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Abstract: The 2024 nanocomposite reinforced with Al2O3 nanoparticles was fabricated by the
ultrasonic assisted semisolid stirring (UASS) method and rheoformed into a cylinder component.
Microstructure, mechanical properties, and wear behavior of the rheoformed composite components
were investigated. The results showed that the composite components with complete filling status
and a good surface were rheoformed successfully. The deformation of semisolid slurries was mainly
dominated by flow of liquid incorporating solid grains (FLS), sliding between solid grains (SSG),
and plastic deformation of solid grains (PDS). Mechanical properties of the rheoformed composite
components were influenced by stirring temperature, stirring time, and volume fraction of Al2O3

nanoparticles. The optimal ultimate tensile strength (UTS) of 358 MPa and YS of 245 MPa were
obtained at the bottom of the rheoformed composite components after a 25-min stirring of composite
semisolid slurry with 5% Al2O3 nanoparticles at 620 ◦C. Enhancement of mechanical properties
was attributed to high density dislocations and dislocation tangles and uniform dispersed Al2O3

nanoparticles in the aluminum matrix. Natural ageing led to the occurrence of needle-like Al2CuMg
phase and short-rod-like Al2Cu phase. UTS of 417 MPa and YS of 328 MPa of the rheoformed
composite components were achieved after T6 heat treatment. Improvement of mechanical properties
is due to the more precipitated needle-like Al2CuMg phase and short-rod-like Al2Cu phase. Wear
resistance of the rheoformed composite components was higher than that of the rheoformed matrix
component. Wear resistance of the rheoformed composite component increased with an increase
in Al2O3 nanoparticles from 1% to 7%. A slight decrease in wear rate resulted from 10% Al2O3

nanoparticles due to greater agglomeration of Al2O3 nanoparticles. A combination mechanism of
adhesion and delamination was determined according to worn surface morphology.

Keywords: 2024 aluminum matrix composites; rheoformed; Al2O3 nanoparticles; microstructure;
mechanical properties

1. Introduction

Metal matrix composites (MMC) have exhibited some obvious advantages such as high specific
strength, high specific stiffness, and good wear resistance [1–3]. Fabrication technology of MMC
involves stirring casting [4,5], powder metallurgy [6–8], squeeze casting [9–11], and semisolid
stirring [12–14]. In addition, selective laser melting (SLM) was employed to fabricate high-performance
alloys and MMC [15–17]. As a typical MMC, aluminum matrix composite reinforced by ceramic
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particles (AMCCP) also exhibited some important applications in the automotive and aerospace
industries [18,19]. The reinforced ceramic particles are composed of micro-sized ceramic particles and
nano-sized ceramic particles. In recent years, aluminum matrix composites reinforced with nano-sized
ceramic particles (AMCNCP) have attracted researchers’ attention because of higher strength, increased
dimensional stability, high thermal stability, high modulus, and good wear resistance as compared to
conventional materials [20]. Raju et al. [21] evaluated fatigue of nano-sized Al2O3p/2024 composite
and found that it was slightly increased as compared to matrix material. Raturi et al. [22] reported
mechanical, tribological, and micro structural behavior of the Al 7075 matrix reinforced with nano
Al2O3 particles and concluded that tensile, impact, and flexural strength of the composite were
enhanced as compared with the matrix alloy. Sajjadi et al. [23] investigated the fabrication and
mechanical properties of A356 composite reinforced with micro and nano-sized Al2O3 particles by a
developed compocasting method. The results showed that the hardness of the composites increased
with increasing particle weight fraction and decreasing particle size.

However, it is very difficult to disperse uniformly nano-sized ceramic particles in the matrix alloy
due to higher surface energy and specific surface area as compared to micro-sized ceramic particles.
Therefore, some novel methods were developed to realize uniform dispersion of nano-sized ceramic
particles such as Al2O3 and SiC. For example, uniform dispersion of Al2O3 nanoparticles in matrix alloy
was achieved successfully via incorporating milled powders of Al2O3 nanoparticles and aluminum or
copper into A356 alloy melt [24,25]. Acoustic streaming and cavitation created by ultrasonic wave led
to a uniform dispersion of nano-sized SiC particles in molten A356 aluminum alloy [26,27]. Semisolid
stirring and ultrasonic wave were joined together to obtain a uniform dispersion of nano-sized SiC
particles in 7075 aluminum matrix. It was attributed to the controllable viscosity of semisolid slurries
and acoustic streaming and cavitation created by ultrasonic wave [28].

Matrix materials of AMCNCP mainly have been focused on A356 [24–27], 7075 [28], A357 [29],
and 6061 [8] aluminum alloys, but 2024 matrix material has not been studied in detail. The present
investigation will deal with microstructure and mechanical properties of 2024 aluminum matrix
composite reinforced with Al2O3 nanoparticles.

2. Materials and Methods

2.1. Fabrication of 2024 Aluminum Matrix Composite Reinforced with Al2O3 Nanoparticles

Commercial 2024 aluminum alloy was used as matrix material. Its chemical composition
was determined via an Axios pw4400 X-ray fluorescence spectrometer and contained 4.52 wt %
Cu, 1.51 wt % Mg, 0.56 wt % Mn, 0.18 Si wt %, 0.12 wt % Fe, 0.02 wt % Zn, and a balance of Al.
α-Al2O3 nanoparticles with an average size of 60 nm were used as reinforcement of the composite.
Solidus temperature of 529 ◦C and liquidus temperature of 650 ◦C were achieved from a differential
scanning calorimetry (DSC) test. Figure 1 gives a schematic diagram of fabrication and rheoforming
of 2024 matrix composite semisolid slurry. As shown in Figure 1, there were three main procedures
in the fabrication and rheoforming of composite semisolid slurry. In the first procedure, α-Al2O3

nanoparticles with an average size of 60 nm parceled by pure aluminum foil were added into the
melt after 2024 aluminum alloy was melted at 670 ◦C and held for 20 min. The XRD pattern of
as-received Al2O3 nanoparticles shows the presence of α-Al2O3 peaks (Figure 2). The melt with
α-Al2O3 nanoparticles was treated for 10 min via an ultrasonic device. In the second procedure, melt
with α-Al2O3 nanoparticles was stirred and cooled to the predefined semisolid temperature, and then
isothermally stirred for the required time, as shown in Table 1.
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Figure 1. Schematic diagram of fabricating and rheoforming the semisolid slurry of composite. 

 

Figure 2. XRD pattern of as-received Al2O3 nanoparticles. 
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Figure 1. Schematic diagram of fabricating and rheoforming the semisolid slurry of composite.
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Figure 2. XRD pattern of as-received Al2O3 nanoparticles.

Table 1. Experimental scheme of the rheoformed 2024 aluminum matrix composite reinforced by Al2O3

nanoparticles and original 2024 components.

Serial
Number

Stirring
Time (Min)

Stirring
Temperature

(◦C)

Al2O3 Volume Fraction
(%)

Ultrasonic
Treatment Time

(Min)
Force (kN) Dwell Time

(s)

Preheated
Temperature of Die

(◦C)

1 5 620 5 10 2000 20 400
2 10 620 5 10 2000 20 400
3 15 620 5 10 2000 20 400
5 20 620 5 10 2000 20 400
6 25 620 5 10 2000 20 400
7 30 620 5 10 2000 20 400
8 25 610 5 10 2000 20 400
9 25 615 5 10 2000 20 400
10 25 625 5 10 2000 20 400
11 25 630 5 10 2000 20 400
12 25 620 0 10 2000 20 400
13 25 620 1 10 2000 20 400
14 25 620 3 10 2000 20 400
15 25 620 7 10 2000 20 400
16 25 620 10 10 2000 20 400
17 25 610 0 10 2000 20 400
18 25 615 0 10 2000 20 400
19 25 625 0 10 2000 20 400
20 25 630 0 10 2000 20 400

In the third procedure, the fabricated semisolid slurries of the composite were carried directly
into the die cavity with a preheated temperature of 400 ◦C and rheoformed (i.e., semisolid slurry
was directly formed into the final part under some pressure) under a force of 2000 kN. The detailed
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experimental scheme was shown in Table 1. Two composite components under the same process
parameters were rheoformed in order to improve the accuracy of tensile test. Therefore, thirty
composite components were rheoformed successfully. Ten original 2024 components without Al2O3

nanoparticles were also rheoformed in order to compare microstructure, mechanical properties, and
wear behavior with composite components.

2.2. Microstructure Observation and Measurement of Mechanical and Wear Properties

The microstructural specimens cut from composite components were firstly ground with 200, 400,
600, 800, 1200, and 2000 grit papers and then polished with 0.1 µm diamond paste. The specimens
were etched for about 10 s by Keller’s reagent (4 mL HF, 6 mL HCL, 8 mL HNO3 and 82 mL water)
and observed by using Olympus GX71 optical microscope (OM, Olympus Coporation, Toyko, Japan),
Quanta 200 FEG scanning electron microscope (SEM, FEI, Hillsboro, OR, USA), and talos f200x
transmission electron microscopy (TEM, FEI, Hillsboro, OR, USA) equipped with an energy dispersive
X-ray spectrometer (EDX). Transmission electron microscopy specimens were fabricated via cutting
1 mm slices from the rheoformed composite component with a wire cutting machine, and then
mechanically ground to a thickness of 100 µm. Then 3 mm diameter disks were cut from the thin slices
by punching. Ion milling was carried out on these 3 mm diameter disks.

Tensile specimens cut from composite components were machined into standard tensile specimens
according to ASTM Standard Test Methods for Tension Testing of Metallic Materials, E8M [30].
The sampled location and drawing of tensile specimens were indicated in Figure 3. Eight specimens
were obtained from side wall of the two rheoformed composite components under the same process
parameters and four specimens were obtained from the bottom. Four side-wall tensile specimens and
two bottom specimens were directly carried out on tensile test at room temperature. The other four
side-wall specimens and two bottom specimens were firstly treated via T6 heat treatment involving
the solution treatment for 2 h at 490 ◦C and ageing for 10 h at 190 ◦C and then used as a tensile test at
room temperature. The tensile strength of the side wall reported in this paper was obtained from the
average value of data of four side-wall specimens. The tensile strength of bottom was achieved from
the average value of data of two bottom specimens. The dry sliding wear tests were carried out on a
pin-on-disc wear-testing apparatus. The disc was made from 5Cr15 steel. After the rheoformed matrix
and composite components were formed, they were machined into the samples with dimensions of
φ6 × 15 mm for the dry sliding wear tests. The process parameters of wear test involved a distance of
1000 m, a speed of 0.8 m/s, and a load of 30 N.
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3. Results and Discussion

3.1. Macrograph and Microstructure of the Rheoformed Composite Component

Figure 4 presented the whole and half-sectional macrographs of the rheoformed composite
component reinforced by 5 vol % Al2O3 nanoparticles at 620 ◦C and for 25 min stirring time.
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As shown in Figure 4a, complete filling status and good surface quality were obtained from the
rheoformed composite component. No obvious porosity and incomplete filling status were found in
the half-sectional macrograph of the rheoformed composite component (Figure 4b). It illustrates that
densified microstructure was obtained in the rheoformed composite components. The densified
microstructure is beneficial to improve the mechancial properties of the rheoformed composite
components. In order to characterize the microstructure and mechanical properties in different
locations of the rheformed composite components, the microstructural specimens were achieved from
the locations A to D (Figure 4b), and tensile specimens were obtained from the side wall and bottom
(Figure 3).
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Figure 4. Whole and half-sectional macrographs of rheoformed 2024 aluminum matrix composite
component reinforced by 5 vol % Al2O3 nanoparticles at 620 ◦C and for 25 min stirring time (a) whole
macrograph; (b) half-sectional macrograph.

Microstructure in different locations of the rheoformed composite components is shown in
Figure 5. As indicated in Figure 5a,b, microstructure in locations A and B consisted of near spheroidal
grains and liquid phase. It illustrates that no obvious plastic deformation occurred in the solid grains in
locations A and B during the rheoforming process. The microstructure in locations C and D consisted
of elongated solid grains and liquid phase (Figure 5c,d). It indicates that obvious plastic deformation
along flowing direction of semisolid slurries occurred in the solid grains in locations C and D. There are
four deformation mechanisms in the semisolid processing, liquid flow (LF), flow of liquid incorporating
solid grains (FLS), sliding between solid grains (SSG), and plastic deformation of solid grains (PDS) [31].
When the semisolid slurry was rheoformed in the die cavity, it showed a backward extrusion mode.
The flow front of the semisolid slurry in locations A and B is a free surface [27], indicating the lowest
resistance to flow. The flow velocity of liquid phase is higher than that of solid phase. It led to more
liquid phase existed in locations A and B. As a consequence, deformation compatibility of liquid phase
is higher than that of semisolid slurry in locations C and D. Therefore, deformation in locations A and
B depends on flow of liquid incorporating solid grains (FLS) and sliding between solid grains (SSG).
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Figure 5. Microstructure of 2024 aluminum matrix composite component reinforced by 5 vol % Al2O3

nanoparticles rheoformed at 620 ◦C and for 25 min stirring time. (a) Optical microscope (OM) image
in location A of the composite component; (b) OM image in location B of the composite component;
(c) OM image in location C of the composite component; (d) OM image in location D of the composite
component; (e) SEM image in location B of the composite component.

It led to near spheroidal solid grains with no obvious plastic deformation. However, the
deformation in locations C and D was mainly dominated by plastic deformation of solid grains
(PDS). Consequently, the elongated solid grains were created along the flowing direction. In addition,
it can be noted that the deformation degree in location D is higher than that in location C due to low
fraction liquid. Figure 5e shows the SEM image of the rheoformed composite component. It illustrates
further that the microstructure in location B consisted of near spheroidal grains due to dependence of
the deformation on FLS and SSG.
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The microstructure in various locations of the rheoformed original 2024 is similar to that of the
composite component (Figure 6). As a consequence, the deformation mechanisms in locations A and B
rely on FLS and SSG. The deformation mechanisms in locations C and D depend on PDS. The SEM
image in location B of 2024 matrix component is presented in Figure 6e. As shown in Figure 6e, similar
to the composite, the microstructure of the rheoformed original 2024 consisted of near spheroidal
grains and liquid phase. It illustrates that the deformation mechanism depends on the FLS and SSG.
However, the size of the solid grains of the rheoformed composite component is obviously smaller
than that of the rheoformed original 2024. It was attributed to the action of nano-sized Al2O3 particles
as heterogeneous nuclei during the solidification of aluminum alloy [24].
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Figure 6. Microstructure of the original 2024 rheoformed at 620 ◦C and for 25 min stirring time. (a) OM
image in location A of the matrix component; (b) OM image in location B of the matrix component;
(c) OM image in location C of the matrix component; (d) OM image in location D of the matrix
component; (e) SEM image in location B of 2024 matrix component.
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3.2. Influence of Stirring Temperature and Stirring Time on Mechanical Properties

Figure 7 shows mechanical properties of the rheoformed composite components reinforced by
5 vol % Al2O3 nanoparticles and matrix components for 25 min stirring time at different stirring
temperatures. As indicated in Figure 7, ultimate tensile strength (UTS), yield strength (YS), and
elongation all increase and then decrease with an elevated stirring temperature. The highest UTS
of 315 MPa in the side wall and the highest UTS of 358 MPa at the bottom were obtained at 620 ◦C.
The highest YS of 238 MPa in the side wall and the highest YS of 245 MPa at the bottom were obtained
at 620 ◦C. The highest elongation of 5.3% in the side wall and the highest elongation of 5.6% at the
bottom were all obtained at 620 ◦C. Similar to the composite components, the optimal mechanical
properties were also obtained at 620 ◦C. It illustrated that 620 ◦C was the optimal stirring temperature
to obtain the highest mechanical properties. In addition, UTS and elongation at the bottom were higher
than the side wall. It is due to the fact that severe plastic deformation occurred in the bottom location
of the rheoformed composite components (Figure 4d). The UTS and YS of the matrix components are
lower than those of the composite components. The YS in the side wall of the composite and matrix
components was close to that at the bottom.
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Figure 7. Influence of different stirring temperature on mechanical properties of rheoformed composite
components reinforced by 5 vol % Al2O3 nanoparticles for 25 min stirring time and matrix components
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Microstructure evolution with elevating stirring temperature was given in Figure 8. The
microstructure specimens were cut from location B as shown in Figure 4b. The microstructure consisted
of near spheroidal solid grains and liquid phase due to dependence of deformation mechanism on FLS
and SSG. Low stirring temperature leads to coarse spheroidal grains. Even some obvious dendrites
were found in the microstructure of the rheoformed composite parts. It has an adverse influence on the
mechanical properties of the rheoformed composite parts. With the increase in stirring temperature,
the grain size of spheroidal grains decreased. The average grain sizes obtained from image analysis
are 57 µm, 76 µm, 47 µm, 55 µm, and 54 µm respectively when the stirring temperatures are 610 ◦C,
615 ◦C, 620 ◦C, 625 ◦C, and 630 ◦C.

Therefore, the average size of solid grains in the microstructure at 620 ◦C is obviously smaller
than those at other stirring temperatures. According to the Hall-Petch effect [31], fine grains can
lead to an increase in YS and UTS. Furthermore, stirring temperatures higher than 625 ◦C lead to
aggregation of liquid phase, which is detrimental to mechanical properties. When stirring temperature
is higher than 625 ◦C, more aggregation of liquid phase also reduced controllable viscosity of semisolid
slurries due to the lack of solid grains. The dispersion effect of Al2O3 nanoparticles was reduced due
to decreased viscosity of semisolid slurries. As a result, greater agglomeration of Al2O3 nanoparticles
occurred in the microstructure, leading to a decrease in mechanical properties of the rheoformed
composite components.
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Figure 8. OM microstructure in location B of rheoformed 2024 aluminum matrix composite component
reinforced by 5 vol % Al2O3 nanoparticles for 25 min stirring time at various stirring temperatures
(a) 610 ◦C; (b) 615 ◦C; (c) 620 ◦C; (d) 625 ◦C; (e) 630 ◦C.

Figure 9 shows mechanical properties of the rheoformed composite component reinforced by
5 vol % Al2O3 nanoparticles at 620 ◦C for different stirring times. As shown in Figure 7, mechanical
properties of rheoformed composite components increased significantly when stirring time increased
from 5 min to 25 min. Mechanical properties of the rheoformed composite component changed slightly
when stirring time increased from 25 min to 30 min. Similar results were found in the rheoformed
cylindrical part of the 7075 aluminum matrix composite reinforced with nano-sized SiC particles [28].
The highest mechanical properties including UTS of 358 MPa, YS of 245 MPa, and elongation of 5.6%
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Figure 9. Influence of different stirring time on mechanical properties of rheoformed 2024 aluminum
matrix composite component reinforced by 5 vol % Al2O3 nanoparticles at 620 ◦C.

Increasing stirring time resulted in a fine-grained microstructure of composite semisolid slurries
(Figure 10). As indicated in Figure 10a, coarse solid grains of more than 200 µm were found in the
microstructure when stirring time was 5 min. With an increase in stirring time, solid grains were refined
significantly (Figure 10b–e). When stirring time was 25 min, the average size of solid grains was about
46 µm. Fine-grained microstructure can improve mechanical properties of the rheoformed composite
components due to the Hall-Petch effect [32]. However, the grain size of solid grains changed slightly
when stirring time increased from 25 min to 30 min. As a result, the mechanical properties of the
rheoformed composite components also changed slightly, or even showed a slight decrease.
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Figure 10. Influence of different stirring time on OM microstructure in location B of the rheoformed
2024 aluminum matrix composite component reinforced by 5 vol % Al2O3 nanoparticles at 620 ◦C
(a) 5 min; (b) 10 min; (c) 15 min; (d) 20 min; (e) 25 min; (f) 30 min.

3.3. Influence of Volume Fraction of Al2O3 Nanoparticles on Mechanical Properties

Figure 11 shows the influence of volume fraction of Al2O3 nanoparticles on mechanical properties
of the rheoformed composite components. As indicated in Figure 11, UTS and YS of the rheoformed
composite components increased when the volume fraction of Al2O3 nanoparticles increased from
0 to 5%. UTS values in the side wall and at the bottom of the matrix components are 268 MPa and
272 MPa respectively. When the volume fraction of Al2O3 nanoparticles increased to 5%, they reached
315 MPa and 358 MPa respectively. The increasing degrees of UTS and YS are 17.5% and 31.7%
respectively. Al2O3 nanoparticles act as barriers of dislocations mobility, leading to an improvement
of UTS and YS [33]. In addition, mismatch of coefficient of thermal expansion (CTE) between the
matrix and reinforcement phase, load transfer from matrix to reinforcement phase and Orowan
strengthening mechanism also play an important role in improving the mechanical properties [34–36].
Al2O3 nanoparticles also acted as heterogeneous nuclei for the aluminum alloy matrix, leading to
a grain-refined strengthening effect [24,37,38]. The improvement of mechanical properties may be
related to the residual stress and fracture toughness at the interface between the Al2O3 and the Al
matrix. However, it is very difficult to measure the residual stress and fracture toughness at the
interface between the Al2O3 and the Al matrix, and it could be helpful to employ nanoindentation and
pillar splitting techniques as reported by Matteo Ghidelli et al. [39,40].
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Figure 11. Influence of volume fraction of nano-sized Al2O3 on mechanical properties of rheoformed
2024 aluminum matrix composite component reinforced by 5 vol % Al2O3 nanoparticles at 620 ◦C for
25 min stirring time.

In addition, it can be noted that UTS and YS of the rheoformed composite components decreased
slightly when the volume fraction of Al2O3 nanoparticles was more than 5%. It was attributed to greater
agglomeration of Al2O3 nanoparticles that occurred in the composite due to a large volume fraction of
Al2O3 nanoparticles [37]. A similar phenomenon was found in the research of Mazahery et al. [41]
and Su et al. [37]. Mechanical properties in the present study were higher than those of Su et al. [37].
It may be due to the effect of a different fabrication method and different component shape on
mechanical properties. Elongation of the rheoformed composite components is lower than that of the
matrix component. In addition, elongation of the rheoformed composite components decreased with
increasing volume fraction of Al2O3 nanoparticles. UTS at the bottom of the rheoformed composite
components was higher as compared to that of the side wall. Figure 12 depicts the microstructure of
rheoformed composite reinforced by nano-sized Al2O3 particles and matrix components at 620 ◦C and
for 25 min stirring time.
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Figure 12. OM microstructure of rheoformed 2024 aluminum matrix composite component reinforced
by different volume fraction of Al2O3 nanoparticles at 620 ◦C and for 25 min stirring time
(a) 2024 matrix; (b) 1%; (c) 3%; (d) 5%; (e) 7%; (f) 10%.

Average grain size of the rheoformed composite components was smaller than that of the matrix
component. It is due to the increasing heterogeneous nucleation for the aluminum matrix created by
Al2O3 nanoparticles [37,38]. It is helpful to improve the UTS and YS of the rheoformed composite
components due to a grain-refined strengthening effect [24,37,38].

3.4. Microstructure Characterization of the Rheoformed Composite Components

Figure 13 shows TEM micrographs at bottom of the rheoformed composite component reinforced
by 5 vol % Al2O3 nanoparticles. As shown in Figure 13a–e, Al2O3 nanoparticles distributed uniformly
in the matrix alloy. It is due to the fact that cavitation and acoustic streaming created via ultrasonic wave
dispersed Al2O3 nanoparticles uniformly [26,42]. In addition, further dispersion of Al2O3 nanoparticles
was obtained via controllable viscosity of semisolid slurries [27–29]. However, few Al2O3 nanoparticles
were found in the TEM microstructure at a stirring temperature of 630 ◦C (Figure 13f). It may be due
to the fact that greater agglomeration of Al2O3 nanoparticles leads to nonuniform dispersion of Al2O3

nanoparticles. This result also provided good evidence for the decreased mechanical properties of the
rheoformed composite components at 630 ◦C (Figure 7a).

High density dislocations and dislocation tangles were found in the TEM images. Deformation of
composite semisolid slurries depends on flow of liquid incorporating solid grains (FLS), sliding
between solid grains (SSG), and plastic deformation of solid grains (PDS). PDS dominated the
deformation of the semisolid slurry at the bottom. Therefore, plastic deformation at the bottom
mainly relied on dislocation mobility. As a result, some dislocations were created due to plastic
deformation, as shown in Figure 13. Twin crystal was noticed in the TEM microstructure (Figure 13b).
It indicated that twinning also occurred in the plastic deformation of solid grains of semisolid slurries.
Furthermore, some sub-grains were found in the twin crystal. It is due to the fact that dynamic
recovery occurred in rheoformed composite components during the cooling course. Furthermore,
Al2O3 nanoparticles were surrounded by these high density dislocations (Figure 13a,c,d).

Al2O3 nanoparticles acted as barriers of dislocations, leading to an enhancement of the mechanical
properties of the rheoformed composite components [33]. It demonstrates that two strengthening
mechanisms including dislocation strengthening caused by PDS and interaction between Al2O3

nanoparticles and dislocations play an important role in improving the mechanical properties of the
rheoformed composite components together.

EDX analysis of Al2O3 nanoparticles on microstructure of rheoformed composite components
reinforced was shown in Figure 14. Al2O3 nanoparticles, Al2Cu phase, and MgAl2O4 phase were
determined via mapping of Al, Cu, Mg, and O elements.
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Figure 14. Energy dispersive X-ray spectrometer (EDX) analysis of nano-sized Al2O3 on microstructure
of rheoformed 2024 aluminum matrix composite component reinforced by 5 vol % Al2O3 nanoparticles
at 615 ◦C for for 25 min stirring time (a) TEM micrograph; (b) Al; (c) Cu; (d) Mg; (e) O.

As indicated in Figure 14, uniform dispersion of Al2O3 nanoparticles was noted in the TEM
image due to double dispersion of cavitation and acoustic streaming created by ultrasonic wave and
controllable viscosity of semisolid slurries. Existence of Al2Cu phase was due to natural ageing that
occurred at room temperature. MgAl2O4 phase illustrates that an interface reaction occurred in the
interface of Al and Al2O3 nanoparticles due to existence of Mg element. MgAl2O4 phase has some
advantages such as low density, high melting point, good wear resistance, good heat stability, and
high mechanical properties [43,44]. Furthermore, relatively good wetting was obtained at the interface
Al, MgAl2O4, and Al2O3 [45]. Therefore, the existence of MgAl2O4 phase has no effect on mechanical
properties of the rheoformed composite components.

Figure 15 shows TEM microstructure and SAED of rheoformed composite components reinforced
by 5 vol % Al2O3 nanoparticles for 25 min stirring time at 615 ◦C and 625 ◦C. As indicated in
Figure 15, short-rod-like Al2Cu phase and needle-like Al2CuMg phase were determined via selected
area electron diffraction (SAED). The second phases such as Al2Cu phase and Al2CuMg act as the role
of strengthening the 2024 aluminum alloy. After the rheoformed composite components were cooling
down to room temperature, these second phases precipitated in the 2024 matrix and strengthened it due
to natural ageing that occurred in the components. These second phases also hindered the dislocation
movement while the semisolid slurries were deformed. As a result, the mechanical properties of the
rheoformed composite component were improved.
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Figure 15. TEM microstructure and selected area electron diffraction (SAED) of rheoformed 2024
aluminum matrix composite component reinforced by 5 vol % Al2O3 nanoparticles for 25 min stirring
time at 615 ◦C and 625 ◦C (a) TEM image at 615 ◦C (b) SAED at 615 ◦C (c) TEM image at 625 ◦C
(d) SAED at 625 ◦C.

SEM image and EDX analysis in location B of the rheoformed composite component are presented
in Figure 16. As shown in Figure 16a, the microstructure consisted of spheroidal solid grains (grey
black color) and liquid phase (white color). It illustrates that the deformation mechanism of semisolid
slurry in location B belongs to flow of liquid incorporating solid grains (FLS), sliding between solid
grains (SSG). The atom ratio of aluminum and copper at grain boundary is close to 2:1 according to the
Figure 16b. It illustrated that the liquid phase at the grain boundary was mainly composed of θ phase
(Al2Cu). The spheroidal solid grains contained a large amount of Al elements and a small amount of
Cu and Mg elements, as show in Figure 16c. It illustrates that the spheroidal solid phase is α-Al phase.
The α-Al phase is a solid solution of copper and magnesium in aluminum. Existence of O element was
attributed to oxidation occurred in the grinding course of the specimens.

3.5. Influence of T6 Heat Treatment on Mechanical Properties

Mechanical properties of the rheoformed composite components reinforced by Al2O3

nanoparticles at 620 ◦C and for 25 min stirring time after T6 heat treatment are indicated in Figure 17.
As indicated in Figure 17, mechanical properties of the rheoformed composite components were
improved significantly after T6 heat treatment. UTS of 417MPa and YS of 328 MPa were achieved
at the bottom of the rheoformed composite components at 620 ◦C. UTS and YS of the composite
components with T6 heat treatment were 16.5% and 20.6% respectively, higher than those of the
composite component without T6 heat treatment. Elongation of the composite components with T6
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heat treatment was increased by 5.6% as compared to the composite component without T6 heat
treatment. UTS and YS of the composite components with T6 heat treatment were increased by 36.7%
and 49.1% respectively as compared to the matrix component with T6 heat treatment.
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in location marked with red cross; (c) EDX in location marked with blue cross.
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TEM and EDX of the rheoformed composite components reinforced by 5 vol % Al2O3
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The length and width of the short-rod-like Al2Cu phase are about 100 nm and 65 nm respectively.
As for needle-like Al2CuMg phase, its length varies from 150 nm to 200 nm. Its width is in a range from
20 nm to 50 nm. The mechanical properties of the rheoformed composite component after T6 treatment
were improved because of the needle-like Al2CuMg phase and the short-rod-like Al2Cu phase.
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Figure 19 shows the XRD patterns of the rheoformed composite components with T6 and without
T6 treatment. The XRD pattern of the rheoformed composite components without T6 showed the
presence of the Al peaks, Al2Cu peaks, and Al2O3 peaks.
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Figure 19. XRD analysis of rheoformed 2024 aluminum matrix composite component reinforced by
5 vol % Al2O3 nanoparticles at 620 ◦C for 25 min stirring time before and after T6 heat treatment.

Al2CuMg phase besides Al phase, Al2Cu phase, and Al2O3 nanoparticles was also detected in the
XRD pattern of the rheoformed composite components with T6. It illustrates that more needle-like
Al2CuMg phase besides short-rod-like Al2Cu phase precipitated in the rheoformed composite
components with T6. As a result, mechanical properties of the rheoformed composite components with
T6 were improved significantly as compared to the rheoformed composite components without T6.

3.6. Wear Behavior of the Rheoformed Composite Components

Figure 20 shows wear rate of the rheoformed composite components reinforced by different
volume fraction Al2O3 nanoparticles at 620 ◦C for 25 min stirring time. As shown in Figure 20, wear
resistance of the rheoformed composite components increased significantly as compared to that of
the rheoformed matrix components. Furthermore, wear resistance of the rheoformed composite
components increased when volume fraction of Al2O3 nanoparticles increased from 1% to 7%. The
research of Alhawari et al. [46] also showed that wear resistance of the composite part formed via
semisolid processing was higher than that of the composite part via conventional stirring casting.
When volume fraction of Al2O3 nanoparticles reached 10%, wear rate of the rheoformed composite
components decreased slightly as compared to that of the rheoformed composite components with
5% Al2O3 nanoparticles. Greater agglomeration of Al2O3 nanoparticles leads to difficult uniform
dispersion of Al2O3 nanoparticles. It led to a decrease in effective dispersion of Al2O3 nanoparticles in
the 2024 matrix, reducing wear resistance.
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The specimens subjected to wear test have been examined via SEM (Figure 21). The surface
exhibited some clear longitudinal abrasive grooves due to the ploughing effects of harder steel
asperities. With an increase of volume fraction of Al2O3 nanoparticles, the depth of ploughing grooves
became shallow. It indicates that the composite’s resistance to wear increases. It is due to the fact
that the increase in volume fraction of Al2O3 nanoparticles led to an increase in the hardness of the
composite. Increase of the hardness of the material is beneficial to improve the resistance to wear [47].
In addition, a delamination was found in the microstructure of the worn surface. It illustrates that the
dominant wear mechanism was a combination of adhesion and delamination mechanisms, similar to
the findings of Alhawari [46].
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4. Conclusions

(1) 2024 aluminum matrix composite components reinforced by Al2O3 nanoparticles were
rheoformed successfully. Complete filling status and good surface quality were achieved
in the rheoformed composite components. Microstructure at the top and middle side wall
consisted of near spheroidal grains and liquid phase, indicating dependence of deformation
on liquid incorporating solid grains (FLS) and sliding between solid grains (SSG). However,
obvious elongated grains were noted in the low side wall and at bottom of the rheoformed
composite components. It illustrated that deformation in these locations was dominated by
plastic deformation of solid grains (PDS).

(2) Mechanical properties of the rheoformed composite components were influenced by stirring
temperature, stirring time, and volume fraction of Al2O3 nanoparticles of composite semisolid
slurries. The optimal UTS of 358 MPa and YS of 245 MPa were obtained at the bottom of the
rheoformed composite components with 5% Al2O3 nanoparticles at 620 ◦C for 25 min stirring
time. The increasing degrees of UTS are 17.5% and 31.7% as compared to the matrix component.
Uniform dispersed Al2O3 nanoparticles and high density dislocations and dislocation tangles
caused by PDS led to an improvement of mechanical properties. Needle-like Al2CuMg phase
and short-rod-like Al2Cu phase were found in the microstructure of the rheoformed composite
components due to natural ageing. MgAl2O4 phase has no effect on mechanical properties due to
good wetting and high properties.

(3) T6 heat treatment led to an improvement of mechanical properties of the rheoformed composite
components. UTS of 417MPa and YS of 328 MPa were achieved at bottom of the rheoformed
composite components with 5% Al2O3 nanoparticles at 620 ◦C for 25 min stirring time. UTS, YS,
and elongation of the composite components with T6 heat treatment were increased by 16.5%,
20.6%, and 5.6% respectively as compared to the composite component without T6 heat treatment.
UTS and YS of the composite components with T6 heat treatment were increased by 36.7% and
49.1% respectively as compared to the matrix components with T6 heat treatment. Improvement
of mechanical properties of the rheoformed composite components with T6 was attributed to a
large amount of precipitated needle-like Al2CuMg phase and short-rod-like Al2Cu phase.

(4) Wear resistance of the rheoformed composite components increased as compared to that of
the matrix component. Furthermore, wear resistance of the rheoformed composite components
increased with an increase of Al2O3 nanoparticles from 1% to 7%. A slight decrease in wear rate of
the rheoformed composite components resulted from 10% Al2O3 nanoparticles due to a decrease
in effective dispersion of Al2O3 nanoparticles caused by greater agglomeration. The delamination
and shallow ploughing grooves illustrate that the dominant wear mechanism was a combination
mechanism of adhesion and delamination. To sum up, the optimal process parameters to obtain
best comprehensive mechanical properties and resistance to wear are a stirring temperature of
620 ◦C, a stirring time of 25 min, and a volume fraction of 5% nano-sized Al2O3 nanoparticles.
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