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Abstract: A facile and industry-accepted dealloying method was used to synthesize Mn3O4 particles,
which were then employed to prepare sulfur/Mn3O4 (S/Mn3O4) composites as cathode materials
for lithium-sulfur batteries. The composites delivered initial discharge capacity reaching up
1184 mAh·g−1 at 0.1 C with capacity retention of 679 mAh·g−1 after 150 cycles. In addition, even at
2 C, the lithium/sulfur battery with S/Mn3O4 cathode delivered high reversible discharge capacity
of 540 mAh g−1, demonstrating excellent rate capability.
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1. Introduction

Rechargeable lithium-ion batteries (LIBs) have gained increasing attention during the past decades
as they become widely used as promising power sources in portable electronic devices including
cameras, laptops and mobile phones. However, the requirements in terms of specific capacity and
rate capability of hybrid electric vehicles, power tools and the power grid must be enhanced [1,2].
Due to their high theoretical capacity of 1672 mAh·g−1 and superior theoretical energy density of
2600 Wh·kg−1, lithium/sulfur (Li/S) batteries become one of the most promising candidates in LIBs [3].
Moreover, sulfur is non-toxic, naturally abundant, low-cost and environmentally friendly [4]. However,
despite the advantages of Li/S batteries, several issues still require solutions for better practical
applications [5]. In particular, their low conductivities limit the electron transport in the cathode and
leads to low active material utilization. Also, the volume expansion (up to 80%) of S to Li2S leads to
pulverization and collapse. Hence, the resulting soluble intermediate products lithium polysulfide
(Li2Sn, 4 < n < 8) contribute to low coulombic efficiency and active material loss [6,7]. Many means
have been attempted to solve these problems, such as introduction of conductive carbon materials
like carbon nanotubes [8–10], carbon spheres [11] and graphene [12–14], in an effort to improve the
electronic conductivity of sulfur and accommodate the volume expansion during charge/discharge
processes due to their porous structures and large specific surface areas.

Recently, some studies have focused on using metal oxides as additives or complexes in sulfur
cathodes instead of carbon materials. Examples include Al2O3 [15], ZnO [16], Mg0.6Ni0.4O [17],
TiO2 [18] and La2O3 [19]. These metal oxides may provide superior electrochemical performances to
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carbon-sulfur cathode materials. In particular, they can improve the performance of Li/S batteries
over cycling, such as capacity, cycle stability and rate capability. This is because metal oxides could
act as adsorbents and catalysts in lithium polysulfides. On the other hand, MnO is a promising
sulfur host material due to its good structural stability and strong chemical anchoring effect towards
soluble lithium polysulfides, which can suppress the shuttle effect. In previous reports, MnO was
synthesized by co-precipitation or template. These methods are generally complex and hard to
control, thus increasing the cost of the final products and restrict their applications as green anode
materials of LIBs. Recently, it is found that dealloying is a simple method to produce metal oxides,
which attracts considerable interest. Wada’s group [20] has prepared three-dimensional nanoporous
silicon material by dealloying in metallic melt and applicated on the LIBs. They also synthesized
bulk nanoporous silicon by dealloying method for presenting high cyclability of LIBs [21]. Chen and
Sieradzki examined the formation of bicontinuous nanostructures during dealloying of Li from Li-Sn
alloys, which contributes to the development of both dealloying and LIBs fields [22]. The obvious
advantages of dealloying in terms of simple processing, short time consumption and low-cost, renders
the method conducive to industrialization [23,24].

In this work, Mn3O4 microparticles with strong adsorption capabilities to soluble polysulfides and
high sulfur loading (67 wt. %) were first synthesized. The sulfur microparticles were then anchored
on Mn3O4 microparticles matrix, as cathodes of Li/S batteries. The structures, compositions and
electrochemical performances of the resulting composites were evaluated.

2. Materials and Methods

2.1. Preparation of Mn3O4 Microparticles

Firstly, Al95Mn5 alloy melts (at. %) were obtained by melting pure Al (99.99 wt. %) and pure Mn
(99.99 wt. %). The melts were then transferred to a holding furnace until gravity pouring the melts
onto a single copper roller at rotating speed of 2000 r/min. This produced Al-Mn ribbons. Dealloying
of the melt-spun Al-Mn ribbons was treated in 2 M NaOH aqueous solution with water bath at 25 ◦C
for 36 h. After dealloying, the Al atoms were selectively dissolved. The residual Mn atoms carried out
self-assembling and were oxidized into Mn3O4 microparticles. The dealloying products were washed
several times with deionized water and collected by centrifuge machine. The Mn3O4 samples were
finally obtained after drying for 24 h at 60 ◦C in vacuum drying chamber.

2.2. Preparation of S/Mn3O4 Microparticles

The preparation of Mn3O4 microparticles was typically carried out by mixing the Mn3O4 and
elemental sulfur at 1:3 mass ratio followed by grinding of the mixture for nearly 30 min to create
a uniform powder. Next, the mixture was transferred into a stainless-steel autoclave and heated at
155 ◦C for 12 h. After cooling down to room temperature, the S/Mn3O4 microparticles were obtained,
with sulfur content estimated by chemical analysis to 67 wt. %. To better understand the fabrication
process of this structure, the schematic representation is provided in Scheme 1.
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2.3. Structural and Physical Characterization

The structures and phase compositions of the samples were determined by scanning electron
microscopy (SEM, JSM-6700F, JEOL, Tokyo, Japan) at 1 nm and 15 kV, X-ray diffraction (XRD, D8
Discover, Bruker, Karlsruhe, Germany), transmission electron microscopy (HRTEM, JEM-2100F, JEOL,
Tokyo, Japan) and X-ray photoelectron spectroscopy (XPS, Ulvac-Phi, Kanagawa, Japan).

2.4. Electrochemical Measurements

The S/Mn3O4 electrodes were prepared by mixing 80 wt. % of the as-prepared S/Mn3O4

microparticle powders, 10 wt. % polyvinylidene fluoride (PVDF, Kynar, HSV900, Colombes, France) as
a binder and 10 wt. % Super-p as conducting agent in 1-methyl-2-pyrrolidinone (NMP, Sigma-Aldrich,
St. Louis, MO, USA, 99.5% purity). The resultant slurry was then well-proportionally spread onto Al
foils using a doctor blade and dried at 60 ◦C for 12 h.

The S/Mn3O4 deposited films were used to prepare the electrodes through punching circular
disks with 1.5 cm in diameter. The active material loading in each electrode was estimated to about
2 mg·cm−2. The coin cells were assembled in an Ar (99.9995%) filled MBraun glove box and tested
galvanostatically on a multichannel battery tester (BT-2000, Arbin Instruments, College Station, TX,
USA). The cut-off potential window was set to 1.5–3.0 V versus Li/Li+ electrode and current densities
were varied. All electrochemical measurements were performed at 25 ◦C.

3. Results and Discussion

The crystallographic structures of Mn3O4 and S/Mn3O4 microparticles were characterized by
X-ray diffraction (XRD) spectroscopy and the results are shown in Figure 1. All main X-ray diffraction
peaks appeared sharp, which can readily be assigned to Mn3O4 phase (JCPDS No. 18-0838) and the
other peaks are ascribed to sulfur, indicating the successful synthesis of S/Mn3O4 [25].
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Figure 1. XRD patterns of S/Mn3O4.

The detected peaks of Mn 2p, O 1s and S 2p could be seen in the survey spectrum from XPS
(Figure 2a), demonstrating the existence of Mn, O and S elements. The spectrum in Figure 2b presented
two peaks of oxidized Mn at 641.6 eV and 653.5 eV, corresponding to Mn 2p3/2 and Mn 2p1/2,
respectively [26,27]. Figure 2c depicts the spectrum of O 1s, where two peaks attributed to bonds of
OH coming from residual NaOH corrodent at 533.3 eV and Mn-O appeared at 531 eV, respectively.
Figure 2d indicates a series of characteristic peaks at 162.5 eV, 164.4eV, 168.3 eV and 170.5 eV, consistent
with S2p.
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Figure 2. (a) The survey spectra of S/Mn3O4; (b) Mn 2p; (c) O 1s and (d) S 2p.

The SEM images of Mn3O4 microparticles are illustrated in Figure 3. Octahedral microparticles
with edge lengths of about 450 nm were homogeneously dispersed in Figure 3a. The surfaces of
the octahedral microparticles looked highly faceted. The detailed structures of Mn3O4 octahedral
microparticles were further monitored by high magnification SEM imaging and the data are presented
in Figure 3b.
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Figure 3. (a) SEM image and (b) high magnification SEM image of Mn3O4 microparticles.

The morphology of S/Mn3O4 is illustrated in Figure 4a. Numerous empty space left between
particles could be observed, forming a 3D conductive structure. In-depth profiling of S/Mn3O4

microparticle was further monitored by TEM imaging. As shown in Figure 4b, sulfur and Mn3O4

microparticles were mixed uniformly. In the inset of Figure 4b, the corresponding selected area
electron diffraction (SAED) pattern confirmed the polycrystalline diffraction ring of the sample
corresponding to both Mn3O4 and S phases. This also indicated that S/Mn3O4 microparticle was
successfully synthesized.



Metals 2018, 8, 515 5 of 8
Metals 2018, 8, x FOR PEER REVIEW  5 of 8 

 

 
Figure 4. (a) SEM image and (b) high magnification TEM image and corresponding SAED patterns 
(inset) of S/Mn3O4. 

The advantages of S/Mn3O4 microparticle were demonstrated through the electrochemical 
performance evaluations of Li/S batteries, which were first tested by galvanostatic charge and 
discharge cycling. As presented in Figure 5, two main plateaus were visible in the initial discharge 
curves, corresponding to formation of high-order lithium polysulfides (Li2Sn, 4 ≤ n ≤ 8) at 2.4 V, as 
well as further reduction to Li2S2/Li2S at 2.1 V [28]. The S/Mn3O4 cathode exhibited elevated initial 
discharge capacity and maintained excellent reversible discharge capacity of about 1000 mAh·g−1 after 
the 3rd cycle. No obvious change in the plateau position was detected in subsequent cycles, indicating 
the excellent cell reversibility and stability. 

 
Figure 5. Charge and discharge curves of S/Mn3O4 cathode. 

The cells were then assembled to verify their cycling performances and rate capabilities (Figures 
6 and 7). At 0.1 C, the cell presented an initial discharge capacity of about 1184 mAh·g−1 and delivered 
a capacity of about 679 mAh·g−1 after 150 cycles. The coulombic efficiency remained almost at 100% 
during the charge and discharge cycling, indicating the high stability of S/Mn3O4 microparticle in the 
cathode and perfect control of the shuttle effect. 

 
Figure 6. Cycling performance of S/Mn3O4 cathode at 0.1 C. 

0 500 1000 15001.5

2

2.5

3

 1st  cycle
 2nd cycle
 3rd  cycle

Capacity/ mAh g-1

V
ol

ta
ge

/ V

0 50 100 1500

500

1000

1500

0

20

40

60

80

100

D
isc

ha
rg

e 
ca

pa
ci

ty
/ m

A
h 

g-1

Cycle number

C
ou

lo
m

bi
c 

ef
fic

ie
nc

y/
 %

Figure 4. (a) SEM image and (b) high magnification TEM image and corresponding SAED patterns
(inset) of S/Mn3O4.

The advantages of S/Mn3O4 microparticle were demonstrated through the electrochemical
performance evaluations of Li/S batteries, which were first tested by galvanostatic charge and
discharge cycling. As presented in Figure 5, two main plateaus were visible in the initial discharge
curves, corresponding to formation of high-order lithium polysulfides (Li2Sn, 4 ≤ n ≤ 8) at 2.4 V,
as well as further reduction to Li2S2/Li2S at 2.1 V [28]. The S/Mn3O4 cathode exhibited elevated initial
discharge capacity and maintained excellent reversible discharge capacity of about 1000 mAh·g−1 after
the 3rd cycle. No obvious change in the plateau position was detected in subsequent cycles, indicating
the excellent cell reversibility and stability.
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Figure 5. Charge and discharge curves of S/Mn3O4 cathode.

The cells were then assembled to verify their cycling performances and rate capabilities (Figures 6
and 7). At 0.1 C, the cell presented an initial discharge capacity of about 1184 mAh·g−1 and delivered
a capacity of about 679 mAh·g−1 after 150 cycles. The coulombic efficiency remained almost at 100%
during the charge and discharge cycling, indicating the high stability of S/Mn3O4 microparticle in the
cathode and perfect control of the shuttle effect.
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Figure 6. Cycling performance of S/Mn3O4 cathode at 0.1 C.
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Figure 7. Rate performance of S/Mn3O4 cathode.

As depicted in Figure 7, the cell subjected to various rates at 0.5 C, 1 C, 1.5 C and 2 C showed
average discharge capacities of 930, 793, 683 and 540 mAh·g−1, respectively. After recovering to 0.5 C,
the electrodes almost recovered the initial capacity of 789 mAh·g−1. This excellent rate performance
of S/Mn3O4 cathodes could be ascribed to the unique microparticle structures, which did not only
provide pathways for electrolyte and Li-ion transport but also suppress the shuttle effect and enhanced
the activity of the composite.

4. Conclusions

Mn3O4 octahedral microparticles were successfully synthesized by facile dealloying method.
S/Mn3O4 composites were then prepared by using the Mn3O4 microparticles. When used as cathode
materials for Li/S batteries, the S/Mn3O4 composites exhibited high initial discharge capacities
reaching up 1184 mAh·g−1. At cycling rates of 0.5 C, 1 C, 1.5 C and 2 C, the S/Mn3O4 cathodes
delivered high discharge capacities of 930, 793, 683 and 540 mAh g−1, respectively. After 150 cycles,
the capacities of S/Mn3O4 cathodes reached 679 mAh·g−1. These excellent electrochemical
performances can be ascribed to structures of S/Mn3O4 microparticles, which suppressed shuttle effect.
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