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Abstract: Aluminium alloy foam is a lightweight material with high energy absorption properties and
can potentially replace bulk Al-components. The aim of this work is to develop a brazing technique
to join aluminium facing sheets to aluminium alloy foam to obtain aluminium foam sandwich panels
for applications where high service temperature is a requirement. Al-6016 alloy sheets were brazed
to aluminium alloy foam using two aluminium based (Al-Cu-Mg and Al-Si-Mg-Ti) metal glasses at
560 ◦C–590 ◦C in an argon atmosphere. Microstructure and microhardness profiles of the aluminium
alloy sheet/aluminium alloy foam brazed joints were analysed using a microhardness tester and scanning
electron microscope equipped with electron dispersion spectroscopy. A three-point bending test was
conducted to study the flexural behaviour of the aluminium foam sandwich composite panels.

Keywords: joining; diffusion; Al-alloy foam; metal glass; brazing; aluminium foam sandwich composite;
flexural properties

1. Introduction

Aluminium foam sandwich (AFS) panels, compared to bulk Al components of the same mass,
are multifunctional, stiffer, and offer excellent corrosion resistance for many industrial applications
including automotive, marine, aerospace, construction and railway [1,2]. AFS are made of thin rigid
Al-alloy sheets (facing sheets) joined with a porous, lightweight Al-alloy foam (core). The outer
sheets bear the tensile loads while the foam core contributes to absorbing static and dynamic impact
energies [3]. Most recently Al-alloy metal foam parts were developed by the Technical University
Berlin and Pohltec Metalfoam used in the prototype of an ultra-light electric vehicle recently developed
in a European project [4].

Different applications of AFS have led to the development of various Al-alloy foam manufacturing
and Al-alloy foam/Al-alloy sheet joining techniques, such as casting, brazing [5], and soldering [6]
techniques. The current practice of AFS components joining using adhesives and solders restrict the
applications of AFS composite panels in the range 220 ◦C–380 ◦C. The fabrication of AFS composite
panels for higher service temperatures requires alternative joining methods and materials, which
is focused in this study. The AFS obtained by brazing the facing sheets to the core can meet the
heat resistance, stability at elevated temperatures and non-flammability requirements, which are not
satisfied when the facing sheets are joined to the core by an adhesive or a solder alloy [7].

In general, a configuration comprising two massive face sheets or a hollow metal piece with a
foamable material in the core layer is adapted to produce AFS bonded by the foaming technique.
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The central foamable aluminium-based material melts at a lower temperature with respect to face
sheets. This difference in the melting temperatures is exploited to produce AFS composite panels by
expanding the foamable material and prevent the face sheets from melting [2].

The melting temperature of the most common foamable precursor alloy (AlSi6Cu4 or AlSi6Cu6) is
524 ◦C which can be coupled with 1xxx, 3xxx, 5xxx, and 6xxx series Al-alloys face sheets to produce
AFS panels by foaming technique [7]. The solubility of Mg, Cu, and Ti in solid aluminium, by weight,
is 17.4% at 460 ◦C, 5.65% at 548 ◦C, and 1.3% at 665 ◦C, respectively [8], and their addition suppresses
the melting point of the aluminium-based alloy and/or precursor. The addition of Ti traces to the
Al-Si-Mg system is suggested to be further beneficial as the diffusion of Ti atoms towards Al is more
pronounced than Al atoms towards Ti [9]. The advantage of replacing Cu with Mg is the improved
corrosion resistance [4]. The disadvantages of bonding Al-alloy sheets to Al-alloy foam by the foaming
process include the restricted set of possible alloy combinations for the core and face sheet due to the
necessity to coordinate the melting temperatures of the core and the sheet, the need to use expensive
metal powders, and the high number of processing steps [7].

Soldering/brazing is a well-known joining method, where a relatively low melting filler material
is used to bond two similar or dissimilar materials by heating. The success of soldering/brazing process
depends on careful optimization of the fundamental parameters, such as time, temperature, and the
provided atmosphere (inert/vacuum). The brazing cycle itself can be considered a thermal treatment
to achieve a precipitation hardening effect whenever the adopted cooling rates are sufficiently fast [10].
The pore structure of aluminium alloy foam and Al-sheet collapses at higher temperatures and also
densifies the AFS due to difficulty in the foaming of the weld pool along the joint.

Huang et al. [11] and Wan et al. [12] proposed fluxless soldering options, with and without
mechanical vibration assistance, and used Zn-Al-Cu-Mg-Mn-Ag alloy as the joining material. Al-Si
alloys have been used as filler materials, for AFS with a 6xxx series Al face sheet, which contain
7–12 wt % silicon as a melting point depressant [13]. The addition of Mg, Si, and Cu to Al, if added up
to their respective solubility limits, increases the mechanical strength of the joint [14]. Most recently,
Ubertalli et al. [15] reported a soldering method using pure Zn or Zn + 2%Al as joining materials in
an argon atmosphere as a simple, reliable, and less time-consuming alternative to achieve a porous
joint. In the recent past, Nannan et al. [5] successfully experimented with higher temperature brazing
of Al-alloy foam to itself in vacuum at 590 ◦C using a multilayer Al12Si1.8Mg alloy as the brazing
filler metal, however, the brazing of Al-alloy sheets to Al-alloy foam for applications where the service
temperature is above 400 ◦C is still required.

In this study, AFS panels were produced by using two Al-based (Al-Cu-Mg and Al-Si-Mg-Ti)
metal glasses as a brazing material: the choice was dictated by their composition, which is similar to
the Al-alloy foam precursor [8,16,17]. The Al-alloy sheet/Al-alloy foam joints were characterized by
microstructural observation and microhardness analysis through the thickness. Three-point bending
tests were conducted to evaluate the flexural behaviour and to determine the bending strength of the
produced AFS panel. A comparison of different joining materials for AFS, the effect of high-temperature
brazing on Al-6016 sheets, and the optimization of the joining processes are discussed.

2. Materials and Methods

Aluminium alloy (Al-6016) sheets were brazed to a pre-manufactured Al-alloy foam plate to
obtain aluminium foam sandwich (AFS) panels using metal glasses as a joining material. Al-6016
(Al 98.4% + Si 1.2% + Mg 0.4%), 1.2 mm thick plate (density 2.7 g/cm3), one of the most common Al
alloy used in automobile industry, was selected as the facing sheet material for AFS. A lightweight
(1/10 aluminium, 1/30 iron, 1/4 wood), closed cell, non-flammable and recyclable (eco-friendly)
Al-alloy foam, (Alporas Type, Composition: Al1.5Ca + 1.5 Ti wt % [16]), 9 mm thick, average density
0.24 g/cm3 (measured dividing mass by volume), produced by Foamtech, Seoul, South Korea and
supplied by Vaber, Torino, Italy, was used as a core material.
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The production of Alporas foams starts with the addition of 1.5 wt % calcium metal into the
molten aluminium to increase the viscosity by the formation of calcium oxides. Titanium hydride
(TiH2) is added (typically 1.6 wt %) as a blowing agent. The melt starts to expand slowly and gradually
fills the foaming vessel at constant pressure. Upon cooling the liquid foam turns into a solid Al
foam [18,19].

The macrographs of cross-sectional surfaces of a set of twenty-five Al-alloy foam samples
of dimension 9 mm × 20 mm were analysed, using the free digital image analysis software,
Image-J (Fiji) [20], to determine a statistically relevant average pore size and pore distribution in
the cross-section of Al-alloy foam used in this study. The Al-alloy foam surface is characterized by cells
of variable size and their walls and plateau borders represent the surface area available for joining.
Lower average pore size results in a higher density of foam and also in an increase of available area
for joining.

Figure 1a represents the as-received closed cell Al-alloy foam surface, Figure 1b the prepared
samples for macro-image and Figure 1c the digitally-elaborated image of the Al-alloy foam surface.
The Image J gives 2D results for the equivalent pore size as most of the cells were not cut through their
maximal diameter due to their non-homogenous distribution in the foam structure. Figure 1d shows
the pores distribution on the surface of 25 Al-alloy foam samples that fit into a bell-shaped curve;
the equivalent pore diameter calculated was 5.2 mm ± 1.5 mm. The pore cell walls and the plateau
borders, which constitute the potential joining area, accounts for around 12.8% of the total Al-alloy
foam plate surface area.
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Figure 1. (a) Closed-cell Al-alloy foam, (b) scanned image of resin embedded Al-alloy foam
(representative) sample used for pore size/distribution analysis, (c) adjusted black and white layout
(binarization) of Al-alloy foam surface by Image J software and the Identification of pores per unit area,
and (d) the average equivalent pore size distribution.

The brazing materials were two Al-based amorphous brazing alloys (metal glasses), Al-14Cu-4Mg
alloy (0.06 mm thick foil) and Al-7Si-2Mg-1Ti (0.08 mm thick foil) produced by the rapid planar flow
casting method [21]. Al-6 flux supplied by Stella Srl, Albizzate, Italy was used to improve the joining
surface wettability and to prevent Al-oxide inclusions in the joints.

The joining faces of Al-alloy sheet and Al-alloy foam were first abraded with 120–360 grid SiC
emery paper to remove the surface oxide layer and then cleaned with alcohol in an ultrasonic bath at
60 ◦C for 10 min. Subsequently, the Al-alloy foam surface (Figure 1a) was activated by using 12% nitric
acid solution for 30 min as is suggested by Qingxian et al. [22]. The stacking configuration adopted for
AFS in the current study is shown in Figure 2a.

The brazing experiment was carried out in a tube furnace (Carbolite Gero®, Hope Valley, UK)
at 560–590 ◦C for 10–15 min at a heating rate of 600 ◦C/h–1000 ◦C/h, and then cooled (100 ◦C/h
cooling rate) to room temperature, in an argon flow. Several sets of time/temperature pairs were
tried to achieve good joints. The optimized conditions to join Al-alloy foam to Al-6016 facing sheets
were: brazing for 10 min at 560 ◦C when three foils Al-Cu-Mg amorphous alloy were used as brazing
material and brazing for 15 min at 590 ◦C when three layers of Al-Si-Mg-Ti were used as the brazing
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material. During the joining process optimization, a lower brazing temperature was preferred with
respect to a shorter time because at higher temperatures the Al-alloy sheets were severely affected.
The average density of AFS produced with Al-Cu-Mg and Al-Si-Mg-Ti amorphous joining materials
was observed at 0.89 ± 0.01 g/cm3 and 0.82 ± 0.01 g/cm3, respectively.
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Figure 2. (a) AFS composite stacking configuration, and (b) the three-point bending (flexural) test assembly.

At the optimized brazing conditions, six AFS composite specimens were produced (three
specimens with each of the brazing materials) for mechanical characterization and metallographic
cross-section analysis. The AFS cross-section morphology was analysed using an optical microscope
(OM) and scanning electron microscope (SEM) equipped with electron dispersion spectroscopy (EDS).

The microhardness of the base components (Al-alloy foam and Al-alloy sheet) and the Al-alloy
foam/Al-alloy sheet joining interface was determined using a microhardness tester equipped with a
VM4-USB camera and measuring software VMS-VMH software (Leitz–Wetzlar, Wetzlar, Germany).
The cross-sections of AFS brazed specimens were cut off the sandwich AFS specimens and the open
foam pores were completely filled with resin to avoid the deterioration and/or buckling of the foam
cell walls during grinding, polishing, and subsequent microhardness testing. In the case of Al-alloy
foam, microhardness was preferably measured in the vertices or in the thicker cell walls. Vickers
hardness values were obtained using a load of 10 g for 30 s at various positions in the Al-alloy foam,
Al-alloy sheet and at the joining interface of the AFS before and after the brazing process.

The brazed AFS specimens produced for the flexural test were 60 mm long, 20 mm wide with a
total thickness of around 11.4 mm. In order to analyse the effect of brazing conditions on the properties
of base materials, three specimens of each base material (Al-alloy sheet and Al-alloy foam) were also
subjected to three-point bending test before and after the similar thermal treatment adopted in this
study. All three-point bending tests were conducted using a universal testing machine (MTS-810
at DISAT, Politecnico di Torino) at room temperature (25 ◦C) and 65% relative humidity. Figure 2b
presents the three-point bending test assembly configuration and the parameters adopted during the
test. When 10 mm cross-head displacement was reached, loading was stopped. The collapse behaviour
of Al-alloy foam and the failure modes of AFS components were determined by analysing digital
images and the video recorded for each test event.

3. Results and Discussion

3.1. Al-Alloy Sheet/Al-Alloy Foam Joint Microstructure Analysis

Transverse metallographic sections of the produced AFS components were obtained and observed
using OM, SEM, and EDS.

Figure 3a,b micrographs of polished cross-sections of the two categories of produced AFS show
apparently good connections at the interface between the joining substrates (Al-alloy sheet and Al-alloy
foam) after the brazing process. As the Al-alloy foam is non-homogenous and the pores size and
distribution vary, therefore, Al-alloy sheet/Al-alloy foam joint is not continuous. The amount of
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Al-alloy foam/Al-alloy sheet connecting points depends on the number of cell-walls and the plateau
border per unit area in the foam surface as discussed in Section 2.
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amorphous alloy; and (b) using Al-Si-Mg-Ti amorphous alloy.

Figure 4 presents the micrographs of the AFS specimen brazed with Al-Cu-Mg brazing alloy at
higher magnification. Al-alloy foams are relatively stable at higher temperatures (melting T = 660 ◦C)
because the metal matrix contains finely dispersed oxide particles originating from the surfaces of
the powder particles in the foamable precursor material [23]. However, after the brazing process,
the precipitation of finely dispersed secondary particles was observed, Figure 4a, throughout the
Al-alloy foam wall structure. In a similar investigation [24], the formation of Mg2Si and AlFeMnSi
phases in the microstructure of heat treated Al-alloy foam (6xxx series, at 503 ◦C for 90–100 min) were
observed. The microstructure analysis of the joining interface revealed that Al-Cu-Mg alloy melted and
reacted with the joining substrates when the temperature reached 560 ◦C. At this brazing temperature,
the Al-alloy sheet partially melted along some grain boundaries and, after the solidification, a porous
microstructure appeared due to shrinkage of the melted zones, Figure 4c,d. It happened due to the
diffusion of molten Al-Cu-Mg glass alloy into the Al-alloy sheet which suppressed the melting point
of Al-alloy sheet and resulted in its partial melting, as can be seen in Figure 4b,c. Similar observations
are reported by Ubertalli et al. [15] where Zn based joining material suppressed the melting point
of the Al-alloy (6016) sheet during the soldering of Al-alloy foam (Alporas) to Al-alloy (6016) sheet.
Figure 4e,f evidences the formation of secondary phase particles’ precipitation in the microstructure of
the Al-alloy sheet.
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SEM and back-scattered observation were conducted to show the type of secondary phase
compounds dispersed in the microstructure, Figure 5. Figure 5a shows a sound connecting point
between the Al-alloy sheet and Al-alloy foam where the brazing alloy is diffused into the joining
substrates. The spot EDS analysis, conducted in the arrows positions confirmed the presence of Cu-rich
and Mg-rich, Figure 5b, containing compounds, along with traces of oxygen, which evidences the
possible formation of oxides.

At the brazing temperature (560 ◦C), the brazing amorphous alloy with 14% Cu produces a liquid
phase in equilibrium with Al alpha (α) solid phase that solves around 5.6% of Cu at the eutectic
temperature and rejects the excess Cu as coarse theta (θ) particles. During cooling, the solidification of
the liquid produces eutectic microstructure containing precipitates of θ particles. Below the eutectic
temperature, the amount of Cu in α phase decreases and this can both induce a growth of the primary
formed θ particles and/or the formation of new finer secondary θ phase particles. At room temperature,
the α phase contains less than 0.5% Cu while the inter-metallic compound, CuAl2 (θ) contains 52%
Cu, Figure 5b (Cu-rich phase). The θ particles have a moderate strengthening effect on the alloy
properties [25]. The contribution of Mg as an alloying element is the formation of stable intermetallic
compounds β-Al3Mg2 and γ-Al12Mg17 [26,27], Figure 5b (Mg-rich phase). Both of these intermetallic
compounds (Cu-rich and Mg-rich) are brittle [28] which may influence the mechanical properties of
the resultant alloy.
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In fact, the solid-state diffusion is a time-temperature dependent phenomenon and it becomes
more rapid at a temperature above 425 ◦C when Mg diffuses very quickly and forms oxides at higher
melting temperature [29] at early stages of the brazing process. Orman et al. [30] reported that Mg
favours the formations of oxides and suggested that oxide free joint can be achieved if Mg content
is restricted to or below 0.3% along with the use of standard brazing flux. Higher amounts of Mg
deteriorate the brazing joint quality due to the formation of oxides, having higher melting points,
which reduces the fluidity of molten cladding alloy. The lower brazing alloys fluidity affects the
resultant joint strength, which has a direct relation to the extent of the wetted surface area. Moller and
Grann et al. [31] suggests that, at a temperature above 570 ◦C, Mg vaporizes and produces a “mag
burst” which works as an oxygen getter. This loss of filler metal caused by vaporization reduces the
quantity of joining material and compromises the joint strength.

For this reason, the second selected amorphous brazing alloy as a joining material used was with
a lower Mg content, to avoid the higher amount of oxide formation while the addition of Si and Ti
maintains the strength properties of the joint.

The metallographic analysis of the AFS cross-section, where Al-Si-Mg-Ti was used as a brazing alloy,
are shown in Figure 6. Formation of relatively smaller secondary phase particles with agglomerated,
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but smaller, second phase particles was observed in the morphology of Al-alloy foam, Figure 6a,
as compared to those observed in Figure 4a. Very likely, a higher brazing temperature and longer
brazing time triggered the grain growth and allowed the recrystallization of secondary phase particles.
Figure 6b,c shows that most of the brazing material reacted with the joining substrates (Al-alloy foam
and Al-alloy sheet) when the brazing temperature was raised to 590 ◦C and brazing time to 15 min.
The amount of liquid phase was enough to join the Al-alloy sheet to Al-alloy foam without suppressing
the melting point of Al-alloy sheet. The higher brazing temperature activated the melting of Al-alloy
sheet mainly along the grain boundaries to some extent. Figure 6c,d show the eutectic mixture after
solidification of the liquid phase along the grain boundaries of α the Al-rich phase with almost lamellar
microstructure around some grain boundaries. Figure 6e,f indicates the formation of secondary phase
particles dispersed in the microstructure of the Al-alloy sheet.
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Figure 6. Macro- and micrographs, showing the Al-alloy sheet/Al-alloy foam joint produced using
Al-Si-Mg-Ti amorphous alloy, (a) Al-alloy foam, (b,c) Al-alloy sheet/Al-alloy foam joint interface,
and (d–f) Al-alloy sheet.

Figure 7 shows SEM micrographs of an Al-alloy foam/Al-alloy sheet joint interface produced
using Al-Si-Mg-Ti amorphous alloy. Figure 7a shows a sound brazed joint produced at the interface of
the joining substrates. The spot EDS analysis, conducted in the arrows positions, confirms the formation
Mg-rich, Si precipitates, and Ti-rich phase, intermetallic compounds, Figure 7b. The oxygen traces
were, however, observed within or in the surroundings of the intermetallic compounds, confirming
the formation of oxides. The possible reasons for the oxidation during the brazing of AFS are the
entrapped air inside the foam cells, the presence of oxides on the surface of amorphous joining strips
and/or the oxide layer on the inner surface of the foam pores.
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When the Si percentage is higher than 1.65%, the eutectic reaction takes place at 577 ◦C at a silicon
weight percentage of 12.6%. Directly from the liquid phase Al-Si eutectic microstructures form when
the Si content is 12.6% (hypoeutectic when the Si content is lower and hypereutectic when the Si content
is higher). Upon slow cooling (cooling rates between 1–10 K/min), Si precipitates typically in a coarse
and flaky morphology provided that no chemical modifiers are added [32]. Luo and Acoff et al., [10]
reported the formation of a TiAl3 compound as the only compound after a reactive diffusion between
Ti and Al in the temperature range of 516–642 ◦C. MgO and Al-Ti compound phases generally have
higher melting points and favour the thermal stability of the joint but, on the contrary, they hinder the
wettability of joining surfaces during brazing.

3.2. Microhardness Analysis

The microhardness values determined for AFS components before and after the brazing heat
treatment are presented in Figure 8.
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Around a 35% decrease in the average microhardness of the Al-alloy sheet was observed after the
brazing process due to the grain growth (Figures 4d and 6d). However, the thermal treatment studies
of the Al [33] suggests that the strength and hardness properties can be recovered if brazing joining is
followed by a proper solution heat treatment and ageing temper.

Instead, the microhardness values of the Al-alloy foam before and after the thermal treatment
were found to be almost similar. The Al-alloy foam production process and characteristics support
such behaviour. Luo and Acoff et al. [9] also subjected Al-alloy foam to heat treatments at different
temperatures and reported no significant changes in the mechanical properties of Al-alloy foam.

The joints produced with Al-Cu-Mg brazing alloy showed around 15% higher microhardness
values with respect to that produced with Al-Si-Mg-Ti amorphous brazing alloy. The microhardness
of the secondary phase particles formed during brazing with Al-Cu-Mg amorphous alloy at 560 ◦C
was higher by around 43% in comparison to those precipitated during brazing using Al-Si-Mg-Ti
amorphous alloy at 590 ◦C. The higher reactivity of Al-Cu-Mg (as was observed) produced a higher
amount of joining melt, resulting in precipitation of secondary phase particles with relatively higher
microhardness values.
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3.3. Mechanical Characterisation

AFS base components (Al-alloy sheet and Al-alloy foam) and composite panels were tested
to determine the bending strength and to observe the failure modes involved. The load-crosshead
displacement curves shown in Figure 9 are representative results for the AFS components. Al-6016
facing sheet curves were almost overlapped, while those of the Al-alloy foam is the average one,
as the curves did not completely overlap due to the non-homogeneity of the foam in the as received
and treated conditions. The curves of facing sheets and the Al-alloy foam cannot be compared directly
as the Al-alloy sheet thickness (1.2 mm) was completely different from the Al-alloy foam (9 mm).
After the heat treatment (thermal simulation of the brazing process), the Al-6016 sheet showed around
65% decrease in bending load compared to the as-received ones, while the Al-alloy foam showed no
prominent difference in bending strength and bending behaviour before and after the heat treatment.
The mechanical properties of the Al-6016 sheet are affected by brazing and can be recovered by a
post-brazing heat treatment.
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The behaviour of the Al-alloy foam sandwich composite specimens (11.4 mm thick), subjected to
three-point bending tests is shown in Figure 10. The analysis of digital images and videos recorded
during bending tests showed that, after the elastic behaviour, at around 100 N, the loading cylinder
induced a localized deformation primarily at the loading point. With the increase in load, this deformation
progressively increased and reached the underlying Al-alloy foam. This induced a sheer plastic deformation
in the foam, as well as at the foam-sheet interface. When the shear stresses exceeded the apparent
maximum Al-alloy sheet/Al-alloy foam joint shear strength, the failure of the AFS structure occurred with
the delamination between Al-alloy sheets and foam, as can be seen in Figure 11a,b. Otherwise, in the
case of higher interface strength, the failure would occur in the core material [34]. The formation of less
deformable intermetallic compounds in the interface gives brittle behaviour in the joint, and this was the
reason for the obtained lower joining strength and the subsequent sudden delamination.
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Figure 10. Flexural behaviour of AFS components produced using Al-based amorphous brazing alloy.

The AFS composite specimens produced with the Al-Cu-Mg amorphous brazing alloy as joining
material, displayed around 16% higher bending strength at failure compared to AFS composite specimens
produced by using Al-Cu-Mg-Ti amorphous brazing alloy as joining material. The mechanical properties
of AFS components can also be further improved if subjected to post-brazing heat treatment [35].

A sharp drop in load-displacement curves evidenced the delamination (Figure 11) of Al-alloy
sheets when the cross-head displacement reached the 5.5 mm and 6.5 mm for AFS produced with
Al-Cu-Mg alloy and Al-Si-Mg-Ti alloy, respectively, Figure 10. After these points, the cylinder load
induced a bulking effect by local plastic foam deformation.
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Figure 11. Representative post-three-point bending test delaminated specimens (specimen dimensions:
60 mm× 20 mm× 11.4 mm). (a) Brazed using Al-Cu-Mg and (b) brazed using Al-Si-Mg-Ti brazing alloy.

The mechanical behaviour of AFS specimens subjected to three-point bending is influenced
by both the specimen specifications and test parameters. However, a general comparison has been
established in Table 1 to compare approximate service temperature (assumed to be 50 ◦C lower than
the joining temperature) and the bending load at failure results of the current work in comparison to
those of produced with different bonding techniques proposed in the literature.
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Table 1. Average three-point bending test results for obtained and similar AFS components reported in the literature.

Joint Joining Parameters Joining Material Specimen Dimensions, (mm) Span Length, (mm) Approx. Service
Temperature, (◦C)

Bending Load at
Failure, (N) Reference

Al-6016/Al-alloy foam 10 min at 560 ◦C Al-Cu-Mg amorphous alloy

1 l = 60

47 520 341 ± 30 Current work
2 b = 20
3 c = 9

4 t = 1.2

Al-6016/Al-alloy foam 10 min at 590 ◦C Al-Si-Mg-Ti amorphous alloy

l = 60

47 520 284 ± 20 Current work
b = 20
c = 9

t = 1.2

Al-6016/Al-alloy foam 1 min at 420 ◦C Pure Zn foils

l = 60

47 380 785 ± 50 [15]
b = 20
c = 9

t = 1.2

Al-6016/Al-alloy foam 5 min at 430 ◦C Zn-2Al alloy strips

l = 60

47 380 904 ± 60 [15]
b = 20
c = 9

t = 1.2

Al 1100-0/Al-alloy foam Room temperature Epoxy

l = 150

50 25 310 [34]
b = 35
c = 12

t = 0.34

Al 3104-H19/Al-alloy foam Room temperature Epoxy

l = 150

50 25 400 [34]
b = 35
c = 12

t = 0.34

Al-5056/Al-alloy foam 10min at 420 ◦C
(Without vibration)

Zn6.2Al4.3Cu1.2Mg0.8Mn0.5Ag alloy

l = 60

40 380 1000 [36]
b = 15
c = 15
t = 1.2

1 length, 2 width, 3 Core thickness, 4 Facing sheet thickness.
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Failure modes, including face yielding, face wrinkling, core yielding, indentation, complete,
partial, and no delamination of Al-alloy sheets were reported for AFS composite panels in the past
studies [15,37–40]. Isabel et al. [41] studied the flexural behaviour of adhesively-bonded AFS panels
and reported two different failure modes: (i) symmetric deformation, and (ii) asymmetric deformation,
for adhesively-bonded sandwich panels where failure occurred in the core due to excessive shear
stress and no delamination of facing skins was observed. However, the AFS produced in this study
delaminated at relatively lower load values due to the lower joining interface strength compared to
core shear strength.

AFS composites produced with the proposed joining technique failed at lower bending load in
comparison to those reported by [15], where the specimen dimension and test conditions are similar,
Table 1. However, the AFS composites produced with the joining technique proposed in this work
can sustain higher service temperature than other joining techniques, including adhesive joining
or soldering.

Unlike joining techniques based on adhesives, the soldering and brazing joining of Al-alloy sheet
to Al-alloy foam gives complete metallic character to the AFS structure, which is of importance for
automotive and aerospace applications, for instance. As a drawback, in the presence of particular
alloying elements, intermetallic compounds can form and give a brittle behaviour to the joints.
However, Swidersky et al. [42] suggested a caesium-containing flux material, as an effective solution
to avoid Mg-oxides by favouring potassium magnesium fluoride formation, which has lower melting
temperatures than required for oxide formation. Research in this direction is ongoing.

4. Conclusions

Joining of Al-6016 facing sheets to Al-alloy foam was carried out to produce AFS composite panels
using Al-based metal glasses in an argon atmosphere.

The composition of brazing alloys was selected on the basis of precursor materials used for
Al-alloy foam production. Higher diffusion of Al-Cu-Mg amorphous brazing alloy was observed into
the joining substrates compared to Al-Si-Mg-Ti amorphous joining alloy.

Sound connections between the Al-alloy foam and Al-alloy sheet were achieved, however,
the formation of hard and brittle intermetallic phases in the joining interface affected the maximum strength.

AFS produced in this study can be usefully applied at an operational temperature up to 520 ◦C.
However, the idea to achieve joining of Al-alloy sheet to Al-alloy foam using Al-based amorphous
alloys still needs improvement and optimization. Further improvement in joint strength of brazed
AFS can replace the traditional adhesive and solder joining methods currently in practice.
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