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Abstract: The refining process is one of the essential stages of aluminum production. Its main aim
is to remove hydrogen, that causes porosity and weakens the mechanical and physical properties
of casting aluminum. The process is mainly conducted by purging inert gas through the liquid
metal, using rotary impellers. The geometry of the impellers and the processing parameters, such as
flow rate of gas and rotary impeller speed, influence the gas dispersion level, and therefore the
efficiency of the process. Improving the process, and optimization of parameters, can be done by
physical modelling. In this paper, the research was carried out with the use of a water model of
batch reactor, testing three different rotary impellers. Varied methods were used: visualization,
which can help to evaluate the level of dispersion of gas bubbles in liquid metal; determination of
residence time distribution (RTD) curves, which was obtained by measuring the conductivity of NaCl
tracer in the fluid; and indirect studies, completed by measuring the content of dissolved oxygen
in water to simulate hydrogen desorption. The research was carried out for different processing
parameters, such as flow rate of refining gas (5–25 L·min−1) and rotary impeller speed (3.33–8.33 s−1).
The obtained results were presented graphically and discussed in detail.
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1. Introduction

Undoubtedly, hydrogen is one of the most harmful impurities in liquid aluminum, and its alloys,
due to porosity, which in turn deteriorates the physical and mechanical properties of aluminum
castings [1–3]. Currently, the refining process is becoming one of the most important steps in the
production of primary and secondary aluminum. Although there are various methods used for the
refining process (e.g., chlorine or non-chlorine route, powder injection or purging by gas, stirring by
rotary impeller, and filtering by ceramic foam filters), the process of blowing the melt with refining
gas, mainly argon, seems to be the most popular [4–6]. Its main purpose is to remove hydrogen from
liquid metal, but flotation also enables the elimination of up to 90% of nonmetallic impurities [5,6].
This method of gas injection can be carried out with the use of porous plugs, lances, diffusers, rotating
nozzles and rotary impellers, the latter of which is widely used in aluminum foundries worldwide
because of promising results [7–9]. The idea of this method of refining, is to inject gas bubbles through
the rotary impeller shaft, which, as a result of rotor agitation, can be appropriately small. The mixing of
the small gas bubbles with the liquid metal depend on the geometry of the rotary impeller [10]. The gas
bubble circulation and dispersion, in the aluminum, is one of the most important factors in obtaining a
large gas liquid contact area. Oldshue et al. [11] proposed four different patterns of gas liquid mixture:
(a) flooding or channeling, (b) minimum dispersion, (c) intimate dispersion and (d) uniform dispersion.
The last two cases are promoted most, in order to achieve a good level of hydrogen removal. The flow
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pattern of gas bubble dispersion has been investigated by many researchers: Hsi et al. [12] studied
the sound spectra in a stirred tank using a hydrophone; Warmoeskerken and Smith [13] determined
gas dispersion, based on the gassed power measurement and observation of cavity formation, in a
tank with a disc-turbine; Chen and Zhao [14] analyzed dispersion flow patterns, considering the ratio
of radial force to the buoyancy force, which prevail close to impeller; Chen and Zhao [15] measured
the local pressure fluctuations at points within the gas-liquid mixture; and Chen et al. [16] developed
a non-intrusive method, based on characteristic parameters obtained from the pressure fluctuations
measured on the gas supply line. To sum up, the dispersion flow patterns strongly depend on the
geometry of the rotor impeller and the processing parameters, such as rotary impeller speed and flow
rate of refining gas.

To determine the impact of the above mentioned parameters on the level of gas dispersion,
physical modelling is applied. This method gives good results because of the use of water as a
modeling medium due to availability, low cost, transparency of the model tank and simplicity in
model buildings after meeting geometric, dynamic and kinematic similarities [17,18]. The fulfilment of
such similarities, according to the theory of dimension analysis, are realized based on the equality of
the relevant criterial numbers in the model with the object under study. When designing a physical
model of the refining process, conducted in a refining reactor with rotary impellers, the most important
numbers are: Euler, Reynolds, Froude and Weber [18]. Several physical water models have been
built, and many researchers [19–22] have investigated various factors such as: Design of rotary
impellers [23], gas bubbles ascending velocity [24], vortex formation [25], gas removal kinetics [26],
dispersion levels and the removal of dissolved oxygen from water by refining gases [1,22], and CO2

adsorption [27]. Models can be either reduced scale or full scale; however, there are certain advantages
when using a full-scale model over a reduced scale model [28]. The results of physical modelling
can be mainly divided into: visualization methods, such as level of gas dispersion in the liquids;
measuring techniques, such as the determination of residence time distribution (RTD), by measuring
the conductivity of aqueous solution of some salts (e.g., NaCl); or indirect studies, mainly oxygen
desorption techniques in water, simulating hydrogen desorption [29]. RTD curves can be obtained
experimentally from the impulse concentration response. The concentrated tracer stream is injected into
the liquid metal at a specified time (reference time), and the concentration of tracer in the outlet stream
is obtained [30,31] by measuring the conductivity of the fluid. The RTD curve is the concentration
of the tracer on the tank output as a function of time, and provides important information about the
behavior of the flow gas. It is mainly used in the steel industry to determine the range of transient
zones, and to estimate the share of various types of flow, e.g., in ladles or tundishes [28,32–34]. It is
also possible to apply particle image velocimetry (PIV) technique to obtain flow fields, and to perform
velocity maps and turbulent structure [3,10,21,27,35], or measure the torque of the shaft to determine
the mechanical energy supplied into the ladle [27].

The main goals of this study are to obtain complete information about the blowing process of
aluminum by argon, using the three mentioned methods (study fluid flow patterns by visualization
method, evaluating time of mixing by determining RTD curves, and measuring the content of dissolved
oxygen in water continuously and instantaneously), and evaluate the flow behavior for the new rotary
impeller. RTD analysis is popularly used in the steel industry, so this study should also answer if this
method could be successfully applied in the researching field of rotary impeller degassing process.

2. Materials and Methods

The system under study is presented schematically in Figure 1a, and its dimensions and
characteristics are shown in Table 1 and Figure 1b. The test stand consists of a water tank (Figure 1c)
made of Plexiglas, simulating the URO-200 batch refining model (IMN, Skawina, Poland), control
panel, impeller driver, and measuring apparatus for determining RTD curves. Figure 1b also presents
placement of three conductometers, for measuring the conductivity of the aqueous NaCl solution,
and the location of two sensors, for measuring oxygen desorption from water. The physical model was
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built on a 1:1 scale, according to the theory of similarity. If the results obtained from physical modeling
can be representative, and could be transferred to real conditions, physical models are built according
to strictly defined principles resulting from the theory of similarity. The similarity of physical models
of reactors for aluminum refining requires the preservation of similarity criteria, both geometric and
dynamic, for water and aluminum. In these models, this is accomplished by means of appropriate
criterial numbers. The assumption that the flow in the refining reactor is isothermal and laminar
enables the criterial equation to be written in the following form:

ϕ(Eu, Sl, Fr, Re) = 0 (1)

where Eu—Euler’s number, Sl—Strouhal’s number, Fr—Froude’s number and Re—Reynold’s number.
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Figure 1. Physical modelling test stand: (a) View of the test stand with all elements; (b) a scheme of
the refining model, with marked places of conductometers and fixed oxygen sensors, and the most
important dimensions (in m) of the model; (c) the idea of measuring refining gas dispersion in the
model reactor.

Strouhal’s (Sl) criterion can be excluded because the character of the liquid flow is close to
laminar. Euler‘s (Eu) criterion, which has significance in flows under pressure, can be neglected in
cases of flow in open reactors. In the studied system, the flow is steady and the Reynold’s number
(Re) is in the range of self-modelling. Laminar flows are characterized by small Reynold’s numbers,
whereas turbulent flows are characterized by high Reynold’s numbers, and often transfer from laminar
motion to turbulent motion is rapid, and the limiting values of the Re number are then defined as
critical. In this range of flows, the values of the Re number are changing insignificantly. Thus, there is
no necessity in this area to obtain the equality of criterial numbers. Therefore, the dominating criterion
determining the similarity of studied model to real object is Froude’s (Fr) criterion. Equation (1) can be
then written in the following form:

ϕ(Fr) = 0 (2)

Additionally, the Weber’s number, which characterizes the influence of surface tension on the
flow of liquid, is the criterion number supporting the achievement of the required similarity of the
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model to the real object. Table 1 shows the values of calculated criterial numbers (Reynolds, Froude
and Weber) for water, at a temperature of 293 K, and aluminum, at a temperature of 973 K.

A well-constructed model gives results that are approximate to those obtained in real conditions,
and the criterion numbers are used to preserve the similarity of the model to the real object without
physically affecting the process itself—they describe it, but do not direct it.

Table 1. Main characteristics and dimensions of URO-200 water model and comparison of criterial
numbers for water and aluminum, calculated for URO-200 reactor for rotary impeller speed 5.00 s−1.

Characteristic Feature Value

Volume of the Tank 230 L

Velocity of Gas Bubble Flow (rotary impeller
speed x distance from rotary impeller axis)

Impeller A Impeller B Impeller C
0.375 m·s−1 0.475 m·s−1 0.350 m·s−1

Rotary Impeller Diameter Impeller A Impeller B Impeller C
0.15 m 0.19 m 0.14 m

Criterial Numbers

Fluid water aluminum
Temperature 293 K 973 K

Dynamic Viscosity 1005 Pa·s 1000 Pa·s
Surface Tension 0.072 N·m−1 0.868 N·m−1

Density 1000 kg·m−3 2700 kg·m−3

Reynold’s
Number

Impeller A Impeller B Impeller C Impeller A Impeller B Impeller C
56,250 90,250 49,000 151,875 243,675 132,300

Weber’s Number 292.97 595.40 238.19 65.61 133.35 53.35
Froude’s Number 0.095 0.121 0.089 0.095 0.121 0.089

The modelling research was conducted for three different rotary impellers—one of them was a
new design, and two were commercial designs (see Figure 2). The research was carried out in the range
of processing parameters: rotary impeller from 3.33 to 8.33 s−1, and flow rate of refining gas from 5
to 25 L·min−1. However, based on earlier research [1,9,29,36], and their primary results, the number
of measurements were decreased to 27, and according to Table 2, the extreme values of flow rate
were skipped.
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Figure 2. View of the rotary impellers applied in the measurements: (a) commercial impeller design A;
(b) new impeller design B; (c) commercial impeller design C. Unit: m.

The research methodology was as follows:

• The model tank was filled with water up to 0.7 m, and the processing parameters were changed
according to Table 2.

• Visualization research was carried out by digital camera, recording the dispersion level for all
rotary impellers, whilst changing the processing parameters.
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• Next, the tank was saturated with oxygen. The saturation level was measured by two oxygen
meters CO-401, Elmetron, Zabrze, Poland (location of oxygen meters is shown in Figure 1b).
After reaching the saturation level, argon was introduced into the model by rotary impeller,
and processing parameters were according to the variants in Table 2. Removal of oxygen from
water, as an analog of hydrogen removal from aluminum [1,22,27], was measured every 0.5 min.
The process of aluminum refining in the batch reactor typically lasted 10 min, therefore the process
of oxygen removal was carried out for every variant for 10 min.

• Finally, for the selected variants, based on visualization results (dispersion level), RTD curves
were measured, the NaCl tracer was poured from the top of the tank with water, the measuring
device was switched on, and the three conductometers measured the change in conductivity at
three different locations of the reactor model. The obtained results were automatically registered
by the computer system.

Table 2. Experimental variables for water physical modelling.

Rotary Impeller A

No. Impeller
Speed, s−1

Gas Flow
Rate, L·min−1 No. Impeller

Speed, s−1
Gas Flow

Rate, L·min−1 No. Impeller
Speed, s−1

Gas Flow
Rate, L·min−1

P1 5.00
(300 rpm)

10 P2 6.66
(400 rpm)

10 P3 8.33
(500 rpm)

10
P4 15 P5 15 P6 15
P7 20 P8 20 P9 20

Rotary Impeller B

No. Impeller
Speed, s−1

Gas Flow
Rate, L·min−1 No. Impeller

Speed, s−1
Gas Flow

Rate, L·min−1 No. Impeller
Speed, s-1

Gas Flow
Rate, L·min−1

S1
5.00

10 S2
6.66

10 S3
8.33

10
S4 15 S5 15 S6 15
S7 20 S8 20 S9 20

Rotary Impeller C

No. Impeller
Speed, s−1

Gas Flow
Rate, L·min−1 No. Impeller

Speed, s−1
Gas Flow

Rate, L·min−1 No. Impeller
Speed, s-1

Gas Flow
Rate, L·min−1

R1
5.00

10 R2
6.66

10 R3
8.33

10
R4 15 R5 15 R6 15
R7 20 R8 20 R9 20

3. Results and Discussions

3.1. Visualisation Results

The results of the visualization measurements are presented in Figure 3 for impeller A, Figure 4
for impeller B, and Figure 5 for impeller C. These pictures show the level of dispersion for various
processing parameters. As mentioned earlier, the results were unsatisfactory under the extreme
conditions of 5 and 25 L·min−1, and 3.33 s−1. For 5 L·min−1 and 3.33 s−1, in all cases, the flooding
pattern of dispersion (gas rises axially as a bubble column) was observed for all rotary impellers.
The flooding pattern, or minimum dispersion, was seen when the flow rate of refining gas was
5 L·min−1 and with the remaining rotary impeller speeds (5.00, 6.66 and 8.33 s−1). Thus, this variant
was omitted in further studies. Similar patterns were observed for 3.33 s−1 and flow rates of gas from
10 to 25 L·min−1. Consequently, these variants were also omitted in further studies. For the flow rate
of 25 L·min−1, the uniform dispersion was observed at all rotary impeller speeds, but swirls were
also created, and gas bubbles formed chains that caused waves on the surface. This is dangerous,
especially under industrial conditions, because the hydrogen could be reintroduced into the liquid
metal. Therefore, this case was also rejected.
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For impeller A, a minimum dispersion level was observed when the rotary impeller speed was
5.00 s−1 and the flow rate of the refining gas was 10, 15 and 20 L·min−1 (variants P1, P4 and P7), as well
as for 6.66 s−1 and 10 and 15 L·min−1 (variants P2 and P7). This means that single gas bubbles were
rising to the top of the reactor, and the mixing of gas bubbles is near the shaft of the rotary impeller.
The best results (uniform dispersion) were obtained with the rotary impeller speed of 8.33 s−1 for
almost all refining gas flow rate values (variants P3, P6 and P9).

For impeller B, in all cases, intimate or uniform dispersion were noticed. For variants S1, S4 and
S7 the intimate dispersion was seen. The best results were obtained for variants S3 and S6, with a
rotary impeller speed of 8.33 s−1 and flow rates of refining gas of 10 and 15 L·min−1. In case of variant
S9, excessive dispersion was seen—chains of gas bubbles were created causing swirls.

For impeller C, variants R1, R4 and R7 produced the worst results (5 s−1 and 10, 15, 20 L·min−1)
i.e., minimum dispersion was observed. The uniform dispersion could be seen when the rotary impeller
speed was 8.33 s−1 and the flow rates of refining gas were 10 and 15 L·min−1. In these variants (R6 and
R9), the single gas bubbles are rising to the top of the reactor, gas bubbles are uniformly mixed with
water in the whole model of refining reactor, even beneath the rotary impeller, and the mixing of gas
bubbles with water exists. Figure 6 shows the exemplary variants with different cases of dispersion
levels: (a) minimum dispersion—single gas bubbles rise to the top of the reactor, dispersion is observed
only in the area of gas bubble generation, and lack of dispersion in the whole volume of the tank,
(b) excessive dispersion—creation of bubble chains and swirls, (c) uniform dispersion—good mixing
of gas bubbles with liquid is observed in the whole volume of the tank. Table 3 summarizes the results
of visualization, showing types of dispersion for all studied impellers.
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Table 3. Summary of visualization results—different types of gas bubble dispersion in water, for flow
rate of refining gas in range: 10–20 L·min−1, and rotary impeller speed: 5.00–8.33 s−1, for three studied
rotary impellers.

Flow Rate of Refining
Gas, L·min−1

Type of Dispersion

Rotary Impeller Speed, s−1

5.00 6.66 8.33

Impeller A

10 Minimum Minimum Uniform
15 Minimum Minimum Uniform
20 Minimum Intimate Uniform

Impeller B

10 Intimate Uniform Uniform
15 Intimate Uniform Uniform
20 Intimate Uniform Excessive uniform

Impeller C

10 Minimum Intimate Uniform
15 Minimum Intimate Uniform
20 Minimum Intimate Uniform

3.2. The Research of Oxygen Removal from Water

The research of oxygen removal from water was carried out for all variants presented in Table 2.
The level of oxygen concentration was measured in two places (see Figure 1b); however, the results
were similar (the placement of sensors was investigated by Chin et al. [37], which indicated that curves
for the sensor located in the lower and upper part of the reactor are almost identical). Therefore,
the results of the research presented graphically in Figure 7 show the measurements of the top oxygen
meter only. In all cases the best results of removing oxygen were obtained for rotary impeller B,
they were considerably better than for impeller A and C. The results of impellers A and C were
comparable, though rotary impeller C was insignificantly better. In case of flow rate of refining gas
10 L·min−1, the rotary impeller speed played a significant role in obtaining a better level of oxygen
removal. For impeller A and C, at 5.00 s−1 about 10 mg·L−1 oxygen content was obtained, whereas
at 8.33 s−1 this level was lower, reaching about 5 mg·L−1. In case of rotary impeller B, at 5.00 s−1 the
oxygen content was 3 mg·L−1. The same oxygen level was obtained much faster for the rotary impeller
speed 8.33 s−1 (about 400 s).

For the flow rate of refining gas 15 L·min−1 at 5.00 s−1, the oxygen concentration for impeller
A was 9 mg·L−1, and for impeller C 8 mg·L−1, whereas for impeller B only 2 mg·L−1. Better results
were obtained for rotary impeller speeds 6.6 s−1 and 8.33 s−1—for impeller A: 6 and 4 mg·L−1, and for
impeller C: 5 and 2.5 mg·L−1, respectively. For impeller B, the levels of oxygen concentration 2 mg·L−1

were reached after 500 s at 6.66 s−1 and after 400 s at 8.33 s−1.
For the case of flow rate of refining gas 20 L·min−1, the results of oxygen concentration for

5.00 s−1 were comparable with those for 15 L·min−1. This was similar for 6.66 and 8.33 s−1 rotary
impeller speeds. However, for rotary impeller B, the time taken to obtain level of oxygen concentration
2 mg·L−1 for rotary impeller speed 8.33 s−1 was quicker, and reached 300 s.
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Figure 7. Results of research concerning oxygen removal from water model of batch reactor for
aluminum refining, by argon blowing, for three different impellers. Flow rate of refining gas ranging
from 10 to 20 dm3·min−1 and: (a) rotary impeller speed 5.00 s−1; (b) rotary impeller speed 6.66 s−1;
(c) rotary impeller speed 8.33 s−1.

Because the gas consumption is seen as the important operational cost in cast foundries, it is
possible to calculate the efficiency of gas consumption (E), which is defined as total volume of purge gas
(Vg) needed to eliminate 90% of the dissolved oxygen, and can be written in the following form [27]:

E =
([O2]o−[O2]0.1)

Vg
(3)

Table 4 shows the results of efficiency of gas consumption for the three studied rotary impellers,
and Table 5 presents the total time to eliminate 90% of dissolved oxygen. The best gas consumption
was achieved for the new design rotary impeller. For this impeller, the total time needed to eliminate
90% of dissolved oxygen for all variants was smaller than 630 s.

Table 4. Efficiency of gas consumption for studied rotary impellers, for variants P8, S7 and R7.

Type of Rotary Impeller Variant Efficiency of Gas Consumption E, ppm/liter

Rotary impeller A P8 0.045
Rotary impeller B S7 0.065
Rotary impeller C R7 0.054
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Table 5. Total time needed to eliminate 90% of dissolved oxygen for chosen variants of rotary impellers.

Rotary Impeller A Rotary Impeller B Rotary Impeller C

Variants Time, s Variants Time, s Variants Time, s
P1 1200 S1 630 R1 1020
P2 1020 S2 510 R2 780
P3 810 S3 390 R3 660
P4 1050 S4 480 R4 930
P5 870 S5 390 R5 720
P6 720 S6 300 R6 570
P7 930 S7 420 R7 1050
P8 750 S8 360 R8 690
P9 660 S9 270 R9 540

3.3. Determination of Residence Time Distribution(RTD) Curves

Theoretical basis of RTD characteristics has the source in the inert function of age distribution,
which assumes that in the period between t and ∆t the fraction of substance being in reactor equals the
product of I(t)·∆t, I(t). It is a continuous function and after arrangement the relationship can be written
in the following form: ∫ ∞

0
I(t)dt = 1 (4)

When assuming the reactor is in equilibrium state, the transport of fluid at the inlet and outlet
have advective character and liquid is incompressible, such function can be written in the form:∫ ∞

0
E(t)dt = 1 (5)

where E(t) can be defined as:

E(t) =
C(t)∫ ∞

0 C(t)dt
(6)

where C(t) change of tracer in liquid metal or water as a function of time.
Determination of RTD curves based on measurement of conductivity changes in water with added

tracer (aqueous NaCl solution) is in µS·cm−1. If the obtained results were comparable, the recorded
values are calculated to a dimensionless form according to the following Equations (7) and (8) [37]:

C =
Gpom

Gmax
(7)

Cb =
c − co

c∞ − co
(8)

where C—basic dimensionless tracer concentration, Gpom—analog of tracer concentration in
time, µS·cm−1, Gmax—analog of maximal tracer concentration in modelling liquid, µS·cm−1,
Cb—dimensionless concentration of the tracer, co—base dimensionless concentration of the tracer
at the beginning of the process, c∞—base dimensionless concentration of the tracer at the end of
the process.

The determined characteristics make it possible to determine the minimum mixing times of the
tracer in the modelling fluid (water). The criterion, which should be fulfilled to determine such values,
is the moment when the concentration of the marker for both measuring points reached a plateau in
the range of 0.9–1.1, this meant that the tracer was completely mixed into the entire volume of the
modelling liquid. The RTD curves were measured for chosen processing parameters, including the
best and worst visualization results for:

• Impeller A: the worst result (minimum dispersion)—Variant P4 and the best ones P3 and P9.
• Impeller B: the worst result (excessive dispersion)—Variant S9 and the best ones S1 and S6.
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• Impeller C: the worst result (minimum dispersion)—Variant R7 and the best ones R6 and R9.

RTD curves for all mentioned above variants were presented in Figure 8 in the form of
dimensionless concentration as a function of time. Based on these curves, the shortest time for
mixing gas bubbles in the whole reactor were calculated and are summarized in Table 6.
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Figure 8. Results of residence time distribution (RTD) curves determination on water model of batch
reactor for aluminum refining, by argon blowing, for three different impellers, for chosen processing
parameters based on visualization results: (a) rotary impeller A; (b) rotary impeller B; (c) rotary
impeller C.

Table 6. Time of mixing gas bubbles with water estimated on the base of RTD curves.

Rotary Impeller A Rotary Impeller B Rotary Impeller C

Variants Time, s Variants Time, s Variants Time, s
P1 32 S1 23 R1 35
P2 35 S2 25 R2 33
P3 30 S3 28 R3 25
P4 45 S4 35 R4 32
P5 40 S5 25 R5 25
P6 32 S6 18 R6 23
P7 31 S7 30 R7 30
P8 30 S8 24 R8 25
P9 30 S9 23 R9 30

Estimated time of mixing is the longest for rotary impeller A variant P4 (5.00 s−1, 15 L·min−1), for
the last two variants it is shorter (30 s). However, compared with the other two impellers, it was not
satisfactory. Results for rotary impeller C were better than that for rotary impeller A, with the shorter
time of mixing of 23 s, at rotary impeller speed 8.33 s−1 and flow rate of refining gas at 15 L·min−1.
The best results of mixing time were reached for impeller B, which was 18 s, at a rotary impeller speed
of 8.33 s−1 and the flow rate of refining gas at 15 L·min−1.

4. Conclusions

On the basis of the conducted research, the following conclusions can be drawn:

• Physical modelling is a helpful method for working out the new design rotary impeller and aids
easy identification of the optimal processing parameters.
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• The physical model of the refining reactor simulates the conditions prevailing in this reactor
during refining process. The rates of gas bubble dispersion significantly influences the efficiency of
the hydrogen removal process. Determining the optimal range of gas flow increases the efficiency
of the purging process, which in turn reduces its costs.

• The information obtained from the dispersion patterns are dependent on observation and
interpretation, and thus improper conclusions can be drawn.

• RTD curves, which are quantitative analysis, provide the information about mixing time of tracer
with water, and based on such results the identification of processing parameters, such as flow rate
of refining gas and rotary impeller speed, is possible. RTD curves do not give a direct and clear
answer, but allow for a satisfactory estimation of the technological parameters and the operation
of the reactor.

• Based on research of oxygen removal from water, as an analog of hydrogen desorption from
aluminum, the essential information can be obtained about the process and processing parameters,
and also about the time of refining.

• The new design impeller B had the best results in all applied methods, the best variants being
8.33 s−1 and 15 L·min−1. The next step of the research should now be to test the new design
impeller under industrial conditions.

For better understanding of the process, and to complete the obtained results for the new rotary
impeller, the numerical modelling could be applied.
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