
metals

Article

Thermal Stability of Ru–Al Multilayered Thin Films
on Inconel 617

Yung-I Chen *, Zhi-Ting Zheng and Jia-Wei Jhang

Institute of Materials Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan;
10455001@mail.ntou.edu.tw (Z.-T.Z.); 10555006@mail.ntou.edu.tw (J.-W.J.)
* Correspondence: yichen@mail.ntou.edu.tw; Tel.: +886-2-2462-2192

Received: 7 June 2018; Accepted: 2 July 2018; Published: 4 July 2018
����������
�������

Abstract: Ru-riched and equiatomic Ru–Al multilayered thin films were fabricated on Si and Inconel
617 substrates. These thin films exhibited a multilayered structure that is caused by stacking
cyclical gradient concentration through cosputtering. X-ray diffraction analysis indicated that
the as-deposited Ru–Al multilayers comprised Ru and RuAl phases. Oxidation that is caused
by annealing atmospheres and elements diffused from substrates was investigated. The results
indicated that the inward diffusion of O at 600 ◦C in a 1% O2–99% Ar atmosphere was restricted by
the formation of an amorphous Al-oxide sublayer, and inward diffusion of O at 800 ◦C in air was
limited by the formation of a crystalline Al2O3 scale. Additionally, the outward diffusion of elements
from Inconel 617 penetrated the unoxidized parts of the 800 ◦C–annealed Ru–Al multilayers.
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1. Introduction

Inconel 617, which is a Ni-based superalloy, is widely used in metal components that must
withstand temperatures above 800 ◦C [1,2]. Thermal barrier coatings (TBCs) are employed for
high-temperature applications to provide thermal and oxidation protection to metal components [3,4].
Y2O3-stabilized ZrO2 (YSZ) has been used as a TBC for gas turbine blades and vanes [5–9]. Because O can
penetrate YSZ, aluminide bond coats (BCs) have been used to combine YSZ and Ni-based superalloys.
These BCs behave as diffusion barriers after forming thermally grown oxides (TGO), such as α-Al2O3.
Therefore, a typical TBC/TGO/BC/superalloy assembly is a common material structure in jet engine
components. RuAl exhibits excellent oxidation resistance, thermodynamic stability, and strength at
high temperatures, as well as excellent ductility at room temperature [10,11]. Moreover, RuAl and
Al2O3 possess similar coefficients of thermal expansion [12]. Accordingly, Ru-modified aluminides
have been used as BCs for thermal barrier systems [13,14]. RuAl thin films that were fabricated by
sputtering have also been considered for use as working layers for glass molding dies at temperatures
above 600 ◦C [15,16] and for metallization on surface acoustic wave devices that are annealed at 800 ◦C
under high vacuum conditions [17–20]. Therefore, it is important to understand the thermal stability of
Ru–Al thin films at high temperatures. In a previous study [21], the oxidation behavior of Ru0.63Al0.37

multilayered thin films prepared on Si substrates was investigated in a low-oxygen-content atmosphere
of 1% O2–99% Ar, and the films exhibited internal and external oxidation at 400–600 and 700–800 ◦C,
respectively. A 1% O2–99% Ar atmosphere has also been used as an oxidation-accelerating atmosphere
to evaluate the performance of protective coatings on glass molding dies [22]. In the present study,
the oxidation resistance of Ru0.48Al0.52 multilayered thin films in 1% O2–99% Ar atmosphere at 600 ◦C
was evaluated. Subsequently, the thermal stability of the Ru0.63Al0.37 and Ru0.48Al0.52 thin films that
were prepared on Inconel 617 substrates in air at 800 ◦C was investigated.
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2. Materials and Methods

Ru–Al multilayered thin films with an interlayer were fabricated through magnetron cosputtering
onto silicon and Inconel 617 substrates with dimensions of 20 × 20 × 0.525 mm3 and 20 × 20 × 3 mm3,
respectively. Ti and Ru interlayers were deposited to improve the adhesion strength of Ru–Al thin
films on Si and Inconel 617 substrates, respectively. Pure metal targets of Ru (99.95%), Al (99.999%),
and Ti (99.995%) with diameters of 50.8 mm each were adopted as source materials for sputtering
(Figure 1). The sputter guns were inclined to focus plasma on the circular track of the substrate holder,
which resulted in cyclical gradient concentration deposition [21,23,24]. The cosputtering processes for
fabricating multilayered thin films were described in detail in a previous study [23]. Ru and Al were
cosputtered onto the interlayers using various powers, while the substrate holder was rotated at 1 rpm
and kept at 400 ◦C during sputtering. After sputtering Ru–Al deposits for 35 min, the sputter power of
Al target was turned off for an extra substrate holder revolution to fabricate a Ru layer on the surface
for protective purposes [21]. The Ru–Al thin films that were deposited on Si and Inconel 617 were
further annealed at 600 ◦C in 1% O2–99% Ar and at 800 ◦C in air, respectively.

Chemical composition analyses were conducted using a field emission electron probe
microanalyzer (FE-EPMA, JXA-8500F, JEOL, Akishima, Japan) at a 12-kV accelerating voltage on
the surface. Surface morphology and thickness measurement of the thin films were performed by
using a field emission scanning electron microscope (FE-SEM, S4800, Hitachi, Tokyo, Japan) at a
15-kV accelerating voltage. A conventional X-ray diffractometer (XRD, X’Pert PRO MPD, PANalytical,
Almelo, The Netherlands) with Cu Kα radiation was used to identify the thin film phases using a
grazing incidence technique at an incidence angle of 1◦. The accelerating voltage and the current of
XRD in this study were applied for 45 kV and 40 mA, respectively. The nanostructure of the thin
films and scales was further examined using transmission electron microscopy (TEM, JEM-2010F,
JEOL, Tokyo, Japan) at a 200-kV accelerating voltage. TEM samples were prepared by applying a
focused ion beam system (FEI Nova 200, Hillsboro, OR, USA) at an accelerating voltage of 30 kV with
a gallium ion source. A Pt layer was deposited to protect the free surface during sample preparation.
An energy dispersive spectrometry (EDS, Inca x-sight, Oxford Instruments, Tokyo, Japan), equipped
with the TEM was used to determine local chemical compositions qualitatively. The residual stress
of the films prepared on Si substrates, as measured by the curvature method was calculated using
Stoney’s equation [25].

Metals 2018, 8, x FOR PEER REVIEW  2 of 11 

 

2. Materials and Methods 

Ru–Al multilayered thin films with an interlayer were fabricated through magnetron 
cosputtering onto silicon and Inconel 617 substrates with dimensions of 20 × 20 × 0.525 mm3 and 20 × 
20 × 3 mm3, respectively. Ti and Ru interlayers were deposited to improve the adhesion strength of 
Ru–Al thin films on Si and Inconel 617 substrates, respectively. Pure metal targets of Ru (99.95%), Al 
(99.999%), and Ti (99.995%) with diameters of 50.8 mm each were adopted as source materials for 
sputtering (Figure 1). The sputter guns were inclined to focus plasma on the circular track of the 
substrate holder, which resulted in cyclical gradient concentration deposition [21,23,24]. The 
cosputtering processes for fabricating multilayered thin films were described in detail in a previous 
study [23]. Ru and Al were cosputtered onto the interlayers using various powers, while the substrate 
holder was rotated at 1 rpm and kept at 400 °C during sputtering. After sputtering Ru–Al deposits 
for 35 min, the sputter power of Al target was turned off for an extra substrate holder revolution to 
fabricate a Ru layer on the surface for protective purposes [21]. The Ru–Al thin films that were 
deposited on Si and Inconel 617 were further annealed at 600 °C in 1% O2–99% Ar and at 800 °C in 
air, respectively. 

Chemical composition analyses were conducted using a field emission electron probe 
microanalyzer (FE-EPMA, JXA-8500F, JEOL, Akishima, Japan) at a 12-kV accelerating voltage on the 
surface. Surface morphology and thickness measurement of the thin films were performed by using 
a field emission scanning electron microscope (FE-SEM, S4800, Hitachi, Tokyo, Japan) at a 15-kV 
accelerating voltage. A conventional X-ray diffractometer (XRD, X’Pert PRO MPD, PANalytical, 
Almelo, The Netherlands) with Cu Kα radiation was used to identify the thin film phases using a 
grazing incidence technique at an incidence angle of 1°. The accelerating voltage and the current of 
XRD in this study were applied for 45 kV and 40 mA, respectively. The nanostructure of the thin films 
and scales was further examined using transmission electron microscopy (TEM, JEM-2010F, JEOL, 
Tokyo, Japan) at a 200-kV accelerating voltage. TEM samples were prepared by applying a focused 
ion beam system (FEI Nova 200, Hillsboro, OR, USA) at an accelerating voltage of 30 kV with a 
gallium ion source. A Pt layer was deposited to protect the free surface during sample preparation. 
An energy dispersive spectrometry (EDS, Inca x-sight, Oxford Instruments, Tokyo, Japan), equipped 
with the TEM was used to determine local chemical compositions qualitatively. The residual stress 
of the films prepared on Si substrates, as measured by the curvature method was calculated using 
Stoney’s equation [25]. 

  
(a) (b) 

Figure 1. (a) Schematic of the cosputtering equipment and (b) substrate holder and sample positions 
related to sputter targets. 

  

Figure 1. (a) Schematic of the cosputtering equipment and (b) substrate holder and sample positions
related to sputter targets.



Metals 2018, 8, 514 3 of 11

3. Results and Discussion

3.1. As-Deposited Ru–Al Thin Films

Table 1 lists the chemical compositions of the as-deposited Ru–Al thin films that were prepared
on Si substrates using various sputter powers and a substrate holder rotation speed of 1 rpm. The thin
films are denoted in the table as Ru0.89Al0.11, Ru0.63Al0.37, and Ru0.48Al0.52. Figure 2 presents the XRD
patterns of the as-deposited Ru–Al thin films. The Ru0.89Al0.11 thin films exhibited a hexagonal Ru
[ICDD 00-006-0663] phase, whereas the Ru0.63Al0.37 and Ru0.48Al0.52 thin films exhibited a mixture of
cubic RuAl [ICDD 00-029-1404] and Ru phases. The peaks at the two-theta angle of approximately 52◦

were caused by the Si substrate [26]. The reflections of the Ti interlayers were not observed because
they were of low intensity. Figure 3 depicts the XRD pattern of the Ru0.48Al0.52/Ti/Si samples that
were captured using a Bragg–Brentano scan. The scan indicated RuAl and Ru phases accompanied
by a Ti phase. Figure 4 presents a cross-sectional SEM image of the as-deposited Ru0.48Al0.52 thin
films. The films exhibited a columnar and multilayered structure due to cyclical gradient concentration
deposition. The thickness of the Ru0.48Al0.52 thin film was 1083 nm. Because the number of revolutions
of the substrate holder was 35, the multilayered structure of the Ru0.48Al0.52 thin film had a stacking
period of 31 nm. The Ru0.89Al0.11 and Ru0.63Al0.37 thin films both exhibited stacking periods of 37 nm
(Table 1).

Table 1. Chemical compositions, thicknesses, and stacking periods of the as-deposited Ru–Al thin films.

Sample Sputter Power (W) Chemical Composition (at.%) Thickness (nm) Period

WRu WAl Ru Al O Film Interlayer (nm)

Ru0.89Al0.11 200 100 86.69 ± 0.39 10.89 ± 0.02 2.42 ± 0.37 1305 50 37
Ru0.63Al0.37 150 150 59.33 ± 0.32 34.75 ± 0.32 5.92 ± 0.03 1312 50 37
Ru0.48Al0.52 100 200 47.35 ± 0.39 52.06 ± 0.34 0.59 ± 0.14 1083 50 31
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3.2. Ru0.48Al0.52 Thin Films Annealed in 1% O2–99% Ar at 600 ◦C

Figure 5 presents a cross-sectional SEM image of the Ru0.48Al0.52 thin films that were annealed in
1% O2–99% Ar at 600 ◦C for 24 h. The surface oxide scales were not evident and the laminated layers
were maintained. The thickness of the films increased slightly from 1083 to 1102 nm, whereas the
Ti interlayer increased from 50 to 151 nm, implying the interdiffusion of Ti and Si. Figure 6 exhibits
the XRD patterns of the annealed Ru0.48Al0.52 thin films. RuO2 reflections [ICDD 00-040-1290] were
observed after annealing for 30 min. Ru and RuAl phases were observed even after annealing for up
to 24 h. Figure 7a exhibits the cross-sectional TEM image of the 24 h-annealed Ru0.48Al0.52 thin films,
in which the multilayered structure was maintained. The EDS results qualitatively indicated that the
surface scale was Al-oxide (Position 1), and the O content exhibited a higher level of 14–25 at.% for the
first stacking periods (Positions 2 and 3). The columnar structure had a width of 50 nm. The original
Ru toplayer disappeared; this may be attributed to the oxidation of Ru to the higher valance states
of RuO3 or RuO4, which are volatile [20,27,28]. Because the standard Gibbs free energies of RuO3

and RuO4 at 600 ◦C are −16.908 and−28.003 kJ/(mol of O2) [29], respectively, and the atmosphere
was constructed by constantly flowing O2–Ar mixed gases into a tube furnace, the formation of these
volatile oxides was possible. In a previous study [22], partial Re atoms in IrRe films formed volatile
Re2O7 and escaped after annealing in 1% O2–99% Ar at 600 ◦C for 500 min. The EDS results also
indicated that Positions 5 and 7 were Ru-enriched black sublayers, whereas Positions 4, 6, and 8
were Al-enriched gray sublayers. The columnar boundaries may have provided oxygen diffusion
paths [21,30] in the early oxidation stage. High-resolution TEM imaging indicated that the surface
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Al-oxide scale was amorphous, and the lattice fringes of RuO2 were observed beneath the surface oxide
layer (Figure 7b). The amorphous Al-oxide sublayer restricted oxidation at 600 ◦C in 1% O2–99% Ar.
The oxidation of the Ru0.48Al0.52 thin films at 600 ◦C in 1% O2–99% Ar was similar to that of the
Ru0.63Al0.37 thin films that were reported previously [21]. The oxidation depth of Ru0.63Al0.37 thin
films after annealing for 24 h was approximately the outmost two stacking periods. By contrast,
the Ru0.89Al0.11 thin films detached after they were annealed in 1% O2–99% Ar at 600 ◦C for 30 min.
Because the as-deposited Ru0.89Al0.11, Ru0.63Al0.37, and Ru0.48Al0.52 thin films exhibited similar residual
stress levels of 1.57 ± 0.16, 1.43 ± 0.16, and 1.61 ± 0.29 GPa, respectively, the detachment of the
Ru0.89Al0.11 films was attributed to a high oxide–metal–volume ratio of 2.32 for RuO2/Ru. This value
was determined using an XRD database.
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3.3. Ru–Al Thin Films Annealed in Air at 800 ◦C

Table 2 presents the chemical compositions of the Ru–Al thin films deposited on Inconel
617 substrates with a Ru interlayer. These thin films were denoted as Ru0.81Al0.19, Ru0.61Al0.39,
and Ru0.46Al0.54. Figure 8 depicts XRD patterns of the Ru–Al thin films that were prepared on
Inconel 617 substrates with a Ru interlayer. These patterns were similar to those of the Ru–Al thin
films prepared on Si substrates with a Ti interlayer (Figure 2). The Ru0.81Al0.19 thin films exhibited a
Ru phase, and the Ru0.61Al0.39 and Ru0.46Al0.54 thin films exhibited a mixture of RuAl and Ru phases.
Because both the Ti and Ru interlayers have hexagonal phases, the crystalline phases of Ru–Al thin
films deposited on the two interlayers were the same. The reflections of the Inconel 617 substrates were
not observed due to low intensity and overlapping with reflections of Ru and RuAl phases. The XRD
patterns of an Inconel 617 substrate and the Ru0.46Al0.54/Ru/Inconel samples under a Bragg–Brentano
scan are presented in Figure 3. Figure 9 exhibits the XRD patterns of the Ru–Al thin films after they
were annealed in air at 800 ◦C for 30 min. Ru and RuO2 dominated the crystalline phases, whereas
RuAl became a minor phase. No Al2O3 reflections were evident; however, Al should be preferentially
oxidized, implying that the Al-oxide should be X-ray amorphous. Part of the annealed Ru0.81Al0.19

thin films detached after annealing. This phenomenon was similar to that of the 1% O2–99% Ar, 600 ◦C,
and 30 min-annealed Ru0.89Al0.11 thin films prepared on Si substrates. Figure 10 illustrates the surface
morphologies of the Ru0.61Al0.39 and Ru0.46Al0.54 thin films after they were annealed in air at 800 ◦C
for 30 min. No spallation was evident, but cracks and small granular oxide particles were observed on
the surface of the annealed Ru0.61Al0.39 films, whereas the annealed Ru0.46Al0.54 films only exhibited
oxide particles.

Table 2. Chemical compositions of Ru–Al thin films deposited on Inconel 617 with a Ru interlayer.
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Figure 10. Surface morphologies of the (a) Ru0.61Al0.39 and (b) Ru0.46Al0.54 thin films after they were
annealed in air at 800 ◦C for 30 min.

Figure 11 presents the cross-sectional TEM image of the Ru0.61Al0.39 thin films after annealing
in air at 800 ◦C for 30 min. The image indicated a reaction region of 373 nm, an unoxidized thin film
of 1094 nm, and an interlayer of 207 nm. The reaction region was restricted to the seven outermost
stacking periods of the multilayered structure, which consisted of an oxidized region (five stacking
periods) and a black region (two stacking periods). The EDS results at Positions 1 and 2 indicated a
Ru–Al–O region that was attributed to the inward diffusion of O and the formation of nonprotective
oxide accompanied by ruthenium oxide evaporation and crack development [16,31]. The EDS results
indicated that the oxidation front (Position 3) consisted of Al-oxide, whereas a black region beneath
the oxide scale exhibited a Ru-enriched composition (Position 4), which was attributed to the outward
diffusion of Al at high temperatures [18,31,32]. Therefore, the EDS analysis on Position 3 indicated
high Al content. The unoxidized thin film comprised large grains across several stacking periods.
The EDS results indicated that elements Ni, Cr, Co, and Mo diffused from Inconel 617 across the Ru
interlayer and into the Ru0.61Al0.39 thin films. Figure 12 presents the cross-sectional TEM image of
the Ru0.46Al0.54 thin films after annealing in air at 800 ◦C for 30 min. The image shows an oxide scale
of 366 nm and an unoxidized thin film of 965 nm. The oxide scale exhibited a high O level of 46–55
at.% at Positions 1–3, whereas Position 4 beneath the oxide scale exhibited a low O level of 3 at.%.
A continuous Al-oxide sublayer formed at the original fifth laminated period (Position 3) and restricted
the subsequent inward diffusion of O. The EDS results indicated that the Al/(Ru + Al) ratios at
Positions 4–6 remained at 0.53–0.58, which was closed to the corresponding values of the as-deposited
Ru0.46Al0.54 thin films. Additionally, four periods that were close to the thin-film/interlayer interface
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surrounding Position 6 thickened, which was attributed to the outward diffusion of Ni, Cr, and Co
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Figure 12. Cross-sectional TEM image and EDS results for the Ru0.46Al0.54/Ru/Inconel 617 sample
after annealing in air at 800 ◦C for 30 min.

Figure 13 presents the XRD patterns of the Ru0.46Al0.54/Ru/Inconel 617 sample after annealing in
air at 800 ◦C for 4 h. The patterns exhibited reflections of RuAl, RuO2, γ-Al2O3 [ICDD 00-050-0741],
and α-Al2O3 [ICDD 00-046-1212] phases. Figure 14a depicts the cross-sectional TEM image of the
Ru0.46Al0.54 thin films after annealing in air at 800 ◦C for 4 h; this image exhibited an oxide scale of
140 nm and an inner part of 1345 nm. The inner part comprised an interdiffused film, interlayer, and
substrate. The oxide scale exhibited a high O level of 45 at.% at Position 1, for which a high-resolution
TEM image exhibited lattice fringes of crystalline α-Al2O3 (Figure 14b). The depth of the oxide scale
of the 4 h-annealed Ru0.46Al0.54 thin films appeared to be less than that of the 30 min-annealed films
(Figure 12), which implied that the outmost oxidized part of the films volatilized during further
oxidation, and only the Al2O3-dominant oxide scale remained. Figure 14c represents the RuAl grains
of 200 nm that were beneath the oxide scale.
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4. Conclusions

Ru–Al multilayered thin films that were stacked with cyclical gradient concentration were
fabricated through cosputtering. The oxidation depth of Ru0.48Al0.52 thin films that were annealed
in a 1% O2–99% Ar atmosphere at 600 ◦C for 24 h was restricted at the outmost two stacking
periods, which behaved similar to that of the Ru0.63Al0.37 thin films and was attributed to the
formation of amorphous Al-oxide sublayers restricting the inward diffusion of O. Additionally,
the oxidation fronts to five stacking periods of the Ru0.46Al0.54 and Ru0.61Al0.39 thin films after
they were annealed in air at 800 ◦C for 30 min. The Al-oxide sublayers remained amorphous.
In the interior part of the Ru0.61Al0.39 films, (i.e., the unoxidized portions) the multilayered structure
transformed into large grains, accompanied by outward diffusion of Inconel 617 substrate elements.
By contrast, the unoxidized part of the Ru0.46Al0.54 films maintained its multilayer structure after
30 min of annealing, and the diffusion of elements from the substrate was limited. An extending
annealing time of 4 h resulted in the formation of a crystalline α-Al2O3-dominated oxide scale on
the surface of the Ru0.46Al0.54 films, and the original Ru on the surface region formed volatile oxides.
Additionally, beneath the α-Al2O3 oxide scale, the structure transformed into large grains of RuAl
phase accompanied by the outward diffusion of substrate elements. Modification of the Ru–Al
multilayered thin films by introducing a third element to form a diffusion barrier for constitutive
elements of Inconel 617 is a major concern that should be addressed in future research.
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