linear dynamics problems of metals [17,18].

Among these methods, MPM shows many advantages in tension stability and efficiency [19–22].
Compared with the traditional grid methods, MPM is specifically intriguing because of its simplicity,
which have proven useful for solving solid mechanics problems involving large deformation and
strong nonlinearity, such as hyper-velocity impact and explosion. [23–27]. MPM can be classified
as a meshless method, inheriting the advantages of both Eulerian and Lagrangian methods. Hence,
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MPM avoids the mesh distortion in the Lagrangian methods and the convection problems in the
Eulerian methods [28,29]. To date, MPM and its extensions have been applied successfully to explosion
problems [30], impact and penetration problems [1,31,32], fluid-solid interaction problems [33,34] and
so on. However, all of the developments in MPM have so far focused on deterministic problems.
Probabilistic models using MPM have not received much attention. Furthermore, the stochastic
analysis of non-linear dynamics problem involves large deformation and strong nonlinearity, such as
hyper-velocity impact and explosion; depends mainly on Monte Carlo simulation, which has
disadvantages of low calculating efficiency; and is not naturally suitable for complex engineering
practice [35]. Hence, high-efficiency stochastic analysis involving MPM provides a rich, relatively
unexplored field for future research [36].

This paper proposes a stochastic material point method (SMPM) for stochastic analysis in non-linear
dynamics metal structure with varying random material properties. The samples of basic random
variables are parameters of equation of state and those of constitutive equation. In conjunction with
the MPM, the Taylor series expansion is employed to predict first- and second-moment characteristics
(mean and variance) of structural response. Two numerical examples based on non-linear problems of
steel are carried out to examine the accuracy and convergence of the proposed method.

2. Stochastic Material Point Method

The main idea of the SMPM is to introduce the stochastic theory into MPM to make stochastic
analysis of non-linear dynamics. Thus, the SMPM has similar features to MPM. In the SMPM,
the continuum body is divided into a set of Np infinitesimal mass elements and these infinitesimal
mass elements are represented by a finite collection of material particles, as shown in Figure 1.
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Figure 1. The discrete schematic diagram of the SMPM.

The governing equations of continuous materials are standard conservation equations for mass
and momentum

dρ

dt
+ ρ∇ · v = 0 (1)

ρ
dv
dt

= ∇ · σ+ ρb (2)

where ρ is the mass density, v is the velocity, σ is the Cauchy stress tensor and b is the body force per
unit mass.

The key steps for SMPM, of which includes the coupling between MPM module and stochastic
module and the return of the needed response quantities are illuminated in Figure 2. The following
detailed steps are performed at each time step increment ∆t:
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Figure 2. Schematic representation of the SMPM.

The first step is to input initial physical variables and at the same time, random variables are
passed to the MPM module from the stochastic module.

The second step is mapping velocity and mass of the particles to the background grid nodes with
the shape functions. The concrete forms are

vt
i =

Np

∑
p = 1

vt
pNi

(
xt

p

)
. (3)

mt
i =

Np

∑
p = 1

mpNi

(
xt

p

)
(4)

where xt
p is the position vector of the particle at time t, vt

i is the nodal velocity at time t, vt
p is the

particle velocity at time t, Ni is the shape function for node i, mt
i is the nodal mass at time t and mp is

the particle mass.
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The third step is calculating the nodal forces, the internal force vector fint,t
i and the external force

vector f ext,t
i . The concrete forms are

fint,t
i = −

Np

∑
p = 1

mp

ρt
p
σt

p∇Ni

(
xt

p

)
. (5)

fext,t
i = −

Np

∑
p = 1

mp∇Ni

(
xt

p

)
bt

p +
∫

Γτ

τ · Ni

(
xt

p

)
ds (6)

where τ is the vectors of prescribed surface traction, Γτ is the stress boundary condition, ρt
p.is the

density of the material particle at time t, σt
p is the stress tensor of the material particle at time t and bt

p
is the body force of the material particle at time t.

The forth step is solving the momentum equation in the background grid nodes. The concrete
form is

Pt+1
i = Pt

i +
(

fext,t
i + fint,t

i

)
∆t (7)

where Pt
i is the momentum of the node at time t and Pt+1

i .is the momentum of the node at time t + 1.
The fifth step is to map the information from the background grid nodes back to the material

particles. The velocity and displacement vectors of the material particles are mapped from the
background grid nodes.

For history-dependent materials, it is convenient to carry strain and stress as well as history
variables along with the material particles. Hence, the sixth step is to update the state of the material
particles. The information of strain and stress can be updated with the constitutive equation and
equation of state and the variables of strain, stress and pressure will be discussed in Section 3.
Meanwhile, the first-order and second-order derivative of the response quantities are calculated
and passed to the stochastic module from the MPM module. Then, the mean and variance of the
response quantities are calculated in the stochastic module and the content of random analysis will be
presented in Section 4.

The seventh step is to update the feature size and density of the material particles. The concrete
forms are

lt+1
pj = lt

pj
(
1 + ∆ε jj

)
, (j = x, y, z) (8)

ρk+1
p =

1(
1 + ∆εxx + ∆εxx + ∆εyy + ∆εzz

) (9)

where lt
pj is feature size of the material particle at time t in the direction j, lt+1

pj is feature size of the

material particle at time t + 1 in the direction j, ∆εjj is the strain increment in the direction j and ρk+1
p

is the density of the material particle at time t + 1.
The eighth step is resetting the background grid elements to the original undeformed state.
This completes the computational cycle of a time step. Repeat steps 2–8 until the time has

advanced to the desired value.

3. Material Property Equations

3.1. Equation of State

One century ago, Mie [37] and Grüneisen [38] developed a theory for metals which concluded
that the pressure could be considered as a linear function of internal energy. The name Mie-Grüneisen
is now associated to an equation of state which verifies this assumption. The Mie-Grüneisen equation
of state is conveniently couched in an enthalpy framework, which contains two states of the materials
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defined by the index µ. And µ > 0 represents the compressed state, µ < 0 represents the expanded state.
The concrete form is

p∗ =
ρ0C2µ[1+(1−γ0

2 )µ−
a
2µ

2][
1−(S1−1)µ−S2

µ2
µ+1−S3

µ3

(µ+1)2

]2 + (γ0 + aµ)e (µ > 0)

p∗ = ρ0C2µ+ (γ0 + aµ)e (µ < 0)

(10)

where p∗ is the pressure of a metal, S1, S2, S3, γ0 and a are constants, ρ0 is the original value of the
density and e is the internal energy of a metal. The index µ is defined as µ = ρ

ρ0
− 1.

3.2. Constitutive Equation

In general, the response of metals under high-speed impact conditions involves consideration of
effects of strain, strain rate and temperature. The Johnson-Cook plasticity model [39–41] is employed
to model the flow stress behavior of ductile materials. The Johnson-Cook model represents the Von
Mises flow stress σy as a function of some parameters as follows

σy = (A + Bεn
P)
(

1 + C ln
.
ε
∗
P

)
(1− T∗m) (11)

where εP is equivalent plastic strain,
.
ε
∗
P is equivalent plastic strain rate, A, B, C and m are constants,

n is strain hardening exponent and T∗ is homologous temperature defined as

T∗ =
T − Troom

Tmelt − Troom
(12)

where T is the material temperature, Tmelt is the melting temperature and Troom is the room
temperature.

3.3. Von Mises Elastic-Plastic Material Model

Von Mises yield model can be used to describe the plastic behavior of metal materials [42]. The Von
Mises elastic-plastic model can be used to describe deviatoric stress update procedure and the radial
return mapping can be used at the same time. Under the assumption that the metal materials are in
elastic state, the trial deviatoric stress tensor ∗Sn+1

ij can be calculated by

∗Sn+1
ij = SRn

ij + 2G∆ε′ ij (13)

where ∆ε′ ij is increment of the deviatoric strain, SRn

ij is the deviatoric stress tensor after the rotation,
the superscript n is the previous iteration step at the same time step and the superscript n + 1 is the
current iteration step at the same time step.

At this moment, the trial Von Mises flow stress ∗σn+1
eq can be calculated by

∗σn+1
eq =

(
3
2
∗Sn+1

ij
∗Sn+1

ij

) 1
2

(14)

If the following condition holds ∗σn+1
eq < σn

y , the deviatoric stress is in the yield surface. And the
trial deviatoric stress tensor acts as the deviatoric stress tensor Sn+1

ij = ∗Sn+1
ij .

If the following condition holds ∗σn+1
eq > σn

y , the deviatoric stress is beyond the yield surface.
Therefore, ∗Sn+1

ij should be reduced scale representation with the purpose of making it in the yield
surface, the concrete form as follows

Sn+1
ij = m∗Sn+1

ij (15)
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where the coefficient m can be calculated as

m =
σn+1

y
∗σn+1

eq
(16)

Considering Equations (13) and (15), the plastic strain increment ∆εp
ij can be calculated as

∆εp
ij =

∗Sn+1
ij − Sn+1

ij

2G
=

1−m
2G

(17)

Considering Equations (14) and (16), the equivalent plastic strain increment is

∆εp =

(
2
3

∆εp
ij∆ε

p
ij

) 1
2
=
∗σn+1

eq − σn+1
y

3G
(18)

The flow stress of Von Mises isotropic hardening materials can be updated by

σn+1
y = σn

y + H∆εp (19)

where H is the plastic modulus.
By substituting of Equations (17) and (20) into Equation (18), the equivalent plastic strain

increment can be calculated by

∆εp =
∗σn+1

eq − σn
y

3G + H
(20)

In a word, the calculation procedures of Von Mises elastic-plastic material model are summarized
as follows

1. Calculate the trial deviatoric stress tensor ∗Sn+1
ij and the trial Von Mises flow stress ∗σn+1

eq .

2. If the condition ∗σn+1
eq > σn

y holds, the equivalent plastic strain increment can be calculated by
Equation (20). Otherwise, the materials have no plastic deformation.

3. Update equivalent plastic strain by εn+1
p = εn

p + ∆εp.

4. Update flow stress by Equation (19), get σn+1
y .

5. Calculate the coefficient m with the new flow stress σn+1
y by Equation (16) and update the

deviatoric stress which satisfies the condition in the yield surface with the radial return mapping.

4. Random Method

4.1. The Basic Random Variables and Random Response

To introduce random parameters to describe the random characteristics of materials is one of the
most important factors in stochastic analysis. The random parameters include parameters of equation
of state, constitutive equation and those introduced to establish stochastic modeling by defining basic
random variables X = [x1 . . . , xk, . . . xn]

T . Therefore, information for random variables must be
provided, such as the mean E(xk) = µk(k = 1, 2 . . . n), the variance D(xk) = σk(k = 1, 2 . . . n) and
the correlation coefficient between two random variables ρkj.

The direct solution of structural response is challenging, as it comprises multidimensional integral
and the structural response is denoted by Y = f (x1 . . . , xk, . . . xn). A possible solution to overcome
this issue is approximating the structural response via an expression that is an explicit function
of the basic random variables. Consequently, introducing the powerful technique of expansion is
necessary to calculate first- and second-moment characteristics (mean and variance) of structural
response [43], such as, Neumann series expansion [44], polynomial chaos expansion [45] and Taylor
series expansion [46–48]. It is the first attempt to apply MPM in the field of stochastic analysis and
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this study is focused on applying the new method in stochastic mechanics and thus, Taylor series
expansion has been employed because of its simple and convenient.

In order to calculate the approximation for first-moment of the structural response, assume
Y is expressed in terms of its corresponding second order Taylor series expansion about the point
X = [µ1 . . . ,µk, . . .µn]

T . The concrete form is calculated as follows

Y = f (µ1 . . . ,µk, . . .µn) +
n
∑

k = 1

∂Y
∂xk

∣∣∣
X
(xk − µk) +

1
2

n
∑

k = 1

n
∑

j = 1

∂2Y
∂xk∂xj

∣∣∣
X
(xk − µk)

(
xj − µj

)
+ R2(x1 . . . , xk, . . . xn)

(21)
where R2(x1 . . . , xk, . . . xn) is the remainder of second order Taylor series expansion.

Magnitude analysis proved that the remainder has a relatively weak intensity compared to the
first-three terms of Taylor series expansion and hence, the influence of the remainder on deformation
of the structure can be neglected. Calculating the mean of both sides of Equation (21) gives the mean
of the structural response as follows

E[Y] = f (µ1 . . . ,µk, . . .µn) +
1
2

n

∑
k = 1

n

∑
j = 1

∂2Y
∂xk∂xj

∣∣∣∣∣
X

σkσjρkj (22)

In a similar way, in order to calculated the approximation for the second-moment characteristics
of structural response, assume Y is expressed in terms of its corresponding first order of the Taylor
series expansion about the point X = [µ1 . . . ,µk, . . .µn]

T . The concrete form is calculated as follows

Y = f (µ1 . . . ,µk, . . .µn) +
n

∑
k = 1

∂Y
∂xk

∣∣∣∣
X
(xk − µk) + R1(x1 . . . , xk, . . . xn) (23)

where R1(x1 . . . , xk, . . . xn) is the remainder of first order Taylor series expansion.
Similarly, the variance of the structural response can be calculated by

D[Y] =
n

∑
k = 1

n

∑
j = 1

∂Y
∂xk

∣∣∣∣∣
X

∂Y
∂xj

∣∣∣∣∣
X

σkσjρkj (24)

The Taylor series expansion is applied to stochastic analysis while meeting certain conditions.
If the variation coefficient is less than about 0.2 or 0.3, a better approximation can be obtained by using
the first-two terms of the Taylor series expansion. Further, the condition is widened in approximation
by using the first-three terms of the Taylor series expansion [49]. The first-moment characteristics
of structural response can be obtained through the first-three term of the Taylor series expansion;
correspondingly, the second-moment characteristics can be obtained from the first-two terms of the
Taylor series expansion. Additionally, probabilistic convergence studies of second order stochastic
perturbation technique show that the second order method cannot be used for the coefficient of
variation larger than 0.15 to determine efficiently higher order statistics [43,50–53]. To avoid the
obvious errors, a variation coefficient of no larger than 0.15 is selected for this paper. Meanwhile,
through comparison with the Monte Carlo method, the reasonableness and correctness of the Taylor
series expansion described in this paper will be proved through two concrete instances in Section 5.

Substituting concrete forms into Equation (22) and (24), then we can reach the stochastic structural
response after rearranging.

Considering Equation (10) in Section 3.1, the mean and variance of the pressure can be
calculated by

E[p∗] = f (µ1 . . . ,µk, . . .µn) +
1
2

n

∑
k = 1

n

∑
j = 1

∂2 p∗

∂xk∂xj

∣∣∣∣∣
X

σkσjρkj (25)
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D[p∗] =
n

∑
k = 1

n

∑
j = 1

∂p∗

∂xk

∣∣∣∣∣
X

∂p∗

∂xj

∣∣∣∣∣
X

σkσjρkj (26)

Considering Equation (11) in Section 3.2 and the relationship between σy and Sij in Section 3.3,
the mean and variance of the equivalent plastic stress and the deviatoric stress can be calculated by

E
[
σy

]
= f (µ1 . . . ,µk, . . .µn) +

1
2

n

∑
k = 1

n

∑
j = 1

∂2σy

∂xk∂xj

∣∣∣∣∣
X

σkσjρkj (27)

D
[
σy
]
=

n

∑
k = 1

n

∑
j = 1

∂σy

∂xk

∣∣∣∣∣
X

∂σy

∂xj

∣∣∣∣∣
X

σkσjρkj (28)

E
[
Sij
]
=

∗Sn+1
ij√

3
2
∗Sn+1

ij
∗Sn+1

ij

3G
3G + H

E
[
σy

]
+

H
3G + H

∗Sn+1
ij (29)

D
[
Sij
]
=

2
3

(
3G

3G + H

)2
D
[
σy

]
(30)

where E[·] is the operation of the mean, D[·] is the operation of the variance.

4.2. The First-Order and Second-Order Derivatives of the Response Quantities

The first- and second-order derivatives of the response quantities with respect to the random input
parameters are involved in Equations (25–28). The estimation of these derivatives is a key problem in
stochastic analysis, which is discussed as follows. Suppose the parameters of Mie-Grüneisen equation
of state model and those of Johnson-Cook plasticity model are random variables, such as S1, S2, S3, γ0,
a, A, B, C, m and n.

If µ > 0, the derivatives in Equations (25) and (26) can be calculated by



∂p∗
∂S1

∂p∗
∂S2

∂p∗
∂S3

∂p∗
∂γ0

∂p∗
∂a

∂2 p∗

∂S2
1

∂2 p∗
∂S1∂S2

∂2 p∗
∂S1∂S3

∂2 p∗
∂S1∂γ0

∂2 p∗
∂S1∂a

∂2 p∗
∂S2∂S1

∂2 p∗

∂S2
2

∂2 p∗
∂S2∂S3

∂2 p∗
∂S2∂γ0

∂2 p∗
∂S2∂a

∂2 p∗
∂S3∂S1

∂2 p∗
∂S3∂S2

∂2 p∗

∂S2
3

∂2 p∗
∂S3∂γ0

∂2 p∗
∂S3∂a

∂2 p∗
∂γ0∂S1

∂2 p∗
∂γ0∂S2

∂2 p∗
∂γ0∂S3

∂2 p∗

∂γ2
0

∂2 p∗
∂γ0∂a

∂2 p∗
∂a∂S1

∂2 p∗
∂a∂S2

∂2 p∗
∂a∂S3

∂2 p∗
∂a∂γ0

∂2 p∗

∂a2


=



2B1
2µB1
(µ+1)

2µ2B1
(µ+1)2 − B2+2e

2 −µB2+2µe
2

µB3
6µ2B3
(µ+1)

6µ3B3
(µ+1)2 −µB4 −µ2B4

6µ2B3
(µ+1)

6µ3B3
(µ+1)2

6µ4B3
(µ+1)3 − µ2B4

(µ+1) − µ3B4
(µ+1)

6µ3B3
(µ+1)2

6µ4B3
(µ+1)3

6µ5B3
(µ+1)4 − µ3B4

(µ+1)2 − µ4B4
(µ+1)2

−µB4 − µ2B4
(µ+1) − µ3B4

(µ+1)2 0 0

−µ2B4 − µ3B4
(µ+1) − µ4B4

(µ+1)2 0 0


(31)

where B1, B2, B3 and B4 are defined as follows

B1 =
ρ0C2µ2[1+(1−γ0

2 )µ−
a
2µ

2][
1−(S1−1)µ−S2

µ2
µ+1−S3

µ3

(µ+1)2

]3 B2 = ρ0C2µ2[
1−(S1−1)µ−S2

µ2
µ+1−S3

µ3

(µ+1)2

]2

B3 =
ρ0C2µ2[1+(1−γ0

2 )µ−
a
2µ

2][
1−(S1−1)µ−S2

µ2
µ+1−S3

µ3

(µ+1)2

]4 B4 = ρ0C2µ2[
1−(S1−1)µ−S2

µ2
µ+1−S3

µ3

(µ+1)2

]3

(32)
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If µ < 0, the derivatives in Equations (25) and (26) can be calculated by

∂p∗
∂S1

∂p∗
∂S2

∂p∗
∂S3

∂p∗
∂γ0

∂p∗
∂a

∂2 p∗

∂S2
1

∂2 p∗
∂S1∂S2

∂2 p∗
∂S1∂S3

∂2 p∗
∂S1∂γ0

∂2 p∗
∂S1∂a

∂2 p∗
∂S2∂S1

∂2 p∗

∂S2
2

∂2 p∗
∂S2∂S3

∂2 p∗
∂S2∂γ0

∂2 p∗
∂S2∂a

∂2 p∗
∂S3∂S1

∂2 p∗
∂S3∂S2

∂2 p∗

∂S2
3

∂2 p∗
∂S3∂γ0

∂2 p∗
∂S3∂a

∂2 p∗
∂γ0∂S1

∂2 p∗
∂γ0∂S2

∂2 p∗
∂γ0∂S3

∂2 p∗

∂γ2
0

∂2 p∗
∂γ0∂a

∂2 p∗
∂a∂S1

∂2 p∗
∂a∂S2

∂2 p∗
∂a∂S3

∂2 p∗
∂a∂γ0

∂2 p∗

∂a2


=



0 0 0 e µe
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


(33)

The derivatives in Equations (27) and (28) can be calculated by

∂σy
∂A

∂σy
∂B

∂σy
∂C

∂σy
∂n

∂σy
∂m

∂2σy
∂A2

∂2σy
∂A∂B

∂2σy
∂A∂C

∂2σy
∂A∂n

∂2σy
∂A∂m

∂2σy
∂B∂A

∂2σy
∂B2

∂2σy
∂B∂C

∂2σy
∂B∂n

∂2σy
∂B∂m

∂2σy
∂C∂A

∂2σy
∂C∂B

∂2σy
∂C2

∂2σy
∂C∂n

∂2σy
∂C∂m

∂2σy
∂n∂A

∂2sy
∂n∂B

∂2σy
∂n∂C

∂2σy
∂n2

∂2σy
∂n∂m

∂2σy
∂m∂A

∂2σy
∂m∂B

∂2σy
∂m∂C

∂2σy
∂m∂n

∂2σy
∂m2



=



C2C3 εn
pC2C3 C1C3 ln

.
ε
∗
p Bεn

pC2C3 ln εp −T∗mC1C2 ln T∗

0 0 C3 ln
.
ε
∗
p 0 −T∗mC2 ln T∗

0 0 εn
pC3 ln

.
ε
∗
p εn

pC2C3 ln εp −εn
pT∗mC2 ln T∗

C3 ln
.
ε
∗
p εn

pC3 ln
.
ε
∗
p 0 Bεn

pC3C5 −T∗mC1C4

0 εn
pC2C3 ln εp Bεn

pC3C5 0 −Bεn
pT∗mC2C6

−T∗mC2 ln T∗ −εn
pT∗mC2 ln T∗ −T∗mC1C4 −Bεn

pT∗mC2C6 0



(34)

where C1, C2, C3, C4, C5 and C6 are defined as follows

C1 = A + Bεn
P, C2 = 1 + C ln

.
ε
∗
P, C3 = 1− T∗m, C4 = ln

(
T∗ +

.
ε
∗
P

)
, C5 = ln

(
εP +

.
ε
∗
P

)
, C6 = ln(T∗ + εP)

(35)

5. Results and Discussion

Two numerical examples based on steel with different stochastic parameters under explosive
force are presented, in which the determined values of the parameters for steel are employed according
to ref. [54]. These examples involve not only large deformation but also multi-field coupling, in which
the uncertain parameters are all subject to normal distribution. In the first example, the uncertain
parameters are the Mie-Grüneisen equation of state with respect to parameters S1, S2, S3, γ0 and a.
In the second example, the uncertain parameters are the Johnson–Cook parameters A, B, C, m and
n. The probability distribution and correlation structure of the random properties should be defined
through experimental measurements. However, in most cases, it is difficult to obtain the random
material properties via experimental measurements. Hence, due to the lack of relevant experimental
data, assumptions are made regarding these probabilistic characteristics. The Gaussian assumption is
often used due to its simplicity and the lack of relevant experimental data in lots of research [35,55–58]
and thus, it is adopted in this study because the focus of this paper is stochastic analysis in non-linear
dynamics problem of metals with the SMPM. In practical applications, dependent random variables
are often generated by some transformation of independent random variables, so it is assumed without
much loss of generality that the components of the random variables, which mentioned in this study,
are independent [59]. Hence, the correlation coefficient between two random variables ρkj is 0.
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Both the stochastic material point method and Monte Carlo simulation are used to calculate
the mean and variance of structural response. Monte Carlo simulation is used as a validation tool.
Notably, Monte Carlo simulation requires generating N random samples to guarantee result precision.
Estimating N is based on the relationship between the confidence interval and sample size [60,61].
Hence, with 95% confidence degree, the sample size is 10000, which can meet the precision requirement
of the two numerical examples. All calculations are processed on a personal computer with a 3.30 GHz
processer and 8 GB of RAM. The calculated results are described as follows.

5.1. Example 1: The Uncertain Parameters are the State Equation Parameters

The computational domain is full of water with 2 m × 2 m × 2 m dimensions. A thick steel plate
of 2 m × 2 m × 0.06 m dimensions is mounted within the domain, with the clamped edge condition
assumed. TNT is a cuboid of 0.08 m × 0.08 m × 2 m dimensions and mounted on one side of the plate.
Because of symmetry, the analogy model can be further simplified as a 2D planar model, as shown in
Figure 3. To better monitor the stochastic response, two points, E and F, of the plate are chosen. Table 1
shows the locations of points E and F of the plate. The situations of the coefficient of variation (C.V)
0.01 and 0.05 are under consideration and the values of the parameters are given in Table 2.
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Table 1. The locations of two viewpoints for example1.

Location E F

Coordinates (4.0 cm, 0.0 cm) (6.0 cm, 0.0 cm)

Table 2. The values of Mie-Grüneisen equation of state parameters for steel in example 1.

Parameters Determined Value Mean
Standard Deviation

C.V = 0.01 C.V = 0.15

S1 1.49 1.49 0.0149 0.2235
S2 0.0 0.0 0.0 0.0
S3 0.0 0.0 0.0 0.0
γ0 2.17 2.17 0.0217 0.3255
a 0.46 0.46 4.6 × 10−3 0.069

Particles distribution at the end time is shown in Figure 4. The result shows the characteristics
of large deformation and multi-field coupling. Using the proposed stochastic material point method,
the mean and variance of the pressure p∗ at E and F with C.V = 0.01 and C.V = 0.05 are calculated.
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The results of Monte Carlo simulation using 10000 samples are calculated in order to validate the
accuracy of the proposed stochastic material point method. The comparative results of the two methods
are shown in Figures 5 and 6. A good agreement is obtained between the results of the stochastic
material point method and Monte Carlo simulation. The results show the new method can well solve
the stochastic analysis of metal structure involving large deformation and multi-field coupling.
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time for the stochastic material point method is 138 s and the Monte Carlo simulation is 1297762 s. 

Figure 5. Pressure p∗ response of location E by various methods with C.V = 0.01 and C.V = 0.05:
(a) Mean of pressure p∗ with C.V = 0.01; (b) Variance of pressure p∗ with C.V = 0.01; (c) Mean of
pressure p∗ with C.V = 0.05; (d) Variance of pressure p∗ with C.V = 0.05.

Table 3 counts the computing time of the stochastic material point method and Monte Carlo
simulation with C.V = 0.01 and the comparative result of the two methods shows that the computing
time for the stochastic material point method is 138 s and the Monte Carlo simulation is 1297762 s.
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Compared with Monte Carlo simulation, computing time of the SMPM save more than 99%;
the computation efficiency of the new method is greatly increased.
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Figure 6. Pressure p∗ response of location F by various methods with C.V = 0.01 and C.V = 0.05:
(a) Mean of pressure p∗ with C.V = 0.01; (b) Variance of pressure p∗ with C.V = 0.01; (c) Mean of
pressure p∗ with C.V = 0.05; (d) Variance of pressure p∗ with C.V = 0.05.

Table 3. Computing time of the methods (example 1, C.V = 0.01).

Method Grid Numbers Particle Numbers Computing Time

Monte Carlo 160,000 160,000 1,297,762 s
SMPM 160,000 160,000 138 s

5.2. Example 2: The Uncertain Parameters are the Constitutive Equation Parameters

The computational domain is full of water with 2 m × 2 m × 2 m dimensions. A thin steel plate
of 2 m × 2 m × 0.02 m dimensions is mounted within the domain, with the clamped edge condition
assumed. TNT is a cuboid of 0.08 m × 0.08 m × 2 m dimensions and the geometric center of the
cube is the origin of coordinates. The cuboid of TNT is mounted on one side of the plate. Because
of symmetry, only one section of the computing model is considered for the analysis, as shown in
Figure 7. Four points-H, I, J and K are chosen to monitor the plate’s stochastic response. Table 4 shows
the locations of four points (H, I, J and K) of the plate. The situations of the coefficient of variation (C.V)
0.1 and 0.15 are under consideration. A, B, C, m and n are subject to normal distribution; mean and
standard deviation of the parameters are given in Table 5, respectively.
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Table 4. The locations of two viewpoints for example2.

Location H I G K

Coordinates (4.5 cm, 0.0 cm) (4.5 cm, 3.0 cm) (5.0 cm, 0.0 cm) (5.5 cm, 0.0 cm)
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Table 5. The values of Johnson-Cook plasticity model parameters for steel in example 2.

Parameters Determined Value Mean
Standard Deviation

C.V = 0.1 C.V = 0.15

A (MPa) 792 792 79.2 118.8
B (MPa) 510 510 51.0 76.5

C 0.014 0.014 0.0014 2.1 × 10−3

n 0.26 0.26 0.026 0.039
m 1.03 1.03 0.103 0.1545

Particles distribution at the end time is shown in Figure 8. The result shows the characteristics of
large deformation and multi-field coupling. Using the proposed stochastic material point method, the
mean and variance of the equivalent plastic stress σy at locations H and I with C.V = 0.1 and C.V = 0.15
are calculated, as shown in Figures 9 and 10. At the same time, the deviatoric stress S11, S22 at locations
G with C.V = 0.1 and C.V = 0.15 are calculated and shown in Figures 11 and 12. The results of Monte
Carlo simulation using 10000 samples are also given in these figures. A good agreement is obtained
between the results of the stochastic material point method and Monte Carlo simulation.
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Figure 9. Equivalent plastic stress σy response of location H by various methods with C.V = 0.1 and
C.V = 0.15: (a) Mean of σy with C.V = 0.1; (b) Variance of σy with C.V = 0.1; (c) Mean of σy with
C.V = 0.15; (d) Variance of σy with C.V = 0.15.
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Figure 10. Equivalent plastic stress σy response of location I by various methods with C.V = 0.1 and
C.V = 0.15: (a) Mean of σy with C.V = 0.1; (b) Variance of σy with C.V = 0.1; (c) Mean of σy with
C.V = 0.15; (d) Variance of σy with C.V = 0.15.
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(a) Mean of S11 with C.V = 0.1; (b) Variance of S11 with C.V = 0.1; (c) Mean of S11 with C.V = 0.15;
(d) Variance of S11 with C.V = 0.15.
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In order to better prove the accuracy of the proposed stochastic material point method, the mean
and variance of the response are also counted. The mean and variance of the equivalent plastic stress
σy and the deviatoric stress S11, S22 are shown in Tables 6–8, respectively. The maximum relative error
of the mean is less than 0.3% and the maximum relative error of the variance is about 3%. The results
prove the correctness and accuracy of the proposed stochastic material point method.

Table 6. The mean and variance of the equivalent plastic stress σy.

Location C.V
Mean Variance

Monte Carlo
(×10−2)

SMPM
(×10−2)

Relative
Errors (%)

Monte Carlo
(×10−6)

SMPM
(×10−6)

Relative
Errors (%)

H
0.1 0.91345878 0.91237754 0.12 0.61061724 0.61631472 0.93

0.15 0.91512557 0.91353660 0.17 1.37753594 1.38670813 0.67

I
0.1 0.94050252 0.93940429 0.12 0.62727196 0.62988312 0.42

0.15 0.94204592 0.94042639 0.17 1.41455632 1.41723704 0.19

G
0.1 0.95229046 0.95117980 0.12 0.63159823 0.63391311 0.37

0.15 0.95376624 0.95212650 0.17 1.42320844 1.42630451 0.22

K
0.1 0.92692249 0.92582361 0.12 0.61809317 0.62174278 0.59

0.15 0.92852135 0.92690313 0.17 1.39413861 1.39892126 0.34

Table 7. The mean and variance of the deviatoric stress S11.

Location C.V
Mean Variance

Monte Carlo
(×10−2)

SMPM
(×10−2)

Relative
Errors (%)

Monte Carlo
(×10−6)

SMPM
(×10−6)

Relative
Errors (%)

H
0.1 −0.6301295 −0.6293716 0.12 0.29225172 0.29327005 0.35

0.15 −0.6312935 −0.6301712 0.18 0.65820611 0.65985761 0.25

I
0.1 −0.3286691 −0.3283024 0.11 0.07606357 0.07693130 1.14

0.15 −0.3291897 −0.3286596 0.16 0.17150211 0.17309543 0.93

G
0.1 −0.6628665 −0.6620950 0.12 0.30607402 0.30714616 0.35

0.15 −0.6638928 −0.6627540 0.17 0.68912090 0.69107885 0.28

K
0.1 −0.6529968 −0.6522325 0.12 0.30601019 0.30857383 0.84

0.15 −0.6541126 −0.6529930 0.17 0.69014858 0.69429113 0.60

Table 8. The mean and variance of the deviatoric stress S22.

Location C.V
Mean Variance

Monte Carlo
(×10−2)

SMPM
(×10−2)

Relative
Errors (%)

Monte Carlo
(×10−6)

SMPM
(×10−6)

Relative
Errors (%)

H
0.1 0.39198667 0.39154413 0.11 0.11069985 0.11350495 2.53

0.15 0.39267753 0.39204154 0.16 0.24985084 0.25538614 2.22

I
0.1 0.12396910 0.12390616 0.05 0.01075824 0.01095824 1.86

0.15 0.12408433 0.12404097 0.03 0.02422766 0.02465603 1.77

G
0.1 0.40287346 0.40240417 0.12 0.11283936 0.11345652 0.55

0.15 0.40299641 0.40367725 0.17 0.25450105 0.25527716 0.30

K
0.1 0.37985846 0.37939486 0.12 0.10439505 0.10440881 0.38

0.15 0.38052868 0.37983724 0.18 0.23554921 0.23491981 0.27

In addition, the accuracy of the mean is higher than the variance. The main reason for the accuracy
difference is that different number terms of the Taylor series expansion have been taken to obtain the
approximate computation. In this paper, the first-three terms of the Taylor series expansion are used to
calculate the approximate value of the mean but the first-two terms of the Taylor series expansion are
used to calculated the approximate value of the variance. Hence, the accuracy of the mean is higher
than the variance.

Table 9 records the computing time of the stochastic material point method and Monte Carlo
simulation with C.V = 0.1. Monte Carlo simulation takes 874,579 s and the proposed method takes 93 s.
The speed is hundreds of times as fast as that of Monte Carlo simulation and the computation efficiency
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of the new method is greatly increased. Hence, the SMPM makes it more convenient and efficient to
solve stochastic dynamics problems of metals involving large-scale structure and large deformation.

Table 9. Computing time of the methods (example 2, C.V = 0.1).

Method Grid Numbers Particle Numbers Computing Time

Monte Carlo 84,864 160,000 874,579 s
SMPM 84,864 160,000 93 s

6. Conclusions

A new stochastic material point method is presented for stochastic analysis of nonlinear dynamics
problems of metals. This new method can solve stochastic problems of various random factors,
such as parameters of constitutive relationship and equation of state. In this aspect, the SMPM is
more advanced than other stochastic meshless method which are only applicable for linear problems
involving nothing but elasticity modulus of material properties. Therefore, this new method is more
realistic for demonstrating the stochastic response of metal structure in stochastic dynamic analysis.
To date, MPM has not received enough attention with respect to probabilistic models. Therefore,
the stochastic material point method enlarges the application field of MPM.

This paper presents numerical examples to examine the accuracy and convergence of the
SMPM. Good agreement is observed between the results of the SMPM and Monte Carlo simulation.
Additionally, the computing time of the SMPM is much less than that of Monte Carlo simulation and
the computation efficiency of the SMPM is greatly increased. Furthermore, the proposed stochastic
material point method provides a new method for solving stochastic dynamics problems of metals
involving large deformation and strong nonlinearity, such as hyper-velocity impact and explosion.

It is the first attempt to apply MPM in the field of stochastic analysis and thus some limitations
exist, such as without considering the parameters varying across the space and inapplicability to
complex models due to the limitation of two dimensions. These valuable topics are currently under
development and will be subject of future works.
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