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Abstract: Increased passenger safety and emission control are two of the main driving forces in
the automotive industry for the development of light weight constructions. For increased strength
to weight ratio, ultra-high-strength steels (UHSSs) are used in car body structures. Prediction of
failure in such sheet metals is of high significance in the simulation of car crashes to avoid additional
costs and fatalities. However, a disadvantage of this class of metals is a pronounced scatter in their
material properties due to e.g., the manufacturing processes. In this work, a robust numerical model
is developed in order to take the scatter into account in the prediction of the failure in manganese
boron steel (22MnB5). To this end, the underlying material properties which determine the shapes
of forming limit curves (FLCs) are obtained from experiments. A modified Marciniak–Kuczynski
model is applied to determine the failure limits. By using a statistical approach, the material scatter is
quantified in terms of two limiting hardening relations. Finally, the numerical solution obtained from
simulations is verified experimentally. By generation of the so called forming limit bands (FLBs),
the dispersion of limit strains is captured within the bounds of forming limits instead of a single FLC.
In this way, the FLBs separate the whole region into safe, necking and failed zones.

Keywords: forming limit curve; inhomogeneity; boron steel; robustness evaluation

1. Introduction

The ability to assess with possibility of the forming limits of sheet metals is critical to avoid
excessive thinning or localized necking. Forming limit curves (FLCs) are one of the highly recognized
tools to foresee the failure in sheet metals. The concept of FLCs was first introduced by Keeler
and Backofen for the tension-tension zone [1] and then further extended to the tension-compression
zone by Goodwin [2]. Over the years, different experimental and numerical methods have been
developed for the accurate determination of FLCs. The Nakazima out-of-plane test and the Marciniak
in-plane test [3] are well-known approaches to experimentally generate FLCs. Besides experimental
methods, numerical methods are used to investigate failure. Thereby, an important aspect is the strain
localization during forming.

The available numerical methods can be divided into three main frameworks: the maximum force
criteria, the Marciniak–Kuczynski (MK) models and the finite element (FE) methods. A basic necking
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criterion in a simple tension case was established by Considère [4] which was thereafter extended to
biaxial stretching by Hill [5] and Swift [6]. Hill [5] expressed the localized necking as a discontinuity
in the velocity and Swift [6] determined the instability condition in the plastic strain by expressing
the yield stress as a function of the induced stress during the deformation of the diffused necking.
Using Considère’s criteria, Hora and Tong [7] introduced ‘modified maximum force criteria’ (MMFC)
taking into account the strain path after diffuse necking. These criteria have been used for the FLC
determination under non-linear strain paths by Tong et al. [8,9]. The enhanced modified maximum
force criterion (eMMFC) was introduced by Hora et al. [10] in 2008 considering the sheet thickness and
the curvatures of the parts. Another approach to determine the necking is the bifurcation analysis that
was discussed by Hill [11].

To overcome the drawback in the maximum force model, Marciniak and Kuczynski [3]
developed a new model considering a pre-existing inhomogeneity in sheet metals. The instability
begins along the inhomogeneity due to a gradual strain concentration under biaxial stretching.
Strain-rate sensitivity and plane anisotropy have been further studied in the later works as additional
influencing parameters [12]. Hutchinson and Neale [13] analyzed an imperfection sensitive MK
model with J2 (von Mises) flow theory for principal strain states varying from uniaxial to equibiaxial
tension. In the work of Chan et al. [14], localized necking is studied for the negative minor strain
region (uniaxial tension to plane strain). Additionally, the inhomogeneity oriented in zero-extension
direction is analyzed in [5]. The complete FLCs of anisotropic rate sensitive materials with orthotropic
symmetry have been predicted for linear and complex strain paths in the work of Rocha et al. [15].

The shape of the FLC depends on the constitutive equations used in the MK model. Yield criteria
as well as the hardening relation can alter the limit strains. Different parameters influencing the FLCs
are studied in the literature. Lian et al. [16] studied the variation of sheet metal stretchability by
varying the shape of the yield surface. A yield function that describes the behavior of orthotropic sheet
metals under full plane stress state was introduced by Barlat and Lian [17]. Cao et al. [18] implemented
the general anisotropic yield criterion for localized thinning in the sheet metals into the MK model.
Additional failure modes in sheet metals, namely ductile and shear failure criteria were included in
CrachFEM (MATFEM, Munich, Germany). Eyckens et al. [19] extended the MK model to predict
localized necking considering through-thickness shear (TTS) during the forming operations.

In addition to MK and MMFC methods, the finite element (FE)-based approach, introduced by
Burford and Wagoner [20], is another way to determine FLCs. Boudeau and Gelin [21] worked on the
prediction of localized necking in sheet metals during the forming processes through FE simulations.
Combining a ductile fracture criterion with finite element simulations, Takuda et al. [22] predicted the
limit strains under biaxial stretching. Different finite element methods for the prediction of FLCs can
be found in [23–26].

Due to the scatter in material properties at different regions of sheet metals, it becomes difficult
to precisely predict the failure strains by a single FLC. Hence, a scatter of material properties has to
be determined and a band of FLCs needs to be defined. Janssens et al. [27] introduced the concept
of forming limit bands (FLBs) to have a reliable estimate of the uncertainty of FLCs. Strano and
Colosimo [28] extended it further with logistic regression analysis to generate FLBs from experimental
data. Chen and Zhou [29] applied percent regression analysis to the curve fitting of experimental
data of limit strains. The above-mentioned studies analyze the experimental data statistically to
obtain FLBs. On the other hand, Banabic et al. [30] was one of the first to incorporate the concept
of FLBs in a theoretical approach to improve the robustness. The MK model with BBC2003 [31]
plasticity criterion and Hollomon and Voce hardening laws were used in the derivation of the limit
strains. Later, Comsa et al. [32] generated an FLB using Hora’s MMFC model with the Hill’48 yield
criterion and Swift’s hardening law.

The aim of this work is to develop a methodology to predict the failure in UHSS sheet metals
during a car crash. To this end, first, the limit strains of a car component are evaluated experimentally.
Then, the scatter of the material properties is considered by defining a range of hardening relations
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using curve fitting of the experimental data. A modified MK model with a simplification related to
the zero extension angle is applied to form the bounds of the limit strains numerically. In this way,
the bounds can capture the material scatter via a parametric study.

The present paper is structured as follows. In Section 2, a modified MK model with an inclined
groove is presented based on the work of Rocha et al. [15]. To solve the discrete equations, an implicit
integration method is employed in Section 3. The obtained results are validated in Section 4 based
on the theory of the method. Furthermore, the experimental data and their post-processing are
described in Section 5 to determine the material scatter. Based on a statistical analysis of the material
scatter, the forming limit bands are generated and discussed in Section 6. Eventually, the results are
summarized and conclusions are drawn.

2. Theory of Forming Limit Curve

A sheet metal is subjected to biaxial stretching under a load given in terms of the principal
stresses σ1 and σ2 as shown in Figure 1. The metal component has two regions with different thicknesses
named as region A and region B. The groove, that is denoted as region B, is considered to make an
angle ψ with respect to the minor principal stress axis as shown in Figure 1. Although the thickness
variation is smooth in reality, a sharp variation is considered to simplify the calculations. Due to its
smaller thickness, region B will represent the necking region during the stretching operation.

Figure 1. Modified MK model with initial in-homogeneity [33].

Marciniak [3] introduced an inhomogeneity parameter expressed in terms of the ratio of the initial
thicknesses of region B (t0B) and A (t0A). In the present work, it is denoted by fi and defined as

fi = 1− t0B
t0A

, (1)

which implies that, when fi takes the value zero, the sheet is geometrically homogeneous. As stresses
increase, the sheet metal undergoes different strain increments in non-necking and necking regions as
indicated by subscripts A and B, respectively. The ratio of minor to major strain increments is assumed
to remain constant within each load path. It is defined by

γ =
dε2A
dε1A

. (2)

Strain and stress states of both regions (A and B) are monitored separately. In this way, one
can define plastic instability as the increment of the equivalent plastic strain in region B becomes
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considerably greater than that of region A. The plastic instability indicator β is expressed as the ratio
between the equivalent plastic strain increments in region A (dε̄A) and region B (dε̄B) [34]:

β =
dε̄A
dε̄B

. (3)

In practice, the value of β is considered as 0.1 to indicate the loss of stability. The model
is derived for an anisotropic material with an orthotropic symmetry. The classical Lankford
coefficients R0, R45 and R90 are considered as measures of anisotropy with respect to different directions
of in-plane loading (angles 0◦, 45◦ and 90◦ with respect to the rolling direction). Additionally, planar
anisotropy is assumed and characterized by a time-independent average R-value defined by

R̄ =
R0 + 2R45 + R90

4
. (4)

In the case of isotropic material, the value of R̄ becomes equal to unity. We define

α = σ2/σ1 (5)

as the ratio of stresses in the principal directions, namely σ1 and σ2 [15]. The Hill’48 yield criterion is
used in combination with an associative flow rule and Swift hardening relation. Hill’s criterion for in
plane stress conditions is expressed as

2 f = σ̄2 = Fσ2
yy + Gσ2

xx + H(σxx − σyy)
2 + 2Pσ2

xy, (6)

where σ̄ denotes the equivalent stress and F, G, H, and P are functions of the Lankford coefficients.
Thus, they are material specific constants. The reader is referred to the Appendix A for more
information about these constants. In the following, strain rate dependent stress relation similar
to the classical MK model [12] is defined:

σ̄ = C1 (ε0 + ε̄)n ˙̄ε m. (7)

In the latter relation, C1 is a strength coefficient and ε0 denotes the initial yield strain.
In addition, ε̄ represents the equivalent plastic strain with n as isotropic hardening exponent.
Furthermore, m is the strain rate exponent. The associated flow rule is given by

dεij = dλ′
∂ f
∂σij

, (8)

where dλ′ is the hardening parameter being expressed as

dλ′ = dε̄/σ̄

and εij are logarithmic strain components. Similar to the classical MK model, the incompressibility
condition is given by

dε1A + dε2A + dε3A = 0. (9)

Considering the strain in thickness direction, the sheet thickness can be written as

tA = t0A eε3A , tB = t0B eε3B . (10)

The force equilibrium conditions are given by

σnn
A tA = σnn

B tB, (11)
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σnt
A tA = σnt

B tB, (12)

where n and t (in Equations (11) and (12)) denote the normal and tangential direction with respect to
the inhomogeneity, respectively. The compatibility condition across the discontinuity is defined by

dεtt
A = dεtt

B. (13)

First, the force equilibrium in normal direction (Equation (11)) is divided by σ̄. Next, by using
Equations (1) and (7) in (11) and upon simplification, the following relation is derived

cos2ψ + α sin2ψ√
1 + (F + H) α2 − 2H α

= (1− fi) exp(ε3B − ε3A)

(
ε0 + ε̄B
ε0 + ε̄A

)n ( dε̄B
dε̄A

)m
√

B1 (dε̄A/dε̄B)
2 + B2

B3
. (14)

Equation (14) represents the residual in the algorithm described in Section 3. Strain increments
in the third direction for regions A and B are derived by the application of compatibility and
incompressiblity conditions

dε3A = − G + F α√
1 + (F + H) α2 − 2H α

dε̄A, (15)

dε3B = −

H6

√
B1 (dε̄A/dε̄B)

2 + B2

B3
+ H7

(
dε̄A
dε̄B

) dε̄B, (16)

where B1, B2, B3, H6 and H7 are functions of R0, R45, R90, ψ and α. For a detailed derivation the reader
is referred to the Appendix A and to Rocha et al. [15].

The above mentioned mathematical model is capable of evaluating the limit strain for both
positive and negative minor strains ε2. There are four different fundamental strain paths, i.e., uniaxial
tension, plane strain, biaxial and equibiaxial tension. The relation between the stress ratio α and the
strain ratio γ for an isotropic material is given by [14,34]

α =
2γ + 1
2 + γ

. (17)

Table 1 shows the corresponding values of α calculated from Equation (17).

Table 1. Incremental strain and stress ratios for four different load paths.

- Uniaxial Plane Strain Biaxial Equibiaxial

γ −0.5 0 0.5 1
α 0 0.5 0.8 1

In the tension-compression quarter of the FLC, the limit strains depend on the (initial) orientation
of the groove. Therefore, an arbitrary angle ψ between the direction of the imperfection and the
direction of the principal minor stresses is considered as described in Figure 1. As FLCs represent the
maximum allowable strains, the minimum limit strains of all the possible orientations of the groove
are to be identified. Upon implementing the rotation of angle from 0◦ to 45◦ to evaluate the minimum
strain, the computational cost of the algorithm is increased. This can be simplified by using the concept
of zero extension direction provided by Hill’s theory [5]. As predicted by this theory, if the imperfection
is oriented along the zero extension direction, there will be a substantial difference in the limit strain
compared to that of ψ = 0◦ [14].

According to the theory of Hill [5], localized necking occurs along the direction of zero extension,
which is determined by [35]

ψ∗ = tan−1√−γ. (18)
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The zero extension angle in case of uniaxial tension for planar isotropic material is found to be
ψ∗ = 35.3◦. From Chan et al. [14], the calculated limit strains using the zero extension direction are
within 2% of the limit strains calculated based on the aforementioned rotation of the imperfection. Thus,
for the purpose of simplification and faster computation the angular orientation of the discontinuity is
set to the zero extension angle, which is investigated later in this work.

3. Numerical Solution and Algorithm

The numerical solution is performed by means of an implicit integration method. To this end,
the algorithm is implemented using two loops in FORTRAN similar to that of Werner [34]. Here,
the value of β is unknown and evaluated as a function of the equivalent plastic strain in the necking
region. The computation continues until β reaches a critical value of 0.1. The iterative technique
used to solve for β is shown in Figure 2. In the outer loop (n loop), ε̄B is increased by a constant
increment dε̄B. In this work, dε̄B is set to 0.001 (refer to Figure 3). This is given by

ε̄B|n+1 = ε̄B|n + dε̄B. (19)

The inner loop (k loop) is running for a maximum number of 100 times by varying β from 1
to 0 in steps of 0.01. This loop terminates when the sign of the residual represented in Equation (14)
changes. The plastic strain dε̄A in the non-necking region is calculated by arithmetic averaging of two
consecutive β values within the n loop (refer to Equation (22)). To start the algorithm ε̄A, ε̄B, ε3A, ε3B
as well as dε̄A/dε̄B = β must be initialized. Here, the initial conditions as set as follows:

ε̄A|0 = ε̄B|0 = 0,

ε3A|0 = ε3B|0 = 0 and

β0 = 1.

(20)

The inhomogeneity parameter fi is manually input. In every k loop, first dε3B is calculated
using Equation (16) since the values of dε̄A, dε̄B, α and R̄ are already known. In the next step, ε3B is
computed using the equation

ε3B|k = ε3B|n + dε3B|k, (21)

where the variable ε3B|n is already initialized. Next, dε̄A|k is calculated using the arithmetic averaging:

dε̄A|k = 0.5 (βn + βk) dε̄B. (22)

Having initialized β and ε̄A|n, we determine ε̄A|k using the relation

ε̄A|k = ε̄A|n + dε̄A|k. (23)

Next, ε3A is calculated in analogy to the previous equation by using dε3A from Equation (15)

ε3A|k = ε3A|n + dε3A|k. (24)

Hardening relations σ̄A and σ̄B are computed using ε̄A|k, ε̄B|n+1 and the expression

ε̇B|k = ε̇A/βk

which is obtained by
ε̇B

ε̇A
=

dε̄B
dt

dt
dε̄A

. (25)

For different load cases, the value of α is considered in Table 1. Other load cases are set by defining
the value of α between 0 to 1.
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In this work, hardening relations are fitted to experiments and implemented in the code.

Figure 2. Implemented algorithm in FORTRAN.

4. Verification

To verify the convergence properties of the solution method, different step sizes of dε̄B are set
ranging from 2× 10−5 to 0.2. Without changing the other parameters such as hardening relations,
anisotropy etc., the limit strains in region A are evaluated. It is clearly seen in Figure 3 that the limit
strains (ε̄A) are close to convergence as dε̄B approaches 0.002. Therefore, the step size is set to 0.001.
Henceforth, all strains and stress measures are normalized to the mean ultimate tensile strength (Rm)
and the mean uniform strain of entire samples, respectively.
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Figure 3. Convergence of the numerical method (strain normalized with respect to the mean
uniform strain).
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To verify the results, a hardening relation for a manganese boron steel (22MnB5) is applied.
In addition, the material is assumed to be isotropic in this work. Nonetheless, due to the confidentiality
of the project the parameters of the hardening relation (Equation (7)) are not explicitly revealed.
In Figure 4, the evolution of the equivalent plastic strain (ε̄A) in the non-necking region is plotted
against its counterpart (ε̄B) in the necking region. Initially, the slope of the curve is found to be
approximately 1, since both regions are undergoing the same strain. At some point, the strain in
region B starts to grow significantly faster than the one in region A. This is due to the localized necking
in region B since it has a smaller cross-section. The difference between the strains in regions A and B is
captured vividly for normalized strains in region B greater than 10. In addition, the stress-strain curve
in region B is plotted in Figure 5 for sheet metals subjected to equibiaxial tension. This plot captures
the implemented hardening relation and represents the material behavior in the non-linear regime.
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Figure 4. Normalized equivalent plastic strains in regions A and B (strain normalized with respect to
the mean uniform strain).
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Figure 5. Normalized equivalent plastic stress as a function of normalized equivalent plastic strain
under equibiaxial tension (stress and strain normalized with respect to the mean ultimate tensile
strength and the mean uniform strain, respectively).

The maximum admissible strains that the material can withstand before the onset of necking are
shown in Figure 6. Localized necking is evaluated by considering a constant predefined value of strain
ratio γ during the deformation process. The entire curve is obtained by varying γ from −0.5 to 1 in
steps of 0.5.

The limit strains can also be related to the equivalent plastic strain as shown in Figure 7. In this
figure, the load path dependence of the limit strains is clearly evident. For instance, it is noticeable that
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sheet metals can deform to a higher extent under equibiaxial tension compared to uniaxial tension.
Moreover, the choice of the inhomogeneity parameter fi plays a crucial role in the position of an FLC.
The higher the inhomogeneity parameter, the lower is the entire FLC. In this section, it is set to 0.02 for
all loading paths. A detailed investigation of the aforementioned parameter is discussed in Section 6.
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Figure 6. Forming limit curves (FLC)—major strain vs minor strain (strain normalized with respect to
the mean uniform strain).
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The effect of the angular orientation of the inhomogeneity in the tension-compression regime
is studied in Figures 8 and 9. It is evident that the choice of ψ = 0◦ leads to an overestimation of
the limit strains as depicted in Figure 9. This signifies the application of the angled groove for the
tension-compression loading regime of the FLC. Furthermore, to compare the strains for any arbitrary
orientation of the angle with that of the zero extension angle (ε̄∗A) from [35], an interval of 0◦–50◦ is
considered, due to the symmetric influence of the orientation of the groove. The minimum equivalent
strain (ε̄A,min) is found at the angle 34◦. On the other hand, the zero extension angle obtained here
is equal to 35.3◦ which yields approximately the same limit strain ε̄∗A as ε̄A,min. This is seen clearly
in Figure 9, where both strains are mostly equal.
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Figure 9. Effect of the groove orientation on the limit strain (strain normalized with respect to the mean
uniform strain) [33].

5. Experiments

Once the numerical method is verified, it needs to be validated with the experimental data. To obtain
a precise and accurate strain measurement, a digital image correlation (DIC) measurement system was
employed in the experiments. This method is able to display full-field strain measurement in the localized
necking region. Simultaneous evaluation of the major and minor strains at any point makes it suitable
for FLC related applications. In this project, the non-contact and material independent measurement
system ARAMIS (v6.3, GOM, Braunschweig, Germany) is used for strain measurements. The stress
values are obtained from the universal testing machine Zwick Z100 (Zwick Roell, Ulm, Germany).

The experiments are performed by extracting samples from structural components of a car.
These body parts are formed/stamped steels which are later heat treated to yield similar material
properties like those of car components. To record the scattered material properties, samples from
ten different batches are considered. Each batch consists of six components and each component
delivers 12 test samples (extracted from six different regions). A total of 720 samples are extracted for
two different test categories, namely notched and A50 specimens (see Figure 10).



Metals 2018, 8, 631 11 of 25

Figure 10. Geometry and dimension of the A50 (left) and notched (right) samples.

A selection of the notched samples is applied for the validation of the FLCs whereas the A50
samples are used in uniaxial tensile tests so that the material parameters can be obtained for both,
the scatter determination and fitting purposes. These results are presented batch wise in terms of the
normalized ultimate tensile strengths of the specimens. For the statistical analysis of the tensile test
results, only the results of the A50 samples are considered.

The samples are selected in such a way that they can capture the largest scatter. The ultimate
tensile strength of the material is selected as the decisive parameter since it is associated to the
initiation of the necking. The stress distribution is represented in a box and whisker plot in Figure 11
for the A50 samples.
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Figure 11. Distribution of the normalized stress with respect to the mean ultimate tensile strength (Rm)
in A50 samples [33].

The onset of material instability can be observed from the exhibition of the shear bands as depicted
in Figure 12. These bands correspond to an abrupt loss of homogeneity in deformation. Hereafter, the
localized deformations rapidly intensify, leading to necking and rupture of the specimen. Figure 12a
shows the non-uniform strain distribution along the section length in the pre-failure regime. The closer
to the shear band, the greater the localized strain. Points 0, 1 and 2 in Figure 12b,c illustrate different
major strains under uniaxial loading. Since point zero (P0) lies on the shear band, it undergoes severe
strains. In contrary, points one and two (P1 and P2) show much smaller strain values as they locate far
from the shear bands where the localized necking occurs.
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Figure 12. Strain distribution along the specimen length normalized with respect to the mean uniform
strain (a), experimentally determined strain growth for different points lying on the shear bands and
far from them with strains normalized with respect to the mean uniform strain (b) and the evolution of
shear bands (c) in the pre-failure regime of an A50 sample [33].

According to Werner [34], the ratio β of the increment of the effective plastic strain in the
non-necking region (dε̄Pi , i = 1, 2) to that of the necking region (dε̄P0) indicates the plastic instability
expressed as

β =
dε̄Pi

dε̄P0

, i = 1, 2,

where the points P1 and P2 belong to the non-necking region and the point P0 belongs to the necking
region (refer to Figure 12). Additionally, the growth of the major strains at the aforementioned points
are plotted with respect to time in Figure 13.
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sample in the necking and non-necking regime [33].

In order to guarantee the accuracy of the strains during the abrupt localization phenomenon,
a frequency of 10 frames per second is applied in the tensile tests. At point P0, exponential growth of
strains is observed. This is not the case at other points (P1 and P2) far away from the necking region.
However, this can be better illustrated in terms of the strain rates. Figure 14 shows the last two seconds
before a sample ruptures. At this time, strain rates in the necking region (P0) observe a sharp increment
whereas the ones in the non-necking regions (P1 and P2) end up with a slight decrease. This is due
to the fact that from second 31.5, all plastic strains flow though the shear band where the P0 lies and
the points P1 and P2 behave as though they are unloaded. Notice that the plastic strains remain in the
latter points since they are permanent. Finally, Figure 15 illustrates the corresponding strains over the
strain increment ratio (1/β). From these results, the corresponding values of the major strains for a
specific ratio (here 1/β = 10) are extracted for each sample to prescribe the onset of the instability in
the numerical solution.
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Figure 14. Major strain rates (normalized with respect to the mean uniform strain) during the onset of
instability in the necking and non-necking regime.
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The plane strain condition occurs in the middle of the notched samples as the dimension of the
sample along one direction is much larger compared to the other two dimensions. Similar to the A50
samples, the strain field is analyzed across the shear bands for determining the onset of necking.
The distribution of the normalized ultimate tensile strengths of the notched samples are depicted
in Figure 16. Limit strains from notched samples are used as a reference in the forming limit curves for
the plane strain loading path.
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Figure 16. Stress distribution normalized with respect to the mean ultimate tensile strength (Rm) in
notched samples [33].

Figure 17a shows the distribution of the normalized major strains along the width of the notch during
necking. The stress state of a point in the middle of a notched sample of this form reflects a plane strain
condition with a small deviation [36] (refer to Figure 17b). This is shown in the experimentally determined
limit strain of the notched sample from ARAMIS in the necking regime (see Figure 17c) as well.
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Figure 17. Strain distribution along the notch width normalized with respect to the mean uniform
strain (a), experimentally determined limit strain with normalized strains with respect to the mean
uniform strain (b) and the evolution of necking (c) in the pre-failure regime of a notched sample.

The flow diagram of the material is produced using the A50 samples to obtain the parameters
related to the hardening relation (see Figure 18). As the initial cross-sectional area is considered for
determining the stress values, the flow diagram typically represents the engineering stress-strain
values. For sufficiently small deformations, the engineering stresses and strains are almost equivalent
to the Cauchy stresses and logarithmic strains (in the sequel called “true” stresses and strains). Since the
forming limit is characterized by large scale permanent plastic deformation, the hardening relations
must be based on the true stress-strain values. Consequently, the engineering stress-strain diagram is
first transformed to the corresponding true stress-strain diagram by the relations.
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σtrue = σeng (1 + εeng),

εtrue = ln (1 + εeng).
(26)

This transformation is illustrated also in the stress strain curve of a sample in Figure 18.
To capture the scatter of the material, 36 different hardening curves are generated from the flow

diagrams of the corresponding samples.
In Figure 18, the necking of the specimen is observed around the normalized strain of 1.4 in

the engineering flow curve (σ̄eng). However, by transferring the latter into the true stress-strain
curve (σ̄true), only the material response until the ultimate tensile strength is considered. Due to
the negligible contribution of the elastic regime (under 2 %) in this material, only the plastic
response of the material (σ̄true−plast) is taken into account in fitting as well as in the numerical
solution (see Figure 18) [34].

 0

 0.5

 1

 0  0.5  1  1.5  2

n
o
rm

a
liz

e
d
 s

tr
e
s
s
 [
-]

normalized strain [-]

σ
-

true-plast

σ
-

true       

σ
-

eng       

Figure 18. Engineering and true stress-strain normalized with respect to the mean ultimate tensile
strength and mean uniform strain, respectively [33].

Ultimately, the curve is fitted by minimizing the square of the difference between the experimental
values obtained from the plastic true stress-strain curve and the derived hardening relation
from Equation (7). Figure 19 illustrates the experimental true stress-strain curve and the fitted Swift
hardening relation for a specimen.
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Figure 19. Fitted curve to experimental results, normalized with respect to the mean ultimate tensile
strength and mean uniform strain, respectively.
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By curve fitting, the set of coefficients is generated for all 36 samples. Since equivalent stresses at
regions A and B are expressed as a ratio in the residual (Equation (14)) of the mathematical model,
the influence of strength coefficient C1 on the limit strains is nullified. Therefore, this coefficient is
kept constant in all computations. On the other hand, the variation of n results in different hardening
relations and consequently different FLCs. Since the material used here is assumed to be close to
rate independent, the variation of the corresponding values are not considered later in the forming
limit band generation. The strain rate ˙̄ε is set manually to 0.0033 s−1 in the experiments (10 mm/min)
whereas the strain rate exponent m is found to be 0.008 from experiments. The evaluation of the
term ˙̄ε m leads to the value ˙̄ε = 0.9553, which confirms the assumption of rate-independence.

6. Forming Limit Bands

Due to the scatter in the material properties, the prediction of the failure limits by a single FLC will
result in either under- or overestimation. Unlike FLCs, forming limit bands are statistical approaches
towards a robust design methodology. By implementation of a band of forming limits instead of
a single curve, it is possible to distinguish among safe, necking and failed zones in the forming
limit diagrams.

In order to generate an FLB, first and foremost, the associated theoretical FLC model is determined.
Various parameters that influence the behavior of the FLCs are identified. The material parameters
are obtained from the experiments and the scatter in the mechanical properties is measured. Next,
the relation between the mechanical properties and the process parameter ( fi) is derived. Finally,
the range of the material parameters is defined by a statistical approach (here standard deviation (± 2σ))
and the FLBs are generated. The generated FLBs are furthermore experimentally validated.

Different parameters obtained here can be categorized as follows:

• mechanical parameters: rolling anisotropy (R0, R45, R90); strength coefficient C1, initial yield
strain (ε0), hardening exponent n, strain rate exponent m,

• process parameter: measure of inhomogeneity fi,
• method parameter: plastic instability indicator β.

Since the material is assumed to be planar isotropic, the influence of Lankford’s coefficients
is eliminated. Moreover, as discussed in the previous chapter, the roll of the coefficient C1 during
the incorporation of stress ratio in the residual (Equation (14)) is omitted. Due to the assumption
of rate-independence, the strain rate exponent m is applied only in the numerical calculations and
therefore not varied in the forming limit curves. Since β is defined by the user, it is not considered
as a material parameter. Finally, the two parameters fi and n are needed to get the FLBs. This can be
established by either fixing one parameter and varying the other or by varying both.

In spite of the fact that the inhomogeneity parameter fi has a physical interpretation, it cannot
be measured in reality and thus is considered as a process parameter. Within the numerical solution,
a pre-defined inhomogeneity value is set as an input for the FLC computation. This is chosen in
a way to fit the FLC and is not obtained from the fitting of the hardening relations. In contrast
to fi, the hardening exponent n is determined through the fitting of the hardening relation to the
experiments. Ultimately, both parameters define the shape of the forming limit curves.

A parameter study is performed to identify the FLB and the influence of the parameters on it.
The strain hardening exponent n is found to be within the range of 0.05645–0.14549 by fitting of the
hardening relations to the 36 A50 samples. From Figure 20a, it is seen that the higher the value of
the hardening exponent, the higher the limit strains are. In addition, experimental limit strains for
uniaxial tension and plane strain states are plotted in Figure 20. The inhomogeneity parameter is kept
constant ( fi = 0.02) while altering the hardening exponent. As it is evident, for a certain value of fi,
two different hardening relations can contain a big range of the material scatter. However, the upper
bound of the FLB corresponding to n = 0.14549 overestimates the limit strains in the uniaxial tension
regime (γ = −0.5).
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Figure 20. (a) Parameter study of strain hardening exponent n with constant fi = 0.02, (b) Parameter
study of inhomogeneity parameter fi with constant n and (c) Influence of plastic instability indicator β

with constant fi = 0.01 and n = 0.08579 (all strains are normalized with respect to the mean
uniform strain).

Similar to the study of the strain hardening exponent, the influence of inhomogeneity parameter fi
is studied in Figure 20b. In this study, the hardening exponent n is set to 0.08579 and fi is varied
from 0.01 to 0.04 so that the FLB can capture the largest range of the the experimental limit strains for
both, uniaxial and plane strain states. Lower inhomogeneity values, i.e., smaller thickness variations,
result in a higher potential to resist necking. Consequently, setting fi to 0.01 results in substantially
higher limit strains than the ones with fi = 0.04 as shown in Figure 20b. Here, by fixing n and
varying fi, the FLB is not only overestimating the strains in the equibiaxial loading but also not
covering the entire scatter from the experiment.

Limit strains are defined as the starting point of material instability. While generating the
numerical FLC, the limiting value of the plastic instability indicator β is considered as 0.1. However,
it is not possible to denote the onset of necking by a single value. In Figure 20c, normalized limit
strains with three different instability criteria are shown. It is apparent that changes in β values do not
have a strong influence on the limit strain values, provided that β is chosen small enough. Therefore,
the change of β from 0.1 to 0.04 yields negligible changes in the limit strains. Nonetheless, the choice
of a large value such as β = 0.5 will lead to an underestimation of the limit strains.

It is observed that fixing a parameter and varying another puts a big constraint either
on the numerical solution or on the form of FLB so that the material scatter is not captured
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anymore (see Figure 20). Therefore, both remaining parameters, namely the hardening exponent n and
the inhomogeneity parameter fi must be set simultaneously.

To this end, the scatter of a data set is quantified using the standard deviation. As the material
scatter is expressed in terms of the hardening exponent n, the standard deviation can provide a
band where most of the n values will lie. Beforehand, the normal distribution of n is checked
using a quantile-quantile plot. As shown in Figure 21, results approximately follow a straight line,
which indicates the distribution to be normal.
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Figure 21. Quantile-quantile plot of sample data n.

With the help of standard deviation (±2σ) of the mean (µ), a band of n can be defined, which
statistically contains 95.45% of all values. The mean of the distribution of n is found to be 0.0791.
Employing standard deviation, the interval of n is found within the interval of [0.0410, 0.1171].
Therefore, these limiting values of n measure the scatter in the material properties. Next, for the
statistically obtained n bounds, the corresponding fi values are set to 0.02 and 0.018 to cover the
experimentally determined limit strains.

In Figure 22, upper and lower bounds of FLB are plotted in terms of normalized major-minor
strains. Experimental results of 72 representative samples are found to be within the range of
numerically generated bands. Evidently, by considering a range for n and fi, the FLBs divide the region
into safe, necking and failed zones. Here, the failed points are captured experimentally immediately
before the rupture of the specimen whereas the safe points present the strains before the onset of the
necking. Figure 23 depicts the numerically determined forming limit band in terms of equivalent
plastic strains.
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7. Conclusions

In the present work, a modified Marciniak–Kuczynski model with an inclined groove is
implemented to generate forming limit bands. The model is derived for planar anisotropic rate
dependent material. However, due to the application of manganese boron steel (22MnB5), it is
simplified later to planar isotropy and rate independence. In this model, the concept of zero extension
angle for the tension-compression quarter of the FLCs is applied. The form of the numerically
determined FLCs is governed by different material and numerical input parameters. The material
parameters are obtained by fitting the Swift hardening relation to the material response of the tensile
tests. To this end, different samples are extracted from car body components and subjected to tensile
loading. Since the material properties show a considerable scatter, statistical analysis is established
to incorporate the scatter into the FLCs along with the numerical parameters. In order to capture
the full field strains during the tests, digital image correlation is used in addition to conventional
measuring systems. As expected, manganese boron-steel exhibits a considerable material scatter which
cannot be captured by a single FLC. Hence, a band of FLCs, namely a forming limit band is generated
by incorporating the effects of the material scatter (hardening exponent) as well as the numerical
parameters, namely inhomogeneity and instability parameters. Furthermore, the material scatter is
statistically analyzed to calibrate the bounds of the FLB. From the generated FLB, the limit strains of
the material are segregated into various regimes, i.e., safe, necking and failure. In this way, the necking
of a material during a car crash is not represented by a single curve, but by a band of curves.
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Appendix A

The mathematical formulation of forming limit curve is developed based on the modified
Marciniak–Kuczynski model and written according to the paper of Rocha et al. [15]. To describe
the plastic behavior of the material, the yield criterion, flow rule, and hardening relation are defined
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Hill’s criterion to define the yield surface of the material is given by

2 f = F σ2
yy + G σ2

xx + H (σxx − σyy)
2 + 2 P σ2

xy, (A1)

where material constants are expressed as

F =
R0

R90 (1 + R0)
,

G =
1

1 + R0
,

H =
R0

1 + R0
,

P =
0.5 (R0 + R90)(2R45 + 1)

R90 (1 + R0)
.

(A2)

The Levy-von Mises flow rule is given by

dεij = dλ′
∂ f
∂σij

, (A3)

where dλ′ is the hardening parameter and expressed as

dλ′ = dε̄/σ̄. (A4)

Finally the material hardening relation with the strain rate dependency is determined by

σ̄ = C1 (ε0 + ε̄)n ˙̄εm. (A5)

Apart from the above-mentioned material behavior, the force equilibrium, compatibility relations
and incompressibility condition specific to the model are used to develop the mathematical model
of FLC. The incompressibility condition is given as

dε1A + dε2A + dε3A = 0. (A6)

The force equilibrium conditions are

σnn
A tA = σnn

B tB,

σnt
A tA = σnt

B tB,
(A7)

where n and t denote the normal and tangential direction with respect to the inhomogeneity, respectively.
The compatibility condition across the discontinuity is defined by

dεtt
A = dεtt

B. (A8)

Force equilibrium equation along the normal direction can be represented as

σ̄A

(
σnn

A
σ̄A

)
tA = σ̄B

(
σnn

B
σ̄B

)
tB. (A9)

Incorporating the material inhomogeneity factor fi and hardening relation (Equation (A5)) in the
above equation, the residual can be derived as

σnn
A /σ̄A

σnn
B /σ̄B

= (1− fi) exp(ε3B − ε3A)

(
ε0 + ε̄B
ε0 + ε̄A

)n ( dε̄B
dε̄A

)m
. (A10)



Metals 2018, 8, 631 22 of 25

Since anisotropy directions coincide with the principal stress axes in the homogeneous region (A),
the numerator of the left hand side of the above equation can be written as

σnn
A

σ̄A
=

A1

A2
, (A11)

with

A1 = (cosψ)2 + α (sinψ)2

and

A2 =
√

1 + (F + H) α2 − 2 H α.

(A12)

To evaluate the denominator of left-hand side of residual (Equation (A10)), the stress tensor is
transformed to the x-y reference axes, as anisotropy directions do not overlap with the principal stress
axes in inhomogeneous region (B). At first, σnn

B /σ̄B is expressed in terms of material anisotropy
and groove orientation by means of simultaneous division of both force equilibrium equations,
which reads as

σnt
B

σnn
B

=
σnt

A
σnn

A
= K0. (A13)

After tensor transformation, the above equation becomes

σ
xy
B

σxx
B

= K1
σ

yy
B

σxx
B

+ K2, (A14)

with:

K0 =
(sinψ cosψ)(α− 1)

A1
,

K1 =
sinψ cosψ

α (sinψ)2 − (cosψ)2 ,

K2 = −α K1.

(A15)

Using the compatibility relation (Equation (A8)) and stress transformation, the following relation
is established

A3 dε̄A/dε̄B
σxx

B /σ̄B
= sin2ψ− H cos2ψ +

σ
yy
B

σxx
B

[(F + H) cos2ψ− H sin2ψ]− 2 P
σ

xy
B

σxx
B

sinψ cosψ, (A16)

with

A3 =
(1− H α) sin2ψ + {(F + H) α− H} cos2ψ

A2
. (A17)

Finally, using the above equations, the residual is expressed as

cos2ψ + α sin2ψ√
1 + (F + H) α2 − 2H α

= (1− fi) exp(ε3B − ε3A)

(
ε0 + ε̄B
ε0 + ε̄A

)n ( dε̄B
dε̄A

)m
√

B1 (dε̄A/dε̄B)
2 + B2

B3
, (A18)
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with

B1 = B4 B8 A2
3 − B6 B5 A2

3,

B2 = B5 B2
7 − B4 B2

9,

B3 = B8 B2
7 − B6 B2

9,

B4 = {(sinψ)2 + 2 K1 sinψ cosψ}2,

B5 = {(cosψ)2 + 2 K2 sinψ cosψ}2,

B6 = F + H + 2 P K2
1,

B7 = (F + H) (cosψ)2 − H (sinψ)2 − 2 P K1sinψ cosψ,

B8 = 1 + 2 P K2
2,

B9 = (sinψ)2 − H (cosψ)2 + 2 P K2 sinψ cosψ.

(A19)

The strain increments in thickness direction in homogeneous region (A) is calculated by using the
flow rule and the incompressibility equation

dε3A = A4 dε̄A, (A20)

where
A4 = −G + F α

A2
. (A21)

Due to the presence of angular groove, the calculation of the strain increment in inhomogeneous
region is lengthy but still straight-forward. Using Levy-von Mises flow rule along with previously
derived equations, thickness strain increments in inhomogeneous region are computed as:

dε3B = −

H6

√
B1 (dε̄A/dε̄B)

2 + B2

B3
+ H7

(
dε̄A
dε̄B

) dε̄B (A22)

where

H1 = (sinψ)2 − H (cosψ)2,

H2 = (F + H) (cosψ)2 − H (sinψ)2,

H3 = −2 P sinψ cosψ,

H4 = H1 (cosψ)2 + H2 (sinψ)2 + 2 K0 sinψ cosψ (H2 − H1) + H3 (sinψ cosψ)− H3 K0 {(sinψ)2 − (cosψ)2},
H5 = H1 (sinψ)2 + H2 (cosψ)2 − H3 sinψ cosψ,

H6 = G (cosψ)2 + F (sinψ)2 + 2 K0 sinψ cosψ (F− G)− {G (sinψ)2 + F (cosψ)2}H4

H5
,

H7 =
A3{G (sinψ)2 + F (cosψ)2}

H5
.

(A23)
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