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Abstract: Based on first principles calculations, we theoretically predict the new two-dimensional (2D)
MgH2. The thermodynamic stability, partial density of states, electron localization function, and Bader
charge of pure and the transition metal (Ti, V, and Mn) doped 2D MgH2 are investigated. The results
show that all the systems are dynamically stable, and the dehydrogenation properties indicate that
the decomposition temperature can be reduced by introducing the transition metal, and the Mn
doped system exhibits good performance for better hydrogen storage and dehydrogenation kinetics.

Keywords: 2D MgH2; hydrogen storage; first principles; dehydrogenation kinetics

1. Introduction

Hydrogen energy is considered to be the most promising alternative because it is lightweight,
environmentally friendly, highly efficient, renewable, and abundant on earth. However, the storage
limits the application of hydrogen. Metal hydrides are considered as the most promising materials
for hydrogen storage and have been widely investigated in the past decades [1]. Among them,
magnesium-based alloys and magnesium hydrides can achieve the hydrogen storage capacity of
7.6 wt % [2–8]. However, the high thermodynamic stability (the heat of formation is around
−75.99 kJ/mol·H2), high desorption temperatures (above 573 K), and slow dehydrogenation kinetics
seriously limit the practical applications [3,9,10]. Therefore, it is always a central task to design
new materials or adopt efficient strategies for achieving lower desorption temperatures and good
dehydrogenation performances.

Previous studies show that the bonding nature of MgH2 is a mixture of strong ionic and weak
covalent bonding [11], and weakening the interactions may be an effective strategy to improve
dehydrogenation performance. It has been reported that doping with transition metal elements or their
oxides mixtures with MgH2 can effectively reduce its stability and improve the hydrogen desorption
thermodynamics [3,12–17]. Oelerich [15] et al. have reported that MgH2 milled with Fe3O4, V2O5,
Mn2O3, or Cr2O3, etc. can accelerate the hydrogen desorption kinetics. Shang [3] et al. have studied the
hydrogen storage performance of (MgH2 + M) systems (M = Al, Ti, Fe, Ni, Cu, and Nb) experimentally
and theoretically, and they found that MgH2 mixed with those metals can reduce the stability and
improve the hydrogen desorption kinetics. Nonetheless, the MgH2 systems still have a high desorption
temperature around 500 K. It is noted that the bulk MgH2 has been extensively investigated, however,
the single-layer magnesium hydrides have been largely ignored. Motivated by the above mentioned
details, we focus on exploring new structures with good dehydrogenation performance in this work.

In this paper, the new two-dimensional (2D) MgH2 structure is theoretically predicted and studied
by first principles calculations. The stabilities of pure and Ti/V/Mn doped MgH2 are discussed by the
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phonon spectra and heat of formation. The calculated heat of formation for pure and Ti/V/Mn doped
2D MgH2 are −37.57, −25.67, −18.14, and −23.90 kJ/mol·H2, respectively, which are significantly
lower than that of −75.99 kJ/mol·H2 of bulk MgH2. The electronic structure and hydrogen desorption
kinetics results show that the predicted two-dimensional magnesium hydride are promising candidates
for hydrogen storage.

2. Computational Details

The structural optimization and electronic property calculations were performed using the
projector augmented plane-wave method (PAW) based on the density functional theory (DFT) in
the Vienna ab initio simulation package (VASP) [18,19]. The exchange-correlation potential was
approximated by generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE)
form [20,21]. To avoid the interlayer effects of the c-axis, the vacuum region around 15 Å was set in all
the systems. The energy cutoff of 600 eV and the 9 × 9 × 1 Γ-centered Monkhorst-Pack k-points [22]
were employed for all calculations. The atomic positions were fully relaxed and the force tolerance
between each atom was less than 0.01 eV/Å for the structural optimization. The convergence criteria of
10−6 eV per atom was applied to be self-consistent. Meanwhile, for calculation of electronic structures,
we also applied the local density approximation (LDA) [23] and HSE06 [24] was functional. The kinetic
stability was discussed using the phonon spectra calculations in PHONOPY code coupled with VASP
using the density functional perturbation theory (DFPT) method [25–27].

3. Results and Discussion

Figure 1 shows the fully relaxed structure of the top and side view of pure 2D MgH2 of the
hexagonal structure with space group P-3m1 (D3

3d). The primitive cell has the lattice constant
of a = b = 3.01 Å, the Mg-H bond length of l = 1.97 Å, and the buckled height of d = 1.86 Å.
The next calculations were performed for the 3 × 3 × 1 supercell of 2D MgH2, named Mg9H18.
The corresponding lattice parameters, Wyckoff [28] and atomic positions, are shown in Table 1. As is
seen, there are nine Mg atoms located at 1b (Mg1), 6h (Mg2), and 2d (Mg3) sites, while the eighteen H
atoms are located in three identical Wyckoff positions, i.e., 6i, as shown in Figure 1.
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Table 1. The relaxed structural parameters and atomic positions of Mg9H18.

Lattice Parameters Atom
Wyckoff Atomic Positions (Fractional)

Positions x y z

164(P-3m1) Mg1 1b 0 0 0.5
a = b = 9.033 Å Mg2 6h 0 0.33333 0.5

c = 15 Å Mg3 2d 0.33333 0.66667 0.5
d = 1.86 Å H1 6i 0.11111 0.22222 0.43783
α = β = 90◦ H2 6i 0.22222 0.44444 0.56217

γ = 120◦ H3 6i 0.11111 0.55556 0.43783

In this work, three different Mg sites are considered as possible positions for substitution
doping. Meanwhile, defects are inevitable in synthesis or processing and can usually affect their
properties [29–33]. The most common types of defect are vacancy defects, so we also considered
the vacancies of Mg (Mg8H18) for comparison to the doped systems. The formation energies were
calculated to determine the favorable positions of doping elements of Ti/V/Mn, which is defined
as ∆E = Etot(Mg8H18Xn) − Etot(Mg9H18) − n Etot(X) + Etot(Mg), where Etot is the total energy of the
system, the parameter n = 0/1 represents Mg vacancy, and X (X = Ti, V, and Mn) doped. The energies
are listed in Table 2. It is noticed that the Mg8H18 and Ti/V/Mn doped systems have positive energy,
indicating that the stability of all the systems are lower than that of pure Mg9H18. In addition, for the
three high symmetry sites of Mg1 (1b), Mg2 (6h), and Mg3 (2d), the ∆E are nearly identical, therefore,
we assume that all the doped-sites are located at the Mg1 site in the following work. The relaxed
parameters and bond lengths of Mg9H18 and Mg8H18X (X = Ti, V, and Mn) are listed in Table 2, and for
the detailed lattice parameters, see Table A1 (Appendix A). As is seen, the bond length of Mg-H is
changed, which indicates that the doped X atoms break the symmetry of the 2D MgH2 structure.

Table 2. The energy (∆E), the lattice parameter (a), and bond length of Mg9H18, Mg8H18 and Mg8H18X
(X = Ti, V, and Mn).

Hydride
∆E (eV) Parameter Bond Length (Å)

Mg1 Mg2 Mg3 a (Å) Sub-H1 Mg2-H1 Mg2-H2 Mg2-H3 Mg3-H2 Mg3-H3

Mg9H18 0 0 0 9.033 1.972 1.972 1.972 1.972 1.972 1.972
Mg8H18 2.968 2.968 2.968 9.062 - 1.894 2.043 1.976 1.947 1.992

Mg8H18Ti 1.113 1.114 1.114 9.027 1.915 1.997 1.964 1.982 1.946 1.990
Mg8H18V 1.818 1.818 1.819 8.951 1.822 1.999 1.945 1.992 1.939 1.983
Mg8H18Mn 1.279 1.279 1.279 8.815 1.691 2.028 1.911 2.008 1.937 1.965

Structural stability is discussed by the phonon spectra calculations using the DFPT method, as is
shown in Figure 2. Clearly, there are no imaginary frequencies in the whole Brillouin zone, indicating
that all the systems are dynamically stable. Meanwhile, the heat of formation (∆H) [7,34–36] is one of
the most fundamentally thermodynamic properties. The heat of formation can be obtained directly
from the equation ∆H = [Etot(Mg9-nH18Xn+m) − (n + m) Etot(X) − (9-n) Etot(Mg) − 9 Etot(H2)]/9,
where the parameters (n = 0, m = 0), (n = 1, m = −1), and (n = 1, m = 0), represent pure, Mg vacancy,
and X (X = Ti, V and Mn) doped Mg9H18, respectively. The value of Etot(H2) of −6.762 eV in a
10 × 10 × 10 Å3 cubic cell is very close to −6.773 eV reported in Ref. [37].
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The estimated heats of formation are listed in Table 3. As is seen, the heat of formation
of Mg9H18, Mg8H18, Mg8H18Ti, Mg8H18V, and Mg8H18Mn are −37.57, 31.71, −25.67, −18.14,
and −23.90 kJ/mol·H2, respectively. The results show that the stability decreased for the doped
2D MgH2, followed by Mg8H18Ti, Mg8H18Mn, and Mg8H18V, and Mg8H18 is the most unstable.
In comparison, we also obtained the heat of formation of the bulk MgH2 of ∆H = −54.56 kJ/mol·H2,
which is close to the theoretical values −54.4 in Ref. [36] and −53.85 kJ/mol·H2 in Ref. [38]. At the
same time, we estimated the decomposition temperature according to the following relationship:
ln P

P0
= ∆H

RT − ∆S
R , where P, P0, R, T, and ∆S represent the pressure, the standard pressure, the gas

constant, the decomposition temperature, and the entropy change, respectively. At the standard
pressure, the ∆H is defined as ∆H = T∆S [39,40]. For most of the dehydrogenation reactions of simple
metal hydrides, the ∆S is in the range of 95 J/mol·K < ∆S(H2) < 140 J/mol·K [41]. Consequently,
the decomposition temperatures are 268 K < T(Mg9H18) < 396 K, 183 K < T(Mg8H18Ti) < 270 K, 130 K <
T(Mg8H18V) < 191 K, 171 K < T(Mg8H18Mn) < 252 K, which are significantly lower than that of 573~673
K of bulk MgH2. The discussions mentioned above show that 2D MgH2 has better dehydrogenation
thermodynamic properties than that of bulk MgH2, and doping with Ti, V, and Mn elements can
reduce the stability and improve the dehydrogenation thermodynamics properties of 2D MgH2.
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Table 3. The heat of formation (∆H), the decomposition temperature (T), Bader charge of Mg and H
atoms, and the dehydrogenation energies (Ed) of Mg9H18, Mg8H18, and Mg8H18X (X = Ti, V, and Mn).

Hydride ∆H T Bader Charge (e) Ed

(kJ/mol·H2) (K) Mg X H (eV)

Mg9H18 −37.57 268~396 +2.000 - −0.997 1.589
Mg8H18 31.71 - +2.000 - −0.886 −1.931

Mg8H18Ti −25.67 183~270 +2.000 +1.825 −0.988 1.305
Mg8H18V −18.14 130~191 +2.000 +1.523 −0.971 1.044

Mg8H18Mn −23.90 171~252 +2.000 +0.975 −0.940 0.853

To understand the effect of Ti/V/Mn-doped 2D MgH2 well, we analyzed the electronic structures.
The band structures were obtained using PBE, LDA, and HSE06 functionals and are shown in
Figure A1. It can be seen that the pure Mg9H18 with the energy gap is 4.87 eV, which is smaller
than the experimental values 5.16 eV [42] or 5.6 eV [43] of bulk MgH2. For comparison, we found
that the bandgaps using HSE06 functional are larger than those using PBE and LDA functionals,
and the bandgaps using LDA functional are close to those of the PBE functional for pure and vacancies
of Mg9H18. For the doped systems, there are few energy bands across the Fermi level due to the
d orbitals of the dopants. Figure 3 shows the total and partial density of states (PDOS) of Mg9H18

and Mg8H18, which are calculated using the PBE functional. We can see the stronger hybridization
between H and Mg atoms near the Fermi level, which indicates the strong interaction between H and
Mg atoms. For the Mg8H18X, the electronic structure is different from that of the pure Mg9H18, as is
shown in Figure 4. We can see that the d orbitals of Ti/V/Mn are mainly located near the Fermi level
in doped-2D MgH2, and there are few H-s orbitals and states of Mg atoms at the Fermi level, which
indicates that the interactions between Ti/V/Mn and H/Mg atoms are relatively weaker. Meanwhile,
since the H-s orbitals are reduced at the Fermi level, the hybridization between H and Mg atoms is
weaker compared to pure Mg9H18.
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In order to analyze the chemical bond of all the systems, the electron localization function (ELF)
was calculated and is shown in Figure 5 with the isosurfaces of 0.6 e/Å3. As shown in Figure 5b–f,
all the systems have similar features in that the ELF values are lower between Mg and H atoms.
These suggest that the ionic bonds exist between Mg and H atoms, and the Mg atoms act as the charge
donor, according well with the discussions of PDOS and ELF of bulk MgH2. The Bader charges were
also calculated (see Table 3), and it can be seen that Mg atoms contributed two electrons, and H atoms
acquired electrons to form anions. Meanwhile, the H atoms obtained fewer electrons due to the Mg
vacancy and doping with Ti/V/Mn elements, thereby weakening the interactions between H and the
metal atoms.
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As mentioned above, doping with Ti/V/Mn elements reduces the stability of 2D MgH2 and
weakens the interactions between H and metal atoms, which facilitates the release of hydrogen.
To further understand the dehydrogenation behavior, the dehydrogenation energy was estimated
by the formula: Ed = Etot(Mg9-nH17Xn+m) − Etot(Mg9-nH18Xn+m) + 1/2 Etot(H2), where (n = 0, m = 0),
(n = 1, m = −1), and (n = 1, m = 0) represent the pure, Mg vacancy, and X (X = Ti, V, and Mn) doped
Mg9H18, respectively. The dehydrogenation energies are listed in Table 3. The results show that the
dehydrogenation energy of the Mg8H18 was significantly reduced compared to the pure and doped
Mg9H18, while there are high ∆E of 2.968 eV and positive ∆H of 31.71 kJ/mol·H2, indicating that
it is almost impossible to steadily occur. For doped systems, their dehydrogenation energies are
significantly smaller than 1.589 eV of pure Mg9H18, especially Mg8H18Mn with the dehydrogenation
energy of 0.853 eV. Therefore, doping with Ti/V/Mn elements can improve the dehydrogenation
thermodynamic properties of 2D MgH2.

4. Conclusions

In summary, we theoretically predicted two-dimensional MgH2 and studied the electronic and
dehydrogenation properties of pure and Ti/VMn doped 2D MgH2. The phonon spectra calculations
indicate that all the systems are dynamically stable. The results of heat of formation suggests
that Ti/V/Mn doping can reduce the thermodynamic stability, followed by Mg8H18Ti, Mg8H18Mn,
and Mg8H18V, and Mg8H18 is the most unstable. Importantly, the dehydrogenation temperatures for
all the systems are significantly lower than that of bulk MgH2 at 573~673 K. Especially, Mg8H18Ti
(183~270 K), Mg8H18V (130~191 K), and Mg8H18Mn (171~252 K) have much lower decomposition
temperature than that of pure 2D MgH2 (268~396 K), which is important for practical applications.
The partial densities of states, electron localization function, and Bader charge calculation results show
that Ti, V, and Mn elements can weaken the interaction between H and the metal atoms, which is
favorable to dehydrogenation and better than that of the bulk MgH2.
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Appendix A

Table A1. The relaxed structure parameters of pure, vacancies, and doped Mg9H18 using
Perdew-Burke-Ernzerhof (PBE) and local density approximation (LDA) functionals.

Hydride
PBE LDA

a (Å) α (◦) β (◦) γ (◦) a (Å) α (◦) β (◦) γ (◦)

Mg9H18 9.033 90.0 90.0 120.0 8.894 90.0 90.0 120.0
Mg8H18 9.062 90.0 90.0 120.0 8.888 90.0 90.0 120.0

Mg8H18Ti 9.027 90.0 90.0 120.0 8.883 90.0 90.0 120.0
Mg8H18V 8.951 90.0 90.0 120.0 8.803 90.0 90.0 120.0

Mg8H18Mn 8.815 90.0 90.0 120.0 8.662 90.0 90.0 120.0
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