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Abstract: Due to the increased consumption of raw materials, energy, and the waste it generates,
recycling has become very important and fundamental for the environment and the industrial
sector. The production of duplex stainless—steel powders with the addition of vanadium carbide
in the high energy mechanical milling process is a new method for recycling materials for the
manufacture of components in the industrial sector. This study aims to reuse the chips from the
duplex stainless—steel UNS S31803 by powder metallurgy with the addition of Vanadium carbide
(VC). The mechanical milling was performed using a planetary ball mill for 50 h at a milling
speed of 350 rpm and a ball-to-powder weight ratio of 20:1, and the addition of 3 wt % of VC.
The material submitted to milling with an addition of carbide has a particle size of less than 140 pm.
After milling, the sample went through a stress relief treatment performed at 1050 °C for 1 h
and the isostatic compaction process loaded with 300 MPa. The sintered powders and material
was characterized by scanning electron microscopy, X-ray diffraction, and micro-hardness tests.
The milling process with an addition of 3% VC produced a particle size smaller than the initial chip
size. The measurement of micrometric sizes obtained was between 26 and 132 um. The sintered
material had a measurement of porosity evaluated at 15%. The obtained density of the material was
84% compared to the initial density of the material as stainless—steel duplex UNS S31803. The value
of the microhardness measurement was 232 HV. The material submitted for grinding presented
the formation of a martensitic structure and after the thermal treatment, the presence of ferrite and
austenite phases was observed. Thus, in conclusion, this study demonstrates the efficacy in the
production of a metal-ceramic composite using a new method to recycle stainless—steel duplex UNS
531803 chips.
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1. Introduction

Nowadays, a great motivation for metal research is developing ways to optimize steel for the
property of application through cost-effective processing routes [1]. In the stainless—steel family,
the stainless—steel duplex UNS 531803 has been widely used in many industrial sectors because of
its surface physicochemical properties and resistance to corrosion, abrasion and antioxidation [2,3].
Duplex stainless—steels are steels in which the microstructure consists of two main phases: austenite
(y-FCC) and ferrite («-BCC) in equal proportions, which can combine the good properties of the ferritic
and austenitic phases [3-6].
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The conventional manufacturing processes of duplex SS are complex and high-cost. However,
the powder metallurgy process, which is a near net shaping process with reduced processing costs,
is attractive for the production of duplex SS [7]. Grupta et al. (2015) performed a simulation and
experimental study of the synthesis of duplex stainless—steel nano-structures using planetary milling with
powder composition for Fe-Ni-Cr elements [8]. Tariski et al. (2014) obtained a duplex microstructure and
a balance between phases with the addition of alloying element powders such as Cr, Ni, Mo, and Cu,
in the planetary mill. They found that the sintering process at 1250 °C followed by rapid cooling
generated a mixed grain duplex microstructure and a phase balance [9]. Dobrzanski et al. (2007) used
a tubular mixer to correct the chemical composition of the duplex stainless—steel through a blend of
powders using an austenitic steel (Fe-17 Cr-13Ni-2.2Mo) composition with elementary Si, Mn and
Cu powders in order to correct the composition [10]. On the other hand, Shashanka & Chaira (2015)
utilized the Fritsch planetary mill to develop a duplex ferritic stainless—steel starting from a blend
of high purity Fe-Cr-Ni powders. Finally, they sintered all the samples at 1000 °C, 1200 °C and
1400 °C [11]. Garcia et al. (2012) studied a duplex stainless—steel by mixing powders of AISI 316
L austenitic steel and AISI 430L ferritic with the percentage of AISI 316L being adjusted to 25, 50,
and 75% by weight. The samples were compacted at 750 MPa and sintered at 1250 °C [12].

The increase in the costs of raw materials and energy in recent years has led to the development of
new methods to reuse machining chips as raw material for the production of mechanical components.
The reuse of recyclable materials has as its main objectives the minimization of environmental impacts
and the decrease of energy supply. The powder metallurgy route is an advantageous technique as 95%
of the machined metal chips can be recovered [13]. Also, Canakci and Varol (2015) investigated the
milling process using used chips of aluminum 7075 to obtain powder with particle sizes smaller than
the initial chip size [14].

The powder metallurgy (PM) process has four stages: pulverization of scrap, mixing, compaction
to the shape of the final product and sintering. Methods like ball milling, target jet milling and
high-energy ball milling are used for pulverization of this scrap [15]. High-energy ball milling has been
used to improve particle distribution throughout the matrix and to produce a powder with irregular
shape and size [15-17]. Mechanical milling (MM) is characterized by frequent impulses created by
balls that introduce a high value of mechanical energy and strain. It results in work hardening and the
fracture of the particulates into smaller powder particles [14,18]. It is also a commonly used solid-state
powder processing technique involving repeated mechanical welding, fracturing, and rewelding of
powder particles in a high-energy ball mill [14,18-21].

The high plastic deformation induced in the duplex stainless—steel by high-energy ball milling
produces the formation of the martensitic phase. The deformation-induced martensitic transformation
phase is formed in an austenitic structure (7y — a’') [22-25]. Oleszak et al. (2007) produced austenitic
stainless—steel powder using a Fritsch planetary mill. These authors verified the formation of both
austenitic and martensitic phases in stainless—steel structures [26]. Mendonga et al. (2017) in preview
studies verified the formation of martensitic phase induced by deformation in the milling of chips of
duplex stainless—steel UNS S31803 after 50 h [22].

Metal matrix composites (MMCs) are used to improve the mechanical properties of steels
produced by powder metallurgy because the addition of carbides as reinforcement is advantageous [27].
The MMCs has at least two constituent parts: a metal and another material or a different metal,
reinforced with micro-sized ceramic/oxide in the shape of fibers or particles [28-30]. This fabrication
procedure allows for an acceptable uniform dispersion of reinforcing particles in a metallic matrix [31].
The manufacturing of MMCs by powder metallurgy offers some advantages compared with ingot
metallurgy or diffusion welding, such relatively low processing temperatures avoid strong interfacial
reactions and minimize an undesired reaction between the matrix and the reinforcement [32,33].
The P/M process usually involves the mixing of powders of the matrix alloy with the reinforcing
particles, followed by compacting and solid-state sintering [32]. Metal carbides have important
properties such as high temperature stability, high hardness and good electrical and thermal



Metals 2018, 8, 546 30f13

conductivity [34,35]. The addition of these carbides has also been shown to improve the efficiency of
the milling process. Kufffer et al. (2015) studied the addition of niobium carbide in the high-energy
milling of a 52,100 steel causes an increase in the efficiency of the milling process with a greater
reduction of particle size compared to carbide-free milling [36]. Dias et al. (2018) added carbides which
resulted in increased efficiency of the high energy milling process used in the recycling of aluminum
bronze alloy chips [37].

The aim of the present work was to evaluate a new method to recycle stainless—steel duplex
UNS S31803 chips. Thus, the result is to obtain reducing the cost of manufacturing in the industrial
sector and recycling the materials discarded in the machining process. In this study, was evaluated
the feasibility of reusing the UNS S31803 duplex stainless—steel chip by high-energy milling with
the addition of vanadium carbide. Also, the isostatic press was utilized to produce a metal-ceramic
composite. The obtained composite was investigated using scanning electron microscopy, X-ray
diffraction, and micro-hardness tests.

2. Materials and Methods

The raw material in the form of chips used in the high-energy milling process was obtained
by machining sheet metal of a duplex stainless—steel UNS 531803 with low rotation and no use
of lubricants, thus avoiding contamination with soluble oil. The average size of the chips was
characterized by binocular stereoscopic microscopy (Model Olympus SZ61, Tokyo, Japan). For the
milling, 3 wt. % VC with an initial size between 5 um and 10 pm was added in a high energy mill of the
Noah-Nuoya model NQM 0.2 L (Yangzhou Nuoya Machinery CO., LTD, Yangzhou, Hanjiang District,
China), the speed was 350 rpm, mass/ball ratio of 1:20 and milling time of 50 h with argon atmosphere
to avoid the oxidation of the powders. After milling, a pre-grading was carried out through a 300 pum
sieve. A particle size analyzer (Microtrac model S3500, Microtrac Global Location, Montgomeryville,
PA, USA) was used to collect the particle sizes and their distribution. The characterization of the
obtained powders was carried out using a scanning electron microscope—Carl Zeiss EVO MA 15
(ZEISS Microscopy, Cambridge, UK)—in the secondary electron mode (SE), backscatter and energy
dispersion (EDS). The sample was polished with colloidal silica before microstructural analysis.

Thereafter, a stress relief treatment was performed at 1050 °C for 30 min on the furnace.
The samples were quenched in water. For the compaction process, the powder was submitted
initially to the uniaxial press (SCHULZ-Mod. 30T, Joinville, Brazil) at a load of 300 MPa to mold the
initial body. After that, the samples were subjected to isostatic at compaction (model WT Industria,
Sao Carlos, Brazil). Then, the samples were wrapped with latex in a vacuum environment (10~ mbar).
The pressing process was done at room temperature in three steps. In the first step, the samples were
allowed to stand for 5 min at 150 MPa pressure, then 250 MPa for 5 min and finally at 350 MPa for
20 min. Samples were placed in one oil-encased chamber. So, a uniformly distributed load was applied.
The samples were sintered in a vacuum muffle (Fortelab, Sao Carlos, Brazil) resistive furnace for 1 h at
1250 °C with a rated heating of 5 °C/min and they are left to cool in the furnace.

The identification of the phases in the microstructure was made using the X-ray diffraction
technique (PANalytical X'Pert Pro model B.V., Almelo, The Netherlands).The parameters used were:
scan angle from 45 to 135°, a pitch of 0.02° /s, and cobalt tube (A = 1.7890 A°). For the conditions as
received, and sintered, 10 measurements of Vickers microhardness with a load of 50 gf were carried
out in a Micro-hardness, Tester HV 1000 of the Digimess (Sao Paulo, Brazil). The dwelling time of
the micro-hardness test is 15 s. In order to do the analysis of the grain boundaries, the samples were
sanded, polished and subjected to an electrolytic attack at 5 V for 10 s with the oxalic reagent.

The green density of the samples was obtained by mass/volume ratio. The density after
sintering was taken by mass/volume ratio—and also by the Archimedes principle—according to
the ASTM STANDARD C 20 [38]. For the determination of the percent porosity in the sintered samples,
five images of each sample were taken and an average was calculated. The images obtained by Optical
microscopy were analyzed with the (Stream Basics 1.9.1. software, Olympus, Waltham, MA, USA).
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3. Results and Discussion

Figure 1 shows the initial characterization of UNS 531803 steel chips obtained by machining.
Basically, chip formation is a shear process involving plastic deformation within the shear zone [14,39].
The encircled region in Figure 1 shows the shear area of a particle caused by plastic deformation.
This process produced helical-shaped chips. It is observed that the obtained chips have an average
size of 8 mm. Figure 2 shows an enlargement of the regions of plastic deformation resulting from the
shear caused by the machining.
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Figure 2. Micrograph of duplex stainless—steel chips, SEM-secondary electron mode. Increased image
of the plastic deformation region.

Figure 3 shows the particle morphology obtained by SEM after high-energy milling with the
addition of 3% vanadium carbide, the chip-shaped material was transformed into particles with
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irregular morphology and heterogeneous size, ranging from 10 to 150 um. The material submitted to
milling with the addition of carbide has a particle size of fewer than 140 um and an average size of
67.42 pm.

Thus, the particle size obtained after 50 h of milling with 3% vanadium carbide was the
measurement by particle size analyzer and was found to be smaller than the initial chip size.
Mendonga et al. (2017) show that the addition of carbides increases the efficiency of the milling
process over carbide-free milling—this is due to the carbide particles, a material with a high hardness,
which collides with the chip. This collision causes a region of generalized stresses in the ductile particle,
leading to rupture through the combination of the ductile-brittle process [40].

Figure 3. Morphology of the UNS S31803 steel particles with addition of 3% vanadium carbide after
high energy milling for 50 h.

Figure 4 shows the particle size analysis, which reveals a distribution region with sizes between
20 and 200 um. Analyzing the graph, the particle size for the D50 factor with VC was 53.07 um with
50 h milling, which indicates that 50% of the particles have up to this size. Likewise, the reported
values for D10 and D90 are 26.45 um and 132.90 um, indicating that 10% of particles have dimensions
less than 26.45 pm and 90% of particles are below the size of 132.9 pum, respectively.
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Figure 4. Parameters D10, D50 and D90 and average particle size after high energy milling for 50 h.

Table 1 shows the average green densities which were 5.08 g/cm3. Also, the value measurement
by the Archimedes method after the sintering. After sintering, it was verified with the Archimedes
method that the average density of the samples produced with adding 3% vanadium carbide was
6.57 g/cm?. Tt is 16% lower than that of the steel produced by the melting process with the average
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density was 7.8 g/cm3. Shashanka et al. (2015) verified an increase in density values for the duplex
stainless—steels starting from Fe-Cr-Ni powders produced by powder metallurgy at temperatures of
1000 °C, 1200 °C and 1400 °C. These authors found the highest values of sintered density to ferritic
stainless—steel at 89% to 1400 °C following for 1200 °C with 83% of sintered density [11].

Table 1. Values of green density, sintered material density and Archimedes density of stainless—steel
with the addition of 3% VC.

Density in Green  Density of Arquimedes
(g/cm®) (g/cm®)
Duplex stainless—steel /3 wt % VC 5.08 £ 0.06 6.57 = 0.08

Sample

Figure 5 shows the micrograph of the sintered sample at 1250 °C for 1 h. Furthermore, it verified
the presence of uniform pore shapes distributed in the microstructure. The pores have dimensions
ranging from 3 to 20 um. The porosity is related to the particle size distribution. This facilitates atomic
diffusion and densification at the moment of sintering and resulting in a microstructure with a lower
porosity. However, in this study, the obtained porosity increased, although the process presented a
good distribution.

Abdoli et al. (2009) [41] performed the milling of Al-X wt % AIN (X =0, 2.5, 5 and 10)
composite powders in a planetary ball mill for 25 h. They found the sinterability was degraded
when increasing the reinforcement content material. Due to a decrease in the compressibility and green
density of the composite when increasing the amount of reinforcing material because this causes less
metal-to-metal contact.

Varol and Canakci (2013) [42] investigated the effects of weight percentage and particle size of
B4C reinforcements on the physical and mechanical properties of powder metallurgy Aly0y4-B4C
composites. Based on their study, the relative density decreased with increasing amounts of B4C
particles in the consolidated samples. They have more corrosion in the regions with pores.

Figure 5. Micrograph of a stainless—steel sintered at 1250 °C for 1 h. Images obtained by SEM.
Secondary electron mode.

Figure 6a shows the distribution of vanadium particles on the stainless—steel particles. It was
observed that the vanadium particles are located in both the matrix and the pores. Figure 6b identified
the particles using EDS. It shows the presence of a vanadium chemical element, as well as the presence
of iron, chromium and nickel elements, which are constituent elements of duplex stainless—steel. In this
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study, the temperature used was 1250 °C, which is below the melting temperature of the vanadium
carbide of 2800 °C so that the dissociation of carbon and vanadium elements does not occur. Figure 6a
shows the presence of the vanadium carbide on green color in the pores. The presence of carbide
on the surface of the particles makes the contact between the metal-metal particles impossible at the
moment of compaction. This situation then hinders the atomic diffusion process. Due to the impacts
generated in the milling process, a decrease in the size of the carbide can be observed, with particles
having sizes smaller than 1 pum.

b)

Figure 6. (a) Distribution of vanadium particles (green) on stainless—steel particles. (b) EDS spectrum
of 3% VC added stainless-steel.

Figure 7 shows the micrograph of the sample of stainless—steel compacted in the isostatic press
and then sintered at 1250 °C. In order to obtain an average of the samples, five images obtained
by optical microscopy were analyzed. In these images, 15% of porosity on sintered samples could
be observed.

In Figure 7, the red spots represent the pores, while the white spots represent the sintered duplex
stainless—steel. As reported above, at the moment of the compaction and sintering process, if this
ceramic is between two particles, it hinders the diffusion process of the samples, leading to an increase
in porosity.

Figure 7. Sintered stainless—steel microstructure at 1250 °C for 1 h. Regions in red indicate porosity.
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The microstructure analysis in Figure 8 shows images of duplex stainless—steel samples sintering
at 1250 °C. The grain contours can be observed in regions with larger particles. The presence of pores
with dimensions between 5 and 40 um is identified and the presence of grain with an average size of
20 um is observed inside the particles.

Figure 8. Sintered duplex stainless—steel UNS 531803/ Vanadium carbide microstructure at 1250 °C
for1h.

In Table 2 it is observed that the values of microhardness in the steel as received decreased from
284.16 HV0.05 to 232.02 HV0.05 for the sample subjected to milling with the addition of 3% VC and is
sintered to 1250 °C. The decrease in the microhardness of the sintered sample in relation to the sample
of the material as received is probably due to the presence of pores in the sintered sample and the bad
atomic diffusion that occurred during the sintering at 1250 °C. The hardness value obtained was 87%
compared to the sample as received and it was verified that the carbides help in the milling process,
increasing the process efficiency but reducing the hardness values, being related to the presence of
pores and not to the dissociation of these matrix elements, which is concentrated in regions with pores.

Table 2. Microhardness values of stainless—steel for different conditions.

Condition Microhardness (HV)
Sample sintering—1250 °C—1 h 232 +8
Material in condition as received 265 + 4

Figure 9 shows the X-ray diffractogram under the following conditions: material as received, 50 h
milled material after the tension relief treatment process, and the sintered material at 1250 °C. Note that
X-ray diffraction peaks are enlarged due to the decrease in particle size, due to the intense plastic
deformation that occurs during high-energy milling [43] as well as the high density of dislocations due
to the high degree of deformation imposed by the process [16]. During milling, different processes such
as structural defects, amorphization and reduction in grain size occur and this results in the broadening
of diffraction peaks [11]. It can be seen in the diffractogram of Figure 8 that after the milling process,
there was a decrease in the intensity and the broadening of the peaks of the ferritic (110) and austenitic



Metals 2018, 8, 546 90of 13

(111) phase. Note also the disappearance of the peaks of the austenite phase (200), (200), (311) and (222)
and the relative peak intensity of the ferrite (220). The presence of deformation-induced martensite
was also observed. Mendonga et al. (2017) verified the appearance of the martensite induced by
deformation after the milling process, by increasing the values of saturation magnetization obtained
by magnetic measurements [22].

The material was subjected to the stress-relief treatment at 1050 °C in the vacuum. After this
process ferritic and austenitic phases could be observed. The presence of the 3% vanadium carbide
was not observed on X-rays because it is below the detection limit of the apparatus.
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Figure 9. X-ray diffraction of stainless-steel under the following conditions: (a) as received (b) Milled
at the time of 50 h (c) after tension relief treatment of the powder and (d) Sintered at 1250 °C for 1 h.

Moreover, it can be seen in the diffractogram in Figure 10, in the regions of angles between 50°
and 54°, that after the milling process there was a decrease in the intensity and the broadening of the
peaks of the ferritic (110) and austenitic (111) phase, compared to the material as received (in the form
of a sheet), this occurs due to the non-uniform plastic deformation (microtension) of the crystal line
lattice resulting from the stacking faults, among other crystalline defects resulting from the grinding
process and the reduction of particle size [44].

After heat treatment, there is a decrease in the width of the phase peaks and also an increase
in the height of the phases. This behavior is associated with the reduction of micro-tensions caused
by annealing. After the process of stress relief and sintering, the presence of the ferrite phase and
the austenite phase is observed. The presence of the martensitic phase was not observed after the
heat treatment process. The deformation of martensite induced is not stable at high temperatures
and the reversion of martensite to austenite occurs by soaking at elevated temperatures [45-48].
Moallemi et al. (2017) [49] realized the cold rolling-reversion annealing was carried out at various
temperatures in the range of 750-1100 °C. These authors verified that there was an increase in the
reversion of the martensite fraction with the increase in temperature and a complete reversal occurred at
1050 °C. For the austenitic steels of the 304 family the total martensite reversion occurred at 750 °C [50].

Figure 10 shows a peak shift to the right for the ferrite phase (110) in the angle 52.14° for the
treatment of tension relief of 0.08° and 0.12° after sintering and also a displacement of 0.09 after the
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stress relief treatment and 0.14° after sintering for the austenitic (111) phase, which characterizes the
displacement of crystalline planes of the material after the sintering process.

In the industrial sequence for obtaining duplex stainless—steel by rolling includes two annealing
steps: one intermediate after the hot rolling and the final one after the cold rolling [51,52]. In most
applications, the duplex structures are manufactured from hot-rolled and annealed sheets. For this
reason, its crystallographic texture results from the phenomena of deformation, recrystallization
and phase transformation that occur in the austenite and ferrite phases [52,53]. These higher values
obtained for phase quantification for the material as received (in the form of sheets) could be related to
the crystallographic texture obtained in the processing of the material.

Likewise, Figure 10 exhibits an inversion of the intensity of the austenite peaks compared to that
of the ferrite for the treatment carried out at 1050 °C. It can also be observed as an increase in the
volumetric fraction of the austenite phase, the quantification value obtained by X-rays was 54% of
austenite and 46% of ferrite. When the solution-treatment temperature is above 1050 °C but below the
solvus line there is a progressive increase in ferrite content [54]. Gholami et al. (2015) [55] verified an
increase in the amount of ferrite phase with increasing temperature of annealing. The volume fraction
of ferrite for solution annealed at 1050 °C is 42% and increases to 52% and 69% for the sample solution
annealed at 1150 °C and 1250 °C respectively. According to these authors, this phenomenon can be
appropriately described by means of phase transformation diagrams [54,55].

The DSS is completely ferritic (8) and the cooling of the steel enhances the precipitation of austenite
at a temperature of 1300 °C [56]. On the other hand, fast water cooling can avoid the & — y. Then, in the
sample sintering at 1250 °C and the sample being cooled to the furnace, a larger amount of austenitic
phase may have occurred. Also, the formation of a larger amount of austenitic phase occurred in the
sample submitted to the sintering treatment at 1250 °C and the sample cooled to the furnace.
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Figure 10. X-ray diffraction spectrum extended between 50° and 54° after milling and also subjected to
stress relief and sintering treatment at 1250 °C for 1 h.

4. Conclusions

In this study, the results indicated that the powders obtained from the high energy ball mill
exhibited a high volume of particles in the sub-micrometric scale. The milling process, with an
addition of 3% VC, produced a particle size smaller than the initial chip size. The measurement
of micrometric sizes obtained were between 26 and 132 um. Due to the decrease in particle size,
the network deformation and the intense plastic deformation, the X-rays diffraction peaks are enlarged
after the high energy milling process. Diffractograms of the material subjected to the stress relief
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treatment at 1050 °C and sintering to temperature 1250 °C show the appearance of the ferritic, and the
austenitic. Also, the peaks of the martensitic phase are observed only on samples submitted after the
milling process and with no presence after treatment at 1050 °C.

The sintered material has a measurement of porosity evaluated at 15%. The obtained density of
the material was 84% compared to the density of the material as stainless—steel duplex UNS 531803
received. The value of the microhardness measurement was 232 HV. It is 13% exponentially less then
stainless—steel duplex UNS S31803 received. The decrease in hardness and the increase in porosity
values are related to the presence of the carbide on the surface of the particles making impossible
contact between the metal-metal particles at the moment of compaction.

The milling process is an alternative route to reuse the UNS 531803 duplex stainless—steel chip.
In addition, it allows for the production of duplex stainless—steel powders with vanadium carbide for
the manufacture of parts in the industry, through the recycled material.

Thus, in conclusion, this study demonstrates the efficacy in the production of the metal-ceramic
composite of a new method for recycling stainless—steel duplex UNS S31803 chips.
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